首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the synthesis, processing and export of human growth-hormone-releasing factor (hGRF) in Escherichia coli transformed with a plasmid constructed for the expression of hGRF as a hybrid protein. A DNA fragment containing the entire sequence of phosphate-binding protein gene (phoS) is fused to a modified hGRF-coding sequence (phoS-mhGRF). The hybrid protein, PhoS-mhGRF, was recovered in the supernatant fluid after spheroplasting treatment indicating correct export to the periplasmic space. Pulse-chase experiments demonstrated that the hybrid protein was similarly processed as the PhoS precursor.  相似文献   

2.
The disulfide bond-forming factor DsbA and the alkaline phosphatase are stable in the Escherichia coli periplasmic space and can be overproduced without significant perturbation of the cell's physiology. By contrast, DsbA'-PhoA hybrid proteins resulting from TnphoA insertions into different regions of a plasmid-borne dsbA gene could become toxic (lethal) to bacteria. Toxicity was concomitant with an impairment of some step of the export mechanism and depended on at least three parameters, i.e., (i) the rate of expression of the hybrid protein, (ii) the ability of the amino-terminal DsbA' domain of the hybrid protein to fold into a protease-resistant conformation in the periplasmic space, and (iii) the activity of the DegP periplasmic protease. Even under viable conditions of low expression, DsbA' folding-deficient hybrid proteins accumulated more than the folding-proficient ones in the insoluble material and this was aggravated in a strain lacking the DegP protease. When production was more elevated, the folding-deficient hybrid proteins became lethal, but only in strains lacking the DegP activity, while the folding-proficient ones were not. Under conditions of very high production by degP+ or degP strains, both types of hybrid proteins accumulated as insoluble preproteins. Meanwhile, the export machinery was dramatically handicapped and the cells lost viability. However, the folding-deficient hybrid proteins had a higher killing efficiency than the folding-proficient ones. Free DsbA'-truncated polypeptides, although not toxic, were processed more slowly when they could not fold into a protease-resistant form in the periplasmic space. This provides indications in E. coli for a direct or indirect influence of the folding of a protein in the periplasmic environment on export efficiency.  相似文献   

3.
N Müller  M Vogel  B Gottstein  A Scholle  T Seebeck 《Gene》1989,75(2):329-334
We describe the use of the Escherichia coli plasmid vector, pVB2, for high-level expression and export of recombinant protein. The pBR322 derivative pVB2 harbors the mglB gene, which codes for the galactose-binding protein (GBP) of E. coli. GBP is exported into the periplasmic space of the bacterial cell. Gene mglB contains an EcoRI restriction site close to its 3' end which allows simple in-frame insertion of EcoRI fragments obtained from recombinant lambda gt11 phages. The pVB2 vector was used to express an antigen from Echinococcus multilocularis. The recombinant protein amounted to over 50% of total cellular protein and could be efficiently isolated from the periplasm by osmotic shock. The application of the purified antigen in an ELISA enabled a clear and specific detection of anti-Ec. multilocularis antibodies in human patients' sera, which had been immunosorbed with a periplasmic extract (containing wt GBP) before investigation. These data show the general usefulness of pVB2 as an expression vector for producing in E. coli diagnostically relevant antigens from any infective organism.  相似文献   

4.
A hybrid between the maltose-binding protein (MalE) of Escherichia coli and the gene 5 protein (G5P) of phage M13 was constructed at the genetic level. MalE is a monomeric and periplasmic protein while G5P is dimeric and cytoplasmic. The hybrid (MalE-G5P) was synthesized in large amounts from a multicopy plasmid and efficiently exported into the periplasmic space of E. coli. The export was dependent on the integrity of the signal peptide. MalE-G5P was purified from a periplasmic extract by affinity chromatography on cross-linked amylose, with a yield larger than 50,000 molecules/E. coli cell. The hybrid specifically bound denatured but not double-stranded DNA cellulose, as native G5P. Sedimentation velocity and gel-filtration experiments showed that MalE-G5P exists as a dimer. Thus, it was possible to efficiently translocate through the membrane a normally cytoplasmic and dimeric protein, by fusion to MalE. Moreover, the passenger protein kept its activity, specificity and quaternary structure in the purified hybrid. MalE-G5P will enable the study of mutant G5P that no longer binds single-stranded DNA and therefore cannot be purified by DNA-cellulose chromatography.  相似文献   

5.
Compartmentalization of mammalian proteins produced in Escherichia coli   总被引:4,自引:0,他引:4  
We have examined the patterns of compartmentalization of several mammalian proteins in Escherichia coli which do not have signal peptides or functional signal peptide equivalents. These proteins include (i) human proapolipoprotein A-I (proapoA-I), a 249-residue protein which contains a hexapeptide NH2-terminal prosegment plus a mature domain of 243 residues comprised of tandemly arrayed, docosapeptide repeats with predicted amphipathic alpha-helical structure; (ii) the mature apoA-I molecule without its prosegment; (iii) mouse interleukin-1 beta (IL-1 beta), a 17-kDa protein which is composed of 12 beta strands that form a tetrahedral structure; and (iv) the 31-kDa precursor of IL-1 beta, proIL-1 beta. Efficient expression of these proteins in E. coli was achieved using a plasmid that contains the nalidixic acid-inducible recA promoter and ribosome binding site from the gene 10 leader of bacteriophage T7. In induced cultures the mammalian proteins represented up to 20% of the total bacterial protein mass. Surprisingly, cell fractionation using cold (osmotic) shock indicated that proapoA-I, apoA-I, and IL-1 beta, but not its 31-kDa precursor, were segregated into the periplasmic space with high efficiency: the ratio of periplasmic space/spheroplast distribution ranged from 0.6 to 1.1 in cells harvested 60-180 min after nalidixic acid induction. Not only was this compartmentalization efficient but it was also selective: analysis of the osmotic shock fractions revealed that the periplasmic space preparations were not contaminated with cytoplasmic proteins (e.g. phosphoglycerate dehydrogenase). Sequential Edman degradation showed that these proteins had not undergone any NH2-terminal proteolytic processing. The mammalian proteins did not affect the export of a prototypic bacterial preprotein, beta-lactamase. Together the data suggest that osmotic shock fractionation of E. coli may facilitate the purification of functional foreign proteins produced in this prokaryote. They also raise the possibility that structural elements in these proteins other than conventional signal peptides may effect periplasmic targeting in E. coli.  相似文献   

6.
A gene of human tumor-associated antigen VNTR(MUC1) bound to streptavidin, an expression plasmid, and a highly effective hybrid protein-producing strain were constructed. It was shown that the streptavidin leader peptide ensures effective secretion of the hybrid protein into the periplasmic space ofEscherichia coli cells. The hybrid protein was isolated in a homogeneous state and its immunogenic properties were studied.  相似文献   

7.
A gene of human tumor-associated antigen VNTR(MUC1) bound to streptavidin, an expression plasmid, and a highly effective hybrid protein-producing strain were constructed. It was shown that the streptavidin leader peptide ensures an effective secretion of the hybrid protein into the periplasmic space of Escherichia coli cells. The hybrid protein was isolated in a homogeneous state and its immunogenic properties were studied.  相似文献   

8.
K Ito  Y Akiyama  T Yura    K Shiba 《Journal of bacteriology》1986,167(1):201-204
The hybrid protein between the periplasmic maltose-binding protein and the cytoplasmic beta-galactosidase (the MalE-LacZ hybrid protein) was previously shown to block the export of envelope proteins when synthesized in large amounts. Now we show that the hybrid protein exerts another major effect on the cell, that is, induction of the heat shock proteins. This latter effect was dependent on the htpR gene product but independent of the function of the signal sequence on the hybrid protein. On the other hand, the previously reported induction of the SecA protein by the hybrid protein was independent of htpR and may be caused by the reduced protein export ability of the cell. The functional htpR gene is essential for viability of the cell in which the basal level of the hybrid protein is synthesized, whereas in the absence of the hybrid protein htpR is dispensable at low temperature. These results indicate that the hybrid protein somehow generates a signal or stress that is similar to what the cell experiences at elevated temperatures.  相似文献   

