首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface magnetic and electric recordings were used to localize the sources of late pain-related magnetic fields and electric potentials, evoked by painful intracutaneous electric finger stimulation. We find that the source of the P90m component of the evoked magnetic field lies in the finger area of the primary somatosensory cortex; the sources of the N150m and P250m are found to reside in the frontal operculum. These findings are unexpected from the evoked electric potential data, which suggest a central location for these sources. We also note that the interpretation of the electric data was confounded by the presence of an alpha-like oscillation, which overlapped many components of the evoked potential.  相似文献   

2.
Recent laboratory and epidemiological results have stimulated interest in the hypothesis that human beings may exhibit biological responses to magnetic and/or electric field transients with frequencies in the range between 100 Hz and 100 kHz. Much can be learned about the response of a system to a transient stimulation by understanding its response to sinusoidal disturbances over the entire frequency range of interest. Thus, the main effort of this paper was to compare the strengths of the electric fields induced in homogeneous ellipsoidal models by uniform 100 Hz through 100 kHz electric and magnetic fields. Over this frequency range, external electric fields of about 25–2000 V/m (depending primarily on the orientation of the body relative to the field) are required to induce electric fields inside models of adults and children that are similar in strength to those induced by an external 1 μT magnetic field. Additional analysis indicates that electric fields induced by uniform external electric and magnetic fields and by the nonuniform electric and magnetic fields produced by idealized point sources will not differ by more than a factor of two until the sources are brought close to the body. Published data on electric and magnetic field transients in residential environments indicate that, for most field orientations, the magnetic component will induce stronger electric fields inside adults and children than the electric component. This conclusion is also true for the currents induced in humans by typical levels of 60 Hz electric and magnetic fields in U.S. residences. Bioelectromagnetics 18:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation.  相似文献   

4.
G Nolte  G Curio 《Biophysical journal》1997,73(3):1253-1262
Spatially restricted biological current distributions, like the primary neuronal response in the human somatosensory cortex evoked by electric nerve stimulation, can be described adequately by a current multipole expansion. Here analytic formulas are derived for computing magnetic fields induced by current multipoles in terms of an nth-order derivative of the dipole field. The required differential operators are given in closed form for arbitrary order. The concept is realized in different forms for an expansion of the scalar as well as the dyadic Green's function, the latter allowing for separation of those multipolar source components that are electrically silent but magnetically detectable. The resulting formulas are generally applicable for current sources embedded in arbitrarily shaped volume conductors. By using neurophysiologically relevant source parameters, examples are provided for a spherical volume conductor with an analytically given dipole field. An analysis of the signal-to-noise ratio for multipole coefficients up to the octapolar term indicates that the lateral extent of cortical current sources can be detected by magnetoencephalographic recordings.  相似文献   

5.
Many aquatic vertebrates can sense the weak electric fields generated by other animals and may also sense geoelectric or electromagnetic phenomena for use in orientation. All these sources generate stationary (dc) fields. In addition, fields from animals are modulated by respiration and other body movements. Since electroreceptors are insensitive to a pure dc field, it has been suggested that the ac modulation carries most of the relevant information for electrosensory animals. However, in a natural situation pure dc fields are rare since any relative movement between source and receiver will transform a dc field into a time varying signal. In this paper, we will describe the properties of such signals and how they are filtered at the first stage of electrosensory information processing in the brain. We will show that the signal perceived by an animal traversing a dc electric field contains all the information necessary to reconstruct the distance to the source and that the signal conditioning algorithms are perfectly adapted to preserve such information.  相似文献   

6.
A theoretical analysis of electric and magnetic fields of the heart, based solely upon the scalar multipole expansion, is carried out in order to gain an insight into the interrelation of the data contained in electro- and magnetocardiological measurements. The usual multipole expansion is applied for the electric field, however corresp[nding equivalent multipoles are formulated as idealized generators, having not only flow sources, but also vortex sources of the field. Furthermore, the magnetic field in a homogeneous infinite volume conductor is expressed as a sum of two series, the first being the usual multipole expansion of the nonvortex component of the magnetic field, and the second being a sequence of magnetic fields set up by the aforementioned electric multipole generators reduced to axial form. The former term is uniquely defined by the electric multipole components, but the latter reflects properties of the cardiogenerator that can be revealed only by means of magnetic measurements. Features of the electric and magnetic multipole components as integral characteristics of the cardiogenerator are discussed and concepts of the magnetic centre and magnetic axis of the cardiogenerator are proposed. The analysis is illustrated by examples of simple generator configurations.  相似文献   

