首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve detection of fetal distress, we examined whether increased fetal sympathetic activity during repeated episodes of asphyxia decreases skin blood flow, which can be monitored by recording transcutaneous PO2. Sympathetic activity was assessed by relating catecholamine concentrations in the fetal plasma to blood gas, acid-base, and heart rate variables which are commonly used to determine fetal distress. Fifteen experiments were conducted on 8 anaesthetised fetal sheep in utero between 125 and 145 days of gestation (term is at 147 days). They were subjected to 11 consecutive episodes of asphyxia of 30 (n = 3), 60 (n = 9), or 90 (n = 3) s over 33 min, achieved by arrest of uterine blood flow. Blood samples were drawn at 0, 33, and 60 min to determine arterial blood gases, acid base-balance, and concentrations of lactate, glucose, norepinephrine, and epinephrine. Fetal transcutaneous PO2, relative local skin blood flow, heart rate, arterial blood pressure, and arterial O2 saturation were recorded continuously. Fetal plasma concentrations of norepinephrine and epinephrine increased logarithmically as the duration of repeated asphyxia, anaerobic metabolism, and glucose concentrations increased, and as the mean O2 saturation, transcutaneous PO2, and local skin blood flow decreased. We conclude that during repeated episodes of asphyxia in fetal sheep near term, a significant increase in sympathetic activity can be detected indirectly by transcutaneous PO2 monitoring, because sympathetic activation reduces skin blood flow.  相似文献   

2.
The influence of repeated asphyxia on fetal transcutaneous PO2, relative local skin perfusion, heart rate, blood gases and pH was investigated in 15 experiments on 8 acutely instrumented sheep fetuses in utero between 125 and 145 days gestation (term is 147 days). Uterine blood flow was intermittently arrested (11 times within 33 min) by intra-vascular maternal aortic occlusion, exposing the fetuses to repeated episodes of asphyxia of 30 (n = 3), 60 (n = 9) and 90 (n = 3) s duration. The fetal transcutaneous PO2 fell as the duration of asphyxia (2 alpha less than 0.01), heart rate deceleration area (2 alpha less than 0.01) and acidaemia (2 alpha less than 0.01) increased. With decreasing skin perfusion, which was dependent on the duration of asphyxia (2 alpha less than 0.001) and acidaemia (2 alpha less than 0.001), a discrepancy developed between transcutaneous and arterial PO2. The increase (delta) in transcutaneous-arterial PO2 difference was related linearly to the duration of asphyxia (2 alpha less than 0.01), the mean haemoglobin oxygen saturation (2 alpha less than 0.001), acidaemia (2 alpha less than 0.001) and relative local skin flow (2 alpha less than 0.05). It was highest after severe episodes of asphyxia (90 s), when O2 saturation, skin blood flow and arterial blood pH values were low. Fetal heart rate deceleration area was only correlated with the cutaneous-arterial PO2 difference when the mean fetal haemoglobin oxygen saturation was below 35%. Thus, a discrimination of heart rate decelerations that are significant for the fetus seems to be possible, when associated with low transcutaneous PO2 values. We conclude that in the sheep fetus transcutaneous PO2 measurements during repeated asphyxial episodes yield information on fetal oxygenation and on the skin vasomotor response.  相似文献   