9.
We have followed the synthesis and secretion of a number of periplasmic and outer membrane proteins in three strains of Escherichia coli, a secA amber mutant, a secA temperature-sensitive mutant, and a strain that blocks protein secretion due to a high level of expression of an export-defective hybrid protein between maltose-binding protein and beta-galactosidase (MalE-LacZ). Our results show that after several hours under nonpermissive conditions the specificity and extent of the export blocks in the secA temperature-sensitive mutant and the strain producing the MalE-LacZ hybrid protein are identical, affecting at least four major outer membrane proteins and most but not all periplasmic proteins. The secA gene product, therefore, appears to be an essential component of the major export pathway in E. coli which is used by many envelope proteins independent of whether they are cotranslationally or post-translationally secreted. In contrast, the synthesis of only a subset of these envelope proteins is reduced in the secA amber mutant after shift to the nonpermissive condition. These results indicate that the SecA protein serves roles both in the synthesis and the secretion of certain cell envelope proteins.  相似文献   

10.
11.
E. coli strains producing a hybrid protein, containing adrenocorticotropic hormone (ACTH) and protein A of S. aureus was obtained. The sequence coding for ACTH was obtained from the bovine proopiomelanocortin cDNA and, after the modification of the 5'- and 3'-terminal parts, was linked with the protein A gene and its derivatives due to synthetic adaptors. Three forms of ACTH gene, coding this hormone with differing N-terminal amino acid were used to construct the fusion gene. The hybrid proteins contain Asp-Pro or (Asp)4-Lys sequences for obtaining ACTH by acid or enterokinase treatment, respectively. It is shown that each of the constructed plasmids direct the synthesis of hybrid protein in E. coli. This protein was purified by the use of IgG-sepharose. The level of the expression of the hybrid protein is 4 mg/l of the bacterial culture. Most of the synthesized protein is secreted into the periplasmic space.  相似文献   

12.
Using periplasmic penicillin amidase (PA) from Escherichia coli ATCC 11105 as a model recombinant protein, we reviewed the posttranslational bottlenecks in its overexpression and undertook attempts to enhance its production in different recombinant E. coli expression hosts. Intracellular proteolytic degradation of the newly synthesized PA precursor and translocation through the plasma membrane were determined to be the main posttranslational processes limiting enzyme production. Rate constants for both intracellular proteolytic breakdown (k(d)) and transport (k(t)) were used as quantitative tools for selection of the appropriate host system and cultivation medium. The production of mature active PA was increased up to 10-fold when the protease-deficient strain E. coli BL21(DE3) was cultivated in medium without a proteinaceous substrate, as confirmed by a decrease in the sum of the constants k(d) and k(t). The original signal sequence of pre-pro-PA was exchanged with the OmpT signal peptide sequence in order to increase translocation efficiency; the effects of this change varied in the different E. coli host strains. Furthermore, we established that simultaneous coexpression of the OmpT pac gene with some proteins of the Sec export machinery of the cell resulted in up to threefold-enhanced PA production. In parallel, we made efforts to increase PA flux via coexpression with the kil gene (killing protein). The primary effects of the kil gene were the release of PA into the extracellular medium and an approximately threefold increase in the total amount of PA produced per liter of bacterial culture.  相似文献   

13.
The twin arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates translocation of essentially folded proteins across the cytoplasmic membrane. The detailed understanding of the mechanism of protein targeting to the Tat pathway has been hampered by the lack of screening or selection systems suitable for genetic analysis. We report here the development of a highly quantitative protein reporter for genetic analysis of Tat-specific export. Specifically, export via the Tat pathway rescues green fluorescent protein (GFP) fused to an SsrA peptide from degradation by the cytoplasmic proteolytic ClpXP machinery. As a result, cellular fluorescence is determined by the amount of GFP in the periplasmic space. We used the GFP-SsrA reporter to isolate gain-of-function mutants of a Tat-specific leader peptide and for the genetic analysis of the "invariant" signature RR dipeptide motif. Flow cytometric screening of trimethylamine N-oxide reductase (TorA) leader peptide libraries resulted in isolation of six gain-of function mutants that conferred significantly higher steady-state levels of export relative to the wild-type TorA leader. All the gain-of-function mutations occurred within or near the (S/T)RRXFLK consensus motif, highlighting the significance of this region in interactions with the Tat export machinery. Randomization of the consensus RR dipeptide in the TorA leader revealed that a basic side chain (R/K) is required at the first position whereas the second position can also accept Gln and Asn in addition to basic amino acids. This result indicates that twin arginine translocation does not require the presence of an arginine dipeptide within the conserved sequence motif.  相似文献   

14.
We subcloned the structural gene for exotoxin A (ETA) of Pseudomonas aeruginosa in front of the tac promoter in an Escherichia coli expression vector and studied the intracellular location and properties of the protein product. The E. coli K-12 strain that carried this recombinant plasmid produced an immunoreactive protein that was identical to authentic ETA in size and in cytotoxic and ADP-ribosyl transferase activities per unit of immunoreactive material. The protein was predominantly in the periplasmic fraction; and a mutation in the secA gene blocked secretion, processing, and conversion of the protein to a fully toxic conformation. The results indicate that expression of the ETA gene in E. coli yields native ETA, which is localized within the periplasmic space. This organism may therefore serve as a useful host for studying structure and function in ETA.  相似文献   

15.
The SecY protein is a membrane-bound factor required for bacterial protein export and embedded in the cytoplasmic membrane by its 10 transmembrane segments. We previously proposed a topology model for this protein by adapting the Manoil-Beckwith TnphoA approach, a genetic method to assign local disposition of a membrane protein from the enzymatic activity of the alkaline phosphatase (PhoA) mature sequence attached to the various regions. SecY-PhoA hybrid proteins with the PhoA domain exported to the periplasmic side of the membrane have been obtained at the five putative periplasmic domains of the SecY sequence. We now extended this method to apply it to follow export of the newly synthesized PhoA domain. Trypsin treatment of detergent-solubilized cell extracts digested the internalized (unfolded) PhoA domain but not those exported and correctly folded. One of the hybrid proteins was cleaved in vivo after export to the periplasm, providing a convenient indication for the export. Results of these analyses indicate that export of the PhoA domain attached to different periplasmic regions of SecY occurs rapidly and requires the normal functioning of the secY gene supplied in trans. Thus, this membrane protein with multiple transmembrane segments contains multiple export signals which can promote rapid and secY-dependent export of the PhoA mature sequence attached to the carboxyl-terminal sides.  相似文献   

16.
The antigenic C-terminus of VP60 capsid protein from rabbit haemorrhagic disease virus was produced in E. coli under the control of an IPTG-inducible T7 promoter. Two different but closely related constructs were designed, carrying either a periplasmic secretional signal or a T7 detection tag at the N-terminus of the viral segment. The cytoplasmic protein is produced in high yields whereas the periplasmic version is hardly detected in Western blot, due to its immediate degradation after synthesis. Recombinant cultures producing the periplasmic, but not the cytoplasmic form show a dramatic arrest of cell growth after induction of gene expression, indicative of toxicity associated to the recombinant protein itself or to its proteolytic processing. Molecular mechanisms for such toxic effects are discussed.  相似文献   

17.
Summary A DNA segment carrying the full-length, intronless firefly luciferase gene was inserted into the high expression secretion vector, pIN-III -ompA. Upon induction of gene expression, luciferase activity was detected in extracts prepared from periplasmic fractions. The results indicated that the OmpA signal peptide was able to direct secretion of firefly luciferase across the cytoplasmic membrane. This has important implications for using this luciferase as a reporter in studying protein export and targeting.  相似文献   

18.
Abstract The molecularly cloned gene encoding the vesicular stomatitis virus (VSV) membrane glycoprotein G was modified and joined to a Bacillus subtilis secretion vector constructed from the plasmid pUB110 and containing the promoter and signal sequence regions of the α-amylase (a secretory protein) gene from Bacillus amyloliquefaciens . The regions encoding the NH2-terminal signal peptide and the COOH-terminal hydrophobic transmembrane domains of the VSV gene were deleted to facilitate the secretion of the G protein in soluble form. The truncated G protein was found to be expressed in B. subtilis . The expression level was low, probably due to rapid proteolytic degradation of the protein and, contrary to what was expected, almost all of the protein remained cell-associated.  相似文献   

19.
Two enzymes, the secreted Staphylococcus aureus nuclease A and the Klenow fragment of the cytoplasmic Escherichia coli DNA polymerase I, were fused, at the genetic level, to MalE, the periplasmic maltose-binding protein of E. coli, or to a signal-sequence mutant. The hybrid proteins were synthesized in large amounts by E. coli under control of promoter malEp. The synthesis was repressed with glucose and could be totally switched off in a malT mutant strain. The hybrid between MalE and the nuclease was exported into the periplasmic space. Several criteria demonstrated that a fraction of the hybrid chains with the Klenow polymerase was exported to the periplasm in a signal-sequence-specific manner and ruled out the possibility of a membrane leakage. The hybrid with the Klenow polymerase was not exported and remained in the cytoplasm when carrying a tight signal-sequence mutation in its MalE portion. The hybrid proteins were purified in one step by affinity chromatography on cross-linked amylose. Most of the hybrid chains in the periplasm but only a fraction of those in the other cell compartments had their MalE portion correctly folded. The nuclease and the Klenow polymerase had their full specific activities in the purified hybrids. The potential of MalE as a vector for the production, export and purification of desirable proteins in E. coli is discussed.  相似文献   

20.
The use of green fluorescent protein (GFP) as a reporter for protein localization in Escherichia coli was explored by creating gene fusions between malE (encoding maltose-binding protein [MBP]) and a variant of gfp optimized for fluorescence in bacteria (GFPuv). These constructs encode hybrid proteins composed of GFP fused to the carboxy-terminal end of MBP. Fluorescence was not detected when the hybrid protein was synthesized with the MBP signal sequence. In contrast, when the MBP signal sequence was deleted, fluorescence was observed. Cell fractionation studies showed that the fluorescent MBP-GFP hybrid protein was localized in the cytoplasm, whereas the nonfluorescent version was localized to the periplasmic space. Smaller MBP-GFP hybrid proteins, however, exhibited abnormal fractionation. Expression of the gene fusions in different sec mutants, as well as signal sequence processing assays, confirmed that the periplasmically localized hybrid proteins were exported by the sec-dependent pathway. The distinction between fluorescent and nonfluorescent colonies was exploited as a scorable phenotype to isolate malE signal sequence mutations. While expression of hybrid proteins comprised of full-length MBP did not result in overproduction lethality characteristic of some exported beta-galactosidase hybrid proteins, synthesis of shorter, exported hybrid proteins was toxic to the cells. Purification of MBP-GFP hybrid protein from the different cellular compartments indicated that GFP is improperly folded when localized outside of the cytoplasm. These results suggest that GFP could serve as a useful reporter for genetic analysis of bacterial protein export and of protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号