7.
Model Studies of the Magnetocardiogram   总被引:7,自引:2,他引:5       下载免费PDF全文
A general expression is developed for the quasi-static magnetic field outside an inhomogeneous nonmagnetic volume conductor containing internal electromotive forces. Multipole expansions for both the electric and magnetic fields are derived. It is shown that the external magnetic field vanishes under conditions of axial symmetry. The magnetic field for a dipole current source in a sphere is derived, and the effect of an eccentric spherical inhomogeneity is analyzed. Finally the magnetic dipole moment is calculated for a current dipole in a conducting prolate spheroid.  相似文献   

8.
There is public health concern raised by epidemiological studies indicating that extremely low frequency electric and magnetic fields generated by electric power distribution systems in the environment may be hazardous. Possible carcinogenic effects of magnetic field in combination with suggested oncostatic action of melatonin lead to the hypothesis that the primary effects of electric and magnetic fields exposure is a reduction of melatonin synthesis which, in turn, may promote cancer growth. In this review the data on the influence of magnetic fields on melatonin synthesis, both in the animals and humans, are briefly presented and discussed.  相似文献   

9.
Extremely low frequency magnetic fields interact with an animal by inducing internal electric fields, which are in addition to the normal endogenous fields present in living animals. Male rats weighing about 560 g each were anesthetized with ketamine and xylazine. Small incisions were made in the ventral body wall at the chest and upper abdomen to position a miniature probe for measuring internal electric fields. The calibration constant for the probe size was 5.7 mm, with a flat response from at least 12 Hz to 20 kHz. A cardiac signal, similar to the normal electrocardiogram with a heart rate of about 250 bpm, was readily obtained at the chest. Upon analysis of its spectrum, the cardiac field detected by the probe had a broad maximum at 32–95 Hz. When the rats were exposed to a 1 mT, 60 Hz magnetic field, a spike appeared in the spectrum at 60 Hz. The peak-to-peak magnitudes of electric fields associated with normal heart function were comparable to fields induced by a 1 mT magnetic field at 60 Hz for those positions measured on the body surface (where induced fields were maximal). Within the body, or in different directions relative to the applied field, the induced fields were reduced (reaching zero at the center of the animal). The cardiac field increased near the heart, becoming much larger than the induced field. Thus, the cardiac electric field, together with the other endogenous fields, combine with induced electric fields and help to provide reference levels for the induced-field dosimetry of ELF magnetic field exposures of living animals. Bioelectromagnetics 18:317–323, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
This paper demonstrates the application of effects function analysis to residential magnetic field exposure, focusing on appliance sources and mitigation choices. Residential field exposure time series were synthesized by using a sample of background household field measurements, a model of average daily appliance use, and a small sample of EMDEX data of field exposure from 12 household appliances. Four alternative effects functions (average field strength with or without a threshold, field strength window, sudden field changes) were simulated by using the synthesized time series data for different exposure situations, such as high and low levels of appliance use, simple avoidance, and use of a set of hypothetical “low field” appliances (50% lower fields). In particular, field exposure from the use of bedside clocks and electric blankets was examined. Results demonstrate that the choice of effects function is critical for the ranks of field sources and exposure reduction choices. For the effects function of average field strength with or without a threshold, exposure from background fields dominated exposure from all appliances except for bedside clocks and electric blankets. In the case of the field strength window effects function, the dominant field sources changed with the width of the window. For the effects function based on rapid field changes, appliance use was the major source of exposure. Because of the small sample size of our data set and other simplifications, specific results should be viewed as illustrative. Bioelectromagnetics 18:116–124, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
电磁场对完整和去膜青蛙肌纤维作用的比较研究表明,交变电场通过改变膜电位引起肌肉收缩,在此过程中收缩蛋白质的空间位置而非自身构象发生变化,横桥尤其是S-2片段,在伴随横桥从弱耦合状态向强耦合状态过渡时远离粗肌丝而向细肌丝运动,使其与粗肌丝骨架的平均取向比松弛状态或静息状态时相对增大.一般强度恒定磁场对肌纤维膜电位状态及肌纤维内部蛋白质分子的运动及其相互作用影响极其微弱.  相似文献   

12.
The US National Electrical Code's (NEC) requirement to ground a home's electrical service to the residential water line results in a voltage between the water line and earth, V W-E. The voltage may result from ground return current that flows into the earth via the water line or from inductive effects from other sources of magnetic fields, such as transmission lines. This voltage can, in turn, serve as a source for Vbath, the voltage between the water fixtures and conductive drain pipes sunk into the earth beneath a residence. Vbath can be a source of contact current exposure to a child touching a water fixture while bathing. Previous research has suggested that exposure to these currents could be the basis for the association between power-frequency magnetic fields and childhood leukemia. In this study, we assessed the association between measured Vbath and VW-E with the average spot-measured magnetic field, Bavg, in a sample of 191 single-family residences in the Denver metropolitan area. This area was the source of cases and controls for previous studies of electric and magnetic field (EMF) and childhood cancer. The association of both Vbath and VW-E with Bavg had upward trends across magnetic field strata (<0.1 microT (reference); 0.1-<0.3 microT; and > or = 0.3 microT). In addition, VW-E was associated with Vbath. Without further study, these results cannot be applied to multi-dwelling residences or to electrical systems prevalent in other nations. Nonetheless, when combined with the finding that contact current is a far more plausible candidate than the residential magnetic field for mediating biological effects on the basis of comparative dose to bone marrow, these associations indicate that contact current exposure deserves further study.  相似文献   

13.
Internet of Things (IoT) is driving the development of new generation of sensors, communication components, and power sources. Ideally, IoT sensors and communication components are expected to be powered by sustainable energy source freely available in the environment. Here, a breakthrough in this direction is provided by demonstrating high output power energy harvesting from very low amplitude stray magnetic fields, which exist everywhere, through magnetoelectric (ME) coupled magneto‐mechano‐electric (MME) energy conversion. ME coupled MME harvester comprised of multiple layers of amorphous magnetostrictive material, piezoelectric macrofiber composite, and magnetic tip mass, interacts with an external magnetic field to generate electrical energy. Comprehensive experimental investigation and a theoretical model reveal that both the magnetic torque generated through magnetic loading and amplification of magneto‐mechanical vibration by ME coupling contributes toward the generation of high electrical power from the stray magnetic field around power cables of common home appliances. The generated electrical power from the harvester is sufficient for operating microsensors (gyro, temperature, and humidity sensing) and wireless data transmission systems. These results will facilitate the deployment of IoT devices in emerging intelligent infrastructures.  相似文献   

14.
Results are presented of an investigation on electric and magnetic fields leaking from inductive (magnetic) heaters that are used for thermal processing of high-power electron tubes and lasers in an industrial plant. Measurements of electric and magnetic fields were done using both commercially available and laboratory-developed instrumentation. Isotropic H-field sensors were developed to allow quantitative evaluation of high-intensity magnetic fields. Ten induction heaters with nominal A.C. power ranging from 2.5 kW to 15 kW and operating at frequencies between 300 kHz and 790 kHz were surveyed. Electric field strengths up to 8 kV/m and magnetic field strengths up to 20 A/m were measured.  相似文献   

15.
Power-frequency electric and magnetic fields are known to exhibit marked temporal variation, yet in the absence of clear biological indications, the most appropriate summary indices for use in epidemiologic studies are unknown. In order to assess the statistical patterns among candidate indices, data on 4383 worker-days for magnetic fields and 2082 worker-days for electric fields collected for the Electric and Magnetic Field Project for Electric Utilities using the EMDEX meter [Bracken (1990): Palo Alto, CA: Electric Power Research Institute] were analyzed. We examined correlations at the individual and job title group levels among indices of exposure to both electric and magnetic fields, including the arithmetic mean, geometric mean, median, 20th and 90th percentiles, time above lower cutoffs of 20 V/m and 0.2 μT, and time above higher cutoffs of 100 V/m and 2.0 μT. For both electric and magnetic fields, the arithmetic mean was highly correlated with the 90th percentile; moderately correlated with the geometric mean, median, and lower and higher cutoff scores; and weakly correlated with the 20th percentile. Electric and magnetic field indices were generally weakly correlated with one another. Rank-order correlation coefficients were consistently greater than product-moment correlation coefficients. Job title group summary scores showed higher correlations among electric field indices and magnetic field indices and between electric and magnetic field indices than was found for individual worker-days, with only the 20th percentile clearly independent of the others. These results suggest that individuals' exposures are adequately characterized by a measure of central tendency for electric and magnetic fields, such as the arithmetic or geometric mean, and an indicator of a lower threshold or cutoff for each field type, such as the 20th percentile or proportion of time above 20 V/m or 0.2 μT. A single measure of central tendency for each type of field appears to be adequate when exposures are assessed at the job title level. © 1994 Wiley-Liss, Inc.  相似文献   

16.
AimAiming at analysing the signal conduction in muscular fibres, the spatio-temporal dynamics of the magnetic field generated by the propagating muscle action potential (MAP) is studied.MethodIn this prospective, proof of principle study, the magnetic activity of the intrinsic foot muscle after electric stimulation of the tibial nerve was measured using optically pumped magnetometers (OPMs). A classical biophysical electric dipole model of the propagating MAP was implemented to model the source of the data. In order to account for radial currents of the muscular tubules system, a magnetic dipole oriented along the direction of the muscle was added.ResultsThe signal profile generated by the activity of the intrinsic foot muscles was measured by four OPM devices. Three OPM sensors captured the spatio-temporal magnetic field pattern of the longitudinal intrinsic foot muscles. Changes of the activation pattern reflected the propagating muscular action potential along the muscle. A combined electric and magnetic dipole model could explain the recorded magnetic activity.InterpretationOPM devices allow for a new, non-invasive way to study MAP patterns. Since magnetic fields are less altered by the tissue surrounding the dipole source compared to electric activity, a precise analysis of the spatial characteristics and temporal dynamics of the MAP is possible. The classic electric dipole model explains major but not all aspects of the magnetic field. The field has longitudinal components generated by intrinsic structures of the muscle fibre. By understanding these magnetic components, new methods could be developed to analyse the muscular signal transduction pathway in greater detail. The approach has the potential to become a promising diagnostic tool in peripheral neurological motor impairments.  相似文献   

17.
Two epidemiologic studies have reported increased risk of childhood leukemia associated with the length of time children watched television (TV) programs or played video games connected to TV sets. To evaluate magnetic field exposures resulting from these activities, the static, ELF, and VLF magnetic fields produced by 72 TV sets used by children to watch TV programs and 34 TV sets used to play video games were characterized in a field study conducted in Washington DC and its Maryland suburbs. The resulting TV-specific magnetic field data were combined with information collected through questionnaires to estimate the magnetic field exposure levels associated with TV watching and video game playing. The geometric means of the ELF and VLF exposure levels so calculated were 0.0091 and 0.0016 microT, respectively, for children watching TV programs and 0.023 and 0.0038 microT, respectively, for children playing video games. Geometric means of ambient ELF and VLF levels with TV sets turned off were 0.10 and 0.0027 microT, respectively. Summed over the ELF frequency range (6-3066 Hz), the exposure levels were small compared to ambient levels. However, in restricted ELF frequency ranges (120 Hz and 606-3066 Hz) and in the VLF band, TV exposure levels were comparable to or larger than normal ambient levels. Even so, the strengths of the 120 Hz or 606-3066 Hz components of TV fields were small relative to the overall ambient levels. Consequently, our results provide little support for a linkage between childhood leukemia and exposure to the ELF magnetic fields produced by TV sets. Our results do suggest that any future research on possible health effects of magnetic fields from television sets might focus on the VLF electric and magnetic fields produced by TV sets because of their enhanced ability relative to ELF fields to induce electric currents.  相似文献   

18.
We examined the influence of local tissue conductivity changes in the vicinity of a dipolar source on the neuromagnetic field and the electric scalp potential using a high resolution finite element method model of the human head. We found that the topology of both the electric scalp potential and the neuromagnetic field (and consequently dipole localization) is influenced significantly by conductivity changes only in voxels adjacent to the source. Conductivity changes in these voxels yield a greater change in the amplitude of the magnetic field (and consequently in the dipole strength) than in the amplitude of the electric potential.  相似文献   

19.
Electric fields, which are ubiquitous in the context of neurons, are induced either by external electromagnetic fields or by endogenous electric activities. Clinical evidences point out that magnetic stimulation can induce an electric field that modulates rhythmic activity of special brain tissue, which are associated with most brain functions, including normal and pathological physiological mechanisms. Recently, the studies about the relationship between clinical treatment for psychiatric disorders and magnetic stimulation have been investigated extensively. However, further development of these techniques is limited due to the lack of understanding of the underlying mechanisms supporting the interaction between the electric field induced by magnetic stimulus and brain tissue. In this paper, the effects of steady DC electric field induced by magnetic stimulation on the coherence of an interneuronal network are investigated. Different behaviors have been observed in the network with different topologies (i.e., random and small-world network, modular network). It is found that the coherence displays a peak or a plateau when the induced electric field varies between the parameter range we defined. The coherence of the neuronal systems depends extensively on the network structure and parameters. All these parameters play a key role in determining the range for the induced electric field to synchronize network activities. The presented results could have important implications for the scientific theoretical studies regarding the effects of magnetic stimulation on human brain.  相似文献   

20.
Much of the research and reviews on extremely low frequency (ELF) electric and magnetic fields (EMFs) have focused on magnetic rather than electric fields. Some have considered such focus to be inappropriate and have argued that electric fields should be part of both epidemiologic and laboratory work. This paper fills the gap by systematically and critically reviewing electric‐fields literature and by comparing overall strength of evidence for electric versus magnetic fields. The review of possible mechanisms does not provide any specific basis for focusing on electric fields. While laboratory studies of electric fields are few, they do not indicate that electric fields should be the exposure of interest. The existing epidemiology on residential electric‐field exposures and appliance use does not support the conclusion of adverse health effects from electric‐field exposure. Workers in close proximity to high‐voltage transmission lines or substation equipment can be exposed to high electric fields. While there are sporadic reports of increase in cancer in some occupational studies, these are inconsistent and fraught with methodologic problems. Overall, there seems little basis to suppose there might be a risk for electric fields, and, in contrast to magnetic fields, and with a possible exception of occupational epidemiology, there seems little basis for continued research into electric fields. Bioelectromagnetics 31:89–101, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号