3.
Acute foetal asphyxia, caused by arrest of uterine blood flow, increases both sympathetic activity and peripheral vascular resistance and decreases blood flow to peripheral organs (Jensen et al., J. Dev. Physiol., 9, 543-559). The rapidity and uniformity of this peripheral vasoconstriction suggest that the sympatho-neuronal system may reflexly cause these initial blood flow changes during acute asphyxia. To test this hypothesis, we studied 5 intact and 6 chemically sympathectomized (6-hydroxy-dopamine, 46.1 +/- 6 mg/kg foetal weight) chronically prepared normoxaemic foetal sheep in utero at 0.9 of gestation. Organ blood flows (microsphere method), plasma concentrations of catecholamines, vasopressin, and angiotensin II, acid-base balance and blood gases were measured before, during and after arrest of uterine blood flow for 2 min, i.e., at 0, 1, 2, 3, 4 & 30 min. In intact foetuses there was a progressive increase in arterial blood pressure and a rapid circulatory centralization in favour of the brain stem and heart and at the expense of most of the peripheral organs. The changes in peripheral blood flow during and after asphyxia were well reflected by those in the skin and scalp. In chemically sympathectomized foetuses, arterial blood pressure fell transiently at 1 min of asphyxia and cardiac output was redistributed towards the carcass and intestinal organs at the expense of the heart, spinal medulla, and placenta. We conclude that in foetal sheep at 0.9 of gestation, the short-term adaptation to arrest of uterine blood flow is a rapid and profound peripheral vasoconstriction to effect an increase in arterial blood pressure. This initial response during circulatory centralization, which is necessary to increase or maintain blood flow to the heart, brain stem, and placenta, is blunted by sympathectomy. Thus, the foetal sympatho-neuronal system is important for short-term adaptation to and intact survival of asphyxia.  相似文献   

4.
Effect of reduced uterine blood flow on fetal and maternal cortisol   总被引:9,自引:0,他引:9  
We have measured the changes in fetal and maternal plasma concentrations of cortisol in relation to blood gases and percent oxygen saturation during 2- and 4-h episodes of reversibly reduced uterine blood flow in sheep between 120 days gestation and term. During that period of reduced uterine blood flow there was a significant decrease in fetal arterial percent oxygen saturation (SaO2), PO2 and pH. Fetal SaO2 decreased from 59.5 +/- 3.2% to 31.8% +/- 2.8% by 15 min, 32.9 +/- 2.9% by 60 min, and 33.5 +/- 2.9% by 120 min. Fetal PO2 decreased from 3.2 +/- 0.1 KPa to 2.0 +/- 0.2 KPa by 15 min, 2.2 +/- 0.2 KPa by 60 min and 2.3 +/- 0.1 KPa by 120 min. Fetal pH decreased from 7.36 +/- 0.01 to 7.30 +/- 0.03 by 15 min, 7.27 +/- 0.02 by 60 min and 7.25 +/- 0.03 by 120 min. During the period of reduced uterine blood flow, fetal plasma concentrations of cortisol increased from 37.1 +/- 10.8 nmol/l to 53.3 +/- 9.2 nmol/l by 15 min, 49.2 +/- 11.4 nmol/l by 60 min and 43.3 +/- 9.0 nmol/l by 120 min. The greatest percentage increase in fetal plasma concentrations of cortisol occurred in fetuses of 126-139 days gestation. There was no significant change in maternal blood gases, SaO2 or plasma concentrations of cortisol. These experiments demonstrate that there is a significant increase in fetal plasma concentrations of cortisol in response to reductions in uterine blood flow from as early as 120 days gestation.  相似文献   

5.
The effects of acute asphyxia on both the time course of blood flow changes in central and peripheral organs, including the skin, and the time course of changes in oxygen consumption were studied in 9 unanaesthetized fetal sheep in utero at 130 +/- 2 days of gestation during 4-min arrest of uterine blood flow. Blood flow distribution and total oxygen consumption were determined at 1-min intervals during asphyxia using isotope-labelled microspheres (15 micrograms diameter) and by calculating the decline of the arterial O2 content, respectively. During asphyxia peripheral blood flow including that to the skin, scalp, and choroid plexus decreased rapidly, whereas blood flow to the heart, brain stem and (in surviving fetuses only) adrenals increased slowly. Total oxygen consumption fell exponentially with time and was closely correlated with the fall in both arterial oxygen content and peripheral blood flow; the time courses of these changes were very similar to those of the decreasing blood flows to the skin and scalp. Blood flow within the brain was redistributed at the expense of the cerebrum and the choroid plexus; the total blood flow to the brain did not change. In the 5 fetuses that died during the recovery period adrenal blood flow failed to increase and, at the nadir of asphyxia, peripheral vessels dilated and central vessels constricted. We conclude that in fetal sheep near term during acute asphyxia the time course of changes in blood flow to central and peripheral organs is different; total oxygen consumption depends on arterial O2 content and peripheral blood flow; total blood flow to the brain does not change, but is redistributed towards the brain stem at the expense of the cerebrum and choroid plexus; fetal death is preceded by a failure of adrenal blood flow to increase, by peripheral vasodilatation, and by central vasoconstriction and skin blood flow validly indicates rapid changes in the distribution of blood flow and the changes in oxygen consumption that accompany it.  相似文献   

6.
We have investigated whether enkephalin-containing peptides and catecholamines are increased in fetal plasma during periods of reduced uterine blood flow which produce moderate fetal asphyxia (i.e. hypoxemia, hypercapnia and acidemia). Experiments (n = 16) were performed in 11 ewes between 121-139 days gestation. In 8 experiments a clamp placed around the common iliac artery of the ewe was adjusted to produce a 50% reduction in the partial pressure of arterial oxygen (PO2) in fetal plasma for 30 min between 121-125 days gestation (n = 4) and between 131-139 days gestation (n = 4). Control (n = 8) experiments were performed when the arterial clamp was not adjusted. There was no significant effect of asphyxia on fetal plasma noradrenaline concentrations before 126 days gestation. After 130 days gestation during asphyxia, fetal plasma noradrenaline concentrations increased significantly from 2.20 +/- 0.72 pmol/ml (-15 min) to 14.06 +/- 0.75 pmol/ml (+5 min). The fetal adrenaline response to asphyxia did not change with increasing gestational age and after 130 days gestation fetal plasma adrenaline increased significantly from 1.48 +/- 0.46 pmol/ml (-15 min) to 4.05 +/- 1.22 pmol/ml (+10 min). Met-enkephalin-arg6-phe7 immunoreactivity was measurable (25-117 pg/ml) in all pre-experimental fetal sheep plasma samples collected between 121-139 days gestation. There was no specific effect of asphyxia on fetal plasma [Met]-enkephalin-arg6-phe7-IR before 130 days gestation. However after 130 days gestation, there was a significant increase in fetal plasma (Met-enkephalin Arg-6-phe7-IR above baseline values, when compared to control experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In an effort to examine the effects of maternal exercise on the fetus we measured maternal and fetal temperatures and blood gases and calculated uterine O2 consumption in response to three different treadmill exercise regimens in 12 chronically catheterized near-term sheep. We also measured fetal catecholamine concentrations, heart rate, blood pressure, cardiac output, blood flow distribution, blood volume, and placental diffusing capacity. Maternal and fetal temperatures increased a mean maximum of 1.5 +/- 0.5 (SE) and 1.3 +/- 0.1 degrees C, respectively. We corrected maternal and fetal blood gas values for the temperatures in vivo. Maternal arterial partial pressure of O2 (PO2), near exhaustion during prolonged (40 min) exercise at 70% maximal O2 consumption, increased 13% to a maximum of 116.7 +/- 4.0 Torr, whereas partial pressure of CO2 (PCO2) decreased by 28% to 27.6 +/- 2.2 Torr. Fetal arterial PO2 decreased 11% to a minimum of 23.2 +/- 1.6 Torr, O2 content by 26% to 4.3 +/- 0.6 ml X dl -1, PCO2 by 8% to 49.6 +/- 3.2 Torr, but pH did not change significantly. Recovery was virtually complete within 20 min. During exercise total uterine O2 consumption was maintained despite the reduction in uterine blood flow because of hemoconcentration and increased O2 extraction. The decrease of 3 Torr in fetal arterial PO2 and 1.5 ml X dl -1 in O2 content did not result in major cardiovascular changes or catecholamine release. These findings suggest that maternal exercise does not represent a major stressful or hypoxic event to the fetus.  相似文献   

8.
Pregnant sheep were chronically instrumented with fetal and maternal catheters and an inflatable occluder and electromagnetic flow transducer were placed on the uterine artery. Uterine blood flow was reduced for approximately 15 minutes to 25 percent, 50 percent, or 75 percent of control uterine blood flow. Fetal blood gases, arterial blood pressure, heart rate and regional distribution of blood flow (by radioactive microspheres) were measured. With progressive reduction of uterine blood flow there was an increasing degree of fetal asphyxia, as measured by blood gases and acid base state. At moderate degrees of asphyxia the fetus responded by redistribution of blood flow to certain organs, namely heart, brain, and adrenal gland, thus preserving oxygenation of these organs. During the most severe degree of asphyxia induced by reduction of uterine blood flow to 25 percent of control there is a reduction of fetal blood flow due to generalized vasoconstriction of essentially all organs. We hypothesize that this is due to the inability of the vasodilator mechanisms to sufficiently oppose the vasoconstrictor mechanisms. Also, because the oxygen consumption of the "vital" organs would be decreased this can be described as the stage of decompensation.  相似文献   

9.
Fetal circulatory responses to oxygen lack.   总被引:4,自引:0,他引:4  
The knowledge on fetal and neonatal circulatory physiology accumulated by basic scientists and clinicians over the years has contributed considerably to the recent decline of perinatal morbidity and mortality. This review will summarize the peculiarities of the fetal circulation, the distribution of organ blood flow during normoxemia, and that during oxygen lack caused by various experimental perturbations. Furthermore, the relation between oxygen delivery and tissue metabolism during oxygen lack as well as evidence to support a new concept will be presented along with the principal cardiovascular mechanisms involved. Finally, blood flow and oxygen delivery to the principal fetal organs will be examined and discussed in relation to organ function. The fetal circulatory response to hypoxemia and asphyxia is a centralization of blood flow in favour of the brain, heart, and adrenals and at the expense of almost all peripheral organs, particularly of the lungs, carcass, skin and scalp. This response is qualitatively similar but quantitatively different under various experimental conditions. However, at the nadir of severe acute asphyxia the circulatory centralization cannot be maintained. Then there is circulatory decentralization, and the fetus will experience severe brain damage if not expire unless immediate resuscitation occurs. Future work in this field will have to concentrate on the important questions, what factors determine this collapse of circulatory compensating mechanisms in the fetus, how does it relate to neuronal damage, and how can the fetal brain be pharmacologically protected against the adverse effects of asphyxia.  相似文献   

10.
Cardio-respiratory responses to asphyxia produced by decreased uterine perfusion were studied in 15 sheep fetuses. In chronic (spinal-anesthetized) and acute (inhalation-anesthetized) preparations, we measured fetal PO2, PCO2, pH, heart rate, arterial and umbilical venous pressures at rest and 5 min after controlled reductions of maternal aortic blood flow. Umbilical blood flow was determined by electromagnetic flow transducer on the fetal descending aorta with the iliac arteries ligated, in conjunction with radionuclide-labelled microspheres. In contrast to previous studies in which fetal hypoxaemia was produced by decreased maternally inspired O2 concentrations, decreasing degrees of uterine perfusion were associated with increasing degrees of hypercapnea and acidemia, as well as hypoxaemia. In chronic experiments, heart rate and umbilical blood flow fell significantly in response to decreased uterine perfusion with all degrees of hypoxaemia studied. In acute experiments, during the control period, PO2 values were similar to those of chronic experiments while values for pH and umbilical blood flow were lower and those for umbilical vascular resistance were higher. In the acute experiments, hypoxic stresses identical to those in the chronic studies failed to produce significant hemodynamic changes, except for bradycardia in response to severe hypoxaemia. These differences were apparently due to the pharmacologic effects of halothane and the operative stresses.  相似文献   

11.
In a previous study we suggested that--unlike other forms of asphyxia--acute asphyxia caused by arrest of uterine blood flow is accompanied by a fall in oxygen delivery to the fetal brain (Jensen et al., 1987). This may change cerebral energy metabolism by causing an increase in the glycolytic rate. To test this hypothesis we studied the time course of the changes in the levels of high-energy phosphates and glycolytic intermediates in the cerebral cortex of unanaesthetized fetal guinea pigs near term before and after 2 and 4 min of acute asphyxia. During asphyxia there was a progressive fall of adenosine triphosphate, creatine-phosphate, glucose and fructose-1,6-diphosphate concentrations, whereas adenosine diphosphate, adenosine monophosphate and lactate concentrations increased. Pyruvate concentrations did not change. We conclude that fetal cerebral energy metabolism becomes increasingly anaerobic during acute asphyxia caused by arrest of uterine blood flow, because oxygen delivery to the fetal brain falls.  相似文献   

12.
This is a study on the effect of cooling and heating amniotic fluid on blood flow to fetal tissues and organs. In 8 unanaesthetized, chronically-catheterised fetal sheep (129-137 days gestation) cold or warm water was passed through tubing encircling the fetus in utero and blood flow was measured using the radionuclide-labelled 15 mu spheres. Following cooling for 30 min, amniotic fluid temperature fell 9.6 degrees C to 29.9 +/- 2.1 degrees C (SEM) fetal arterial temperature fell 2.37 degrees C to 37.30 +/- 0.36, and maternal arterial temperature fell 0.53 degrees C to 38.58 +/- 0.16. Blood flow through the fetal skin fell 60% (P less than 0.01) to 13.6 ml/min per 100 g tissue. Blood flow to the brown fat increased 186% (P less than 0.05) to 99.6 ml/min per 100 g. Following warming for 20 min, fetal temperature rose to 40.43 +/- 0.19 degrees C, and skin blood flow did not change significantly relative to initial control period but rose 200% above that during cooling (P less than 0.01). During both cooling and heating, blood flow to the adrenals rose significantly (P less than 0.05) whereas flow to the carcass, brain, kidneys, and placenta was not altered detectably. Continuous sampling of blood from the inferior vena cava during microsphere injection failed to detect any evidence of arterio-venous shunting through the skin at any temperature studied. Overall, the blood flow responses are consistent with a thermoregulatory role for the skin and brown fat in the near-term fetal sheep.  相似文献   

13.
We determined the effect of breathing 9% CO2/10% O2/81% N2 (asphyxia) on cardiac output distribution (microspheres) in 4-5 day old unanesthetized, chronically instrumented piglets prior to and following intravenous indomethacin administration. Thirty minutes of asphyxia caused PaCO2 to increase from 35 +/- 2 mmHg to 66 +/- 2 mmHg, PaO2 to decrease from 73 +/- 4 mmHg to 41 +/- 1 mmHg, and pH to decrease from 7.52 +/- 0.05 to 7.21 +/- 0.07. Arterial pressure was increased slightly but cardiac output was not changed significantly. Asphyxia caused blood flow to the brain, diaphragm, liver, heart, and adrenal glands to increase while causing decreases in blood flow to the skin, small intestine, and colon. Blood flows to the stomach and kidneys tended to decrease, but the changes were not significant. Treatment with indomethacin during asphyxia did not alter arterial pressure or cardiac output but decreased cerebral blood flow to the preasphyxiated level and decreased adrenal blood flow about 20%. Indomethacin did not alter blood flow to any other systemic organ. At this time the piglet was allowed to breathe air for 2.5 hr undisturbed. Two and a half hours after indomethacin administration, blood flows to all organs returned to the preasphyxia control levels with the exception of cerebral blood flow which was reduced (93 +/- 13 to 65 +/- 7 ml/100 g X min). Three hours after indomethacin administration, the cerebral hyperemia caused by asphyxia was less (134 +/- 17 ml/100 g X min) than prior to indomethacin (221 +/- 15 ml/100 g X min). Indomethacin did not alter the asphyxia-induced changes to any other systemic organ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Transcutaneous PO2 was measured using a transcutaneous PO2 electrode heated to 45 degrees C on the forearm of 19 healthy volunteers. Cutaneous blood flow (CBF) was estimated indirectly from the heating power of the electrode (HP) and with an 8-MHz bidirectional ultrasonic probe by Doppler shift in a fingertip at 45 degrees C (DF). Blood flow was regulated by an upper arm cuff. Mean transcutaneous PO2 during air respiration was 86.0 +/- 6.2 Torr, and the correlation to arterial PO2 (Pao2) was 0.96 at normal blood flow. The arterial inflow was intermittently reduced in 10-15% stages of effective perfusion pressure (Peff). There was a hyperbolic decrease in PO2 when CBF was restricted in stages. A linear dependence between Peff, HP, