首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A TaqMan quantitative real-time PCR detection system was developed to examine transgene copy number in cotton. GhUBC1, a gene validated to be present as a single copy per haploid Gossypium hirsutum genome, was used as the endogenous reference to estimate copy number of GFP and selection marker NPTII in 28 T0 plants. This system was found to be more accurate than genomic Southern blot hybridization and could effectively tell homozygotes from heterozygotes in a T1 transgenic cotton population. Therefore it is suitable for efficient and cost effective early screening of transgenic seedlings and identifying transgene homozygotes in segregation populations.  相似文献   

2.
Ubiquitin conjugating enzymes (UBCs) are a family of proteins directly involved in ubiquitination of proteins. Ubiquitination is known to be involved in control of a variety of cellular processes, including cell proliferation, through the targeting of key regulatory proteins for degradation. The ubc9 gene of the yeast Saccharomyces cerevisiae (Scubc9) is an essential gene which is required for cell cycle progression and is involved in the degradation of S phase and M phase cyclins. We have identified a human homolog of Scubc9 (termed hubc9) using the two hybrid screen for proteins that interact with the human papillomavirus type 16 E1 replication protein. The hubc9 encoded protein shares a very high degree of amino acid sequence similarity with ScUBC9 and with the homologous hus5+ gene product of Schizosaccharomyces pombe. Genetic complementation experiments in a S.cerevisiae ubc9ts mutant reveal that hUBC9 can substitute for the function of ScUBC9 required for cell cycle progression.  相似文献   

3.
孙高飞  何守朴  潘兆娥  杜雄明 《遗传》2015,37(2):192-203
SSRs(Simple sequence repeats)是一类广泛存在于动植物基因组的DNA短串联重复序列,是重要的基因组分子标记。比较不同基因组同源SSR的差异,有利于了解相近物种间的进化过程。文章使用雷蒙德氏棉基因组(D5)、亚洲棉基因组(A2)全基因组序列和陆地棉(AD1)的限制性酶切基因组测序数据,进行全基因组SSR扫描,比较了A组和D组的SSR分布情况,通过识别3个基因组之间的同源SSR,比较它们之间同源SSR重复序列的差异。结果发现,A组和D组同源SSR的分布规律非常相似,但A组与AD组的同源SSR保守性比D组与AD组同源SSR的保守性强。与AD组同源SSR相比,A组中重复序列长度增长的SSR数量约为长度缩短的SSR数量的5倍,在D组中这一比值约为3倍。可以推测,四倍体AD组在与A组、D组的平行进化过程中,由于基因组融合,导致SSR的重复序列长度变化速率与二倍体A、D组有差异,同时这种差异可能导致了AD组SSR重复序列长度在进化过程中与二倍体相比有变短的趋势。文章首次对3个棉花基因组的同源SSR进行了系统地比较,发现了同源SSR在棉属四倍体基因组和二倍体基因组中的显著差异,为进一步揭示棉属基因组的进化规律提供了基础。  相似文献   

4.
Multiple cellular pathways have been shown to be involved during fiber initiation and elongation stages in the cultivated allotetraploid cotton (Gossypium hirsutum). The cell wall enzymes xyloglucan endotransglycosylase/hydrolases (XTH) have been reported to be associated with the biosynthesis of the cell wall and the growth of cotton fibers, probably regulating the plasticity of the primary cell wall. Among various cotton fiber cDNAs found to be preferentially expressed in cotton fibers, a xyloglucan endotransglycosylase (XTH) cDNA was significantly up-regulated during the elongation stage of cotton fiber development. In the present study, we isolated and characterized genomic clones encoding cotton XTH from cultivated cotton (Gossypium hirsutum) and its diploid progenitors (Gossypium arboreum and Gossypium raimondii), designated GhXTH1-1, GhXTH1-2, GaXTH1 and GrXTH, respectively. In addition, we isolated and characterized, by in silico methods, the putative promoter of XTH1 from Gossypium hirsutum. Sequence analysis revealed more than 50% homology to XTH's at the protein level. DNA gel blot hybridization indicated that at least two copies of GhXTH1 are present in Gossypium hirsutum whereas the diploid progenitor species Gossypium arboreum and Gossypium raimondii has only a single copy. Quantitative real-time PCR and high-resolution melting experiments indicated that in Gossypium hirsutum cultivars, in cotton fibers during early stages of fiber elongation specifically expressing only the GhXTH1-1 gene and expression levels of GhXTH1-1 in fibers varies among cultivars differing in fiber percentage and fiber length.  相似文献   

5.
The centromere is a repeat-rich structure essential for chromosome segregation; with the long-term aim of understanding centromere structure and function, we set out to identify cotton centromere sequences. To isolate centromere-associated sequences from cotton, (Gossypium hirsutum) we surveyed tandem and dispersed repetitive DNA in the genus. Centromere-associated elements in other plants include tandem repeats and, in some cases, centromere-specific retroelements. Examination of cotton genomic survey sequences for tandem repeats yielded sequences that did not localize to the centromere. However, among the repetitive sequences we also identified a gypsy-like LTR retrotransposon (Centromere Retroelement Gossypium, CRG) that localizes to the centromere region of all chromosomes in domestic upland cotton, Gossypium hirsutum, the major commercially grown cotton. The location of the functional centromere was confirmed by immunostaining with antiserum to the centromere-specific histone CENH3, which co-localizes with CRG hybridization on metaphase mitotic chromosomes. G. hirsutum is an allotetraploid composed of A and D genomes and CRG is also present in the centromere regions of other AD cotton species. Furthermore, FISH and genomic dot blot hybridization revealed that CRG is found in D-genome diploid cotton species, but not in A-genome diploid species, indicating that this retroelement may have invaded the A-genome centromeres during allopolyploid formation and amplified during evolutionary history. CRG is also found in other diploid Gossypium species, including B and E2 genome species, but not in the C, E1, F, and G genome species tested. Isolation of this centromere-specific retrotransposon from Gossypium provides a probe for further understanding of centromere structure, and a tool for future engineering of centromere mini-chromosomes in this important crop species.  相似文献   

6.
The ubiquitin (Ub)-conjugating enzymes Ubc4 and Ubc5 are involved in a variety of ubiquitination pathways in yeast, including Rsp5- and anaphase-promoting complex (APC)-mediated pathways. We have found the double deletion of UBC4 and UBC5 genes in yeast to be lethal. To investigate the essential pathway disrupted by the ubc4/ubc5 deletion, several point mutations were inserted in Ubc4. The Ubc4 active site mutation C86A and the E3-binding mutations A97D and F63A were both unable to rescue the lethal phenotype, indicating that an active E3/E2~Ub complex is required for the essential function of Ubc4/Ubc5. A mutation that specifically eliminates RING E3-catalyzed isopeptide formation but not HECT E3 transthiolation (N78S-Ubc4) rescued the lethal phenotype. Thus, the essential redundant function performed by Ubc4 and Ubc5 in yeast is with a HECT-type E3, likely the only essential HECT in yeast, Rsp5. Our results also suggest that Ubc1 can weakly replace Ubc4 to transfer mono-Ub with APC, but Ubc4 cannot replace Ubc1 for poly-Ub chain extension on APC substrates. Finally, the backside Ub-binding mutant S23R-Ubc4 has no observable effect in yeast. Together, our results are consistent with a model in which Ubc4 and Ubc5 are 1) the primary E2s for Rsp5 in yeast and 2) act as monoubiquitinating E2s in RING E3-catalyzed pathways, in contrast to the processive human ortholog UbcH5.  相似文献   

7.
The 2OG-Fe(II) oxygenase (RF) family of enzyme proteins can affect bulliform cells and cause leaf curling. However, there are few studies related to this family in cotton, and there has been no systematic analysis of RF genes. Here, we determined 25 RF genes in the complete genome sequence of upland cotton (Gossypium hirsutum L.) and 11 RF genes in the complete genome sequence of Arabidopsis thaliana. Cotton RF proteins can be divided into three categories. Whole genome/fragment and scattered replication events played an important role in the expansion of the RF gene family. qRT-PCR analysis results showed that RF genes respond to drought stress Pairwise comparison results showed that the expression of RF genes in Shi yuan 321 was higher than that in Kui 85–174. Overall, genome-wide identification approach was used to further analyze the related functions of the RF gene family, which may include the response to drought stress, in cotton.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01065-4.  相似文献   

8.
Characterization of the Brassinosteroid Insensitive 1 Genes of Cotton   总被引:11,自引:0,他引:11  
Suppression of brassinosteroid (BR) biosynthesis in cotton ovules by treatment with brassinazole inhibits fiber formation, indicating that BR plays an important role in cotton fiber development. Plant responses to brassinosteroids (BR) are mediated through a plasma membrane-bound leucine-rich repeat (LRR) receptor-like protein kinase known as BRI1. Mutations in the BRI1 genes of several species result in dwarfed plants with reduced sensitivity to BR. A single expressed sequence tag (EST) from cotton with strong sequence similarity to Arabidopsis BRI1 ( AtBRI1 ) was identified in a search of publicly available databases. With this EST as a starting point, full-length cDNAs and genomic coding sequences from upland cotton ( Gossypium hirsutum ) BRI1 ( GhBRI1 ) were obtained and characterized. Ectopic expression of this coding sequence in BR-insensitive Arabidopsis plants resulted in recovery of normal growth indicating that GhBRI1 is a functional homologue of AtBRI1. G. hirsutum is an allotetraploid (AADD) derived from diploid ancestors. Analysis of several GhBRI1 cDNAs showed two distinct sequences indicating the presence of two GhBRI1 genes, denoted GhBRI1-1 and GhBRI1-2. Sequence comparisons between these GhBRI1 coding sequences and those from related A and D genome diploid Gossypium species ( G. arboreum and G. thurberi ) indicated that GhBRI1-1 is likely to the A sub-genome orthologue while GhBRI1-2 is from the D sub-genome.  相似文献   

9.
Bondada  B.R.  Oosterhuis  D.M. 《Photosynthetica》1998,35(4):631-635
Relationships between leaf nitrogen (N) content and leaf gas exchange components of a single cotton (Gossypium hirsutum L.) leaf subtending the fruit during ontogeny were investigated under field conditions. A 20-d old leaf exhibited the highest physiological activity characterized by net photosynthetic (PN) and transpiration (E) rates, stomatal conductances to CO2 exchange (gsCO2) and water vapor transfer (gsH2O), and nitrogen (N) content. With the advent of leaf senescence, the gas exchange rates declined as exhibited by the 30-, 40-, and 60-d old leaves. Regression analysis indicated close relationships between gsCO2 and PN, and gsH2O and E as the leaves advanced towards senescence. Both PN and gsCO2 were related to N as they declined with leaf age. Thus, the declines in PN were associated with stomatal closure and removal of N during leaf ontogeny.  相似文献   

10.
Cotton (Gossypium hirsutum L.) premature leaf senescence-resistant inbred XLZ33 and senescencesusceptible inbred lines XLZ13 were selected and crossed to produce F1,F1-reciprocal,F2 and BC1 generations...  相似文献   

11.
Genome sizes vary by several orders of magnitude, driven by mechanisms such as illegitimate recombination and transposable element proliferation. Prior analysis of the CesA region in two cotton genomes that diverged 5–10 million years ago (Ma), and acquired a twofold difference in genome size, revealed extensive local conservation of genic and intergenic regions, with no evidence of the global genome size difference. The present study extends the comparison to include BAC sequences surrounding the gene encoding alcohol dehydrogenase A ( AdhA ) from four cotton genomes: the two co-resident genomes (AT and DT) of the allotetraploid, Gossypium hirsutum , as well as the model diploid progenitors, Gossypium arboreum (A) and Gossypium raimondii (D). In contrast to earlier work, evolution in the AdhA region reflects, in a microcosm, the overall difference in genome size, with a nearly twofold difference in aligned sequence length. Most size differences may be attributed to differential accumulation of retroelements during divergence of the genome diploids from their common ancestor, but in addition there has been a biased accumulation of small deletions, such that those in the smaller D genome are on average twice as large as those in the larger A genome. The data also provide evidence for the global phenomenon of 'genomic downsizing' in polyploids shortly after formation. This in part reflects a higher frequency of small deletions post-polyploidization, and increased illegitimate recombination. In conjunction with previous work, the data here confirm the conclusion that genome size evolution reflects many forces that collectively operate heterogeneously among genomic regions.  相似文献   

12.
13.
14.
15.
Beta-1,4-glucosidase (BG, EC3.2.1.21), one of three cellulases, is a widespread family of enzymes involved in the metabolism of cell wall polysaccharides in both prokaryocytes and eukaryotes. Here, we report the isolation of a full-length cDNA encoding beta-1,4-glucosidase protein (designated as GhBG) and its putative function in the process of fiber development and in yeast. Through random sequencing of the cotton fiber cDNA library from 7235 germplasm line, with elite fiber quality in Gossypium hirsutum L. and utilizing the 5' rapid amplification of cDNA ends (RACE) technique, a 2133 bp cDNA clone encoding a cotton fiber specifically expressed protein (accession number: DQ103699) was isolated. GhBG was composed of a 1884 bp open reading frame (ORF) encoding 627 amino acid residues. This putative protein had an isoelectric point of 8.17, a calculated molecular weight of 68.78 KD and a signal peptide with 23 amino acid residues at the N-terminal. RT-PCR analysis indicated GhBG was specifically expressed in fiber cells and was highly abundant in 5-17 day post anthesis (DPA). It was not, however, expressed in root, hypocotyls or leaves. Southern blotting analysis showed there were two copies of GhBG in the upland cotton genome; most likely contained in sub-genome A and sub-genome D. GhBG was then integrated into a yeast expression vector, pREP-5N and electro-transformed into fission yeast Schizosaccharomyces pombe Q-01. The results demonstrated that GhBG led to a significant increase in cell length and width and a remarkable decrease of the length/width ratio. Compared to vector control transformants, cells were significantly larger and rounder and their growth velocity was also reduced.  相似文献   

16.
Ubiquitin-dependent selective protein degradation serves to eliminate abnormal proteins and provides controlled short half-lives to certain cellular proteins, including proteins of regulatory function such as phytochrome, yeast MAT alpha 2 repressor, p53 and cyclin. Moreover, ubiquitin-dependent proteolysis is thought to play an essential role during development and in programmed cell death. We have cloned a gene from Drosophila melanogaster, UbcD1, coding for a protein with striking sequence similarity to the yeast ubiquitin-conjugating enzymes UBC4 and UBC5. These closely related yeast enzymes are known to be central components of a major proteolytic pathway of Saccharomyces cerevisiae. By doing a precise open reading frame replacement in the yeast genome we could show that the Drosophila UbcD1 enzyme can functionally substitute for yeast UBC4. UbcD1 driven by the UBC4 promoter rescues growth defects and temperature sensitivity of yeast ubc4 ubc5 double mutant cells. Moreover, expression of UbcD1 restores proteolysis proficiency in the ubc4 ubc5 double mutant, indicating that the Drosophila enzyme also mediates protein degradation. This structural and functional conservation suggests that the UbcD1-UBC4-UBC5 class of enzymes defines a major proteolytic pathway in probably all eukaryotes.  相似文献   

17.
Cytokinins have been implicated in delaying leaf senescence. We previously generated transgenic cotton (Gossypium hirsutum L.) plants that harbor the Agrobacterium isopentenyl transferase gene (ipt) directed by a proteinase gene promoter. Here, we report that mRNAs were isolated from ipt cotton leaves and azygous leaves and were subsequently sequenced using Illumina Solexa technology. The sequence tags were searched against the TIGR database and the related gene expression profiles were compared resulting in the identification of 1 218 differentially expressed genes (DEGs): 719 up-regulated and 499 down-regulated. Analyzing the DEGs in the ipt cotton leaves showed that these genes belonged to four pathways: flavone biosynthesis, arginine and proline metabolism, glyoxylate and dicarboxylate metabolism, and RNA degradation. These pathways increased the activities of antioxidants, inhibited the effect of ethylene, and prevented degradation of macromolecules during senescence. The expression patterns of 17 genes were evaluated by real-time PCR and results were in agreement with the patterns of sequencing analysis. The identification of the DEGs may help us to understand a role of cytokinins in leaf senescence.  相似文献   

18.
Li Q  Jin X  Zhu YX 《遗传学报》2012,39(7):351-360
The plant genome possesses a large number of microRNAs(miRNAs)mainly 21-24 nucleotides in length.They play a vital role in regulation of target gene expression at various stages throughout the whole plant life cycle.Here we sequenced and analyzed~10 million non-coding RNAs(ncRNAs)derived from fiber tissue of the allotetraploid cotton(Gossypium hirsutum)1 days post-anthesis using ncRNA-seq technology.In terms of distinct reads,24 nt ncRNA is by far the dominant species,followed by 21 nt and 23 nt ncRNAs. Using ab initio prediction,we identified and characterized a total of 562 candidate miRNA gene loci on the recently assembled D5 genome of the diploid cotton G.raimondii.Of all the 562 predicted miRNAs,22 were previously discovered in cotton species and 187 had sequence conservation and homology to homologous miRNAs of other plant species.Nucleotide bias analysis showed that the 9th and 1 st positions were significantly conserved among different types of miRNA genes.Among the 463 putative miRNA target genes,most significant up/down-regulation occurred in 10-20 days post-anthesis,indicating that miRNAs played an important role during the elongation and secondary cell wall synthesis stages of cotton fiber development.The discovery of new miRNA genes will help understand the mechanisms of miRNA generation and regulation in cotton.  相似文献   

19.
The covalent attachment of the 76 amino acid protein ubiquitin is an important prerequisite for the degradation of many eukaryotic proteins. The specificity of this ligation is accomplished in part by a family of distinct ubiquitin conjugating enzymes (E2s) working in concert with specific ubiquitin-protein ligases (E3s). Three essential E2s in yeast encoded by ScUBC1, −4 , and − 5 comprise a functionally overlapping E2 subfamily that appears responsible for degrading most abnormal and short-lived proteins. A 15 kDa E2 protein homologous to this family has been identified previously in wheat germ, designated Ta E215kDa (Girod and Vierstra (1993) J. Biol. Chem. 268, 955–960). This E2 is responsible for much of the ubiquitin conjugating activity observed in wheat germ extracts and works together with a unique E3 (designated E3γ) for substrate recognition. In this paper, the cloning of five genes encoding E215kDa from Arabidiopsis thaliana is described (designated AtUBC8—12 ). They encode 149 amino acid basic proteins 94–98% similar to each other and 88–92% similar to ScUBC4 at the amino acid sequence level. In contrast, AtUBC8—12 are only 55–65% similar to the Arabidopsis E2s encoded by AtUBC1, −4, and − 7 . The At UBC8—12 proteins do not contain N- or C-terminal extensions and have the active site at residue Cys-86, based on their homology with other E2s. Analyses of genomic Southern blots are consistent with the existence of multiple members encoding this E2 subfamily. AtUBC8—12 are transcribed to yield about 800 nucleotide mRNAs that, unlike ScUBC4 and − 5 , are not strongly induced by heat shock. Expression of AtUBC8 in Escherichia coli results in substantial production of functional E215kDa that works together with wheat E3γ in conjugating ubiquitin to endogenous or added substrates in vitro .  相似文献   

20.
The effects of foliar application of potassium 3,4-dichloroisothiazole-5-carboxylate (TD-1123) and S,S,S-tributyl phosphorotrithioate (DEF) on some physiological events that occur in cotton ( Gossypium hirsutum L.) leaves are reported. Transport of 14C from cotton leaves was significantly reduced as soon as 1 day after treatment with DEF. In addition the DEF-treated leaves exhibited reductions in water potential recovery values (predawn measurements), stomatal conductance, specific weights, soluble N content, and an alteration in free amino acid distribution. Little change in any of these parameters was noted in leaves treated with TD-1123 alone. A sequential treatment of TD-1123 followed in 10 days with DEF had an apparent synergistic effect in that the effect on most parameters measured was more pronounced and occurred earlier in such leaves than in those treated with either chemical alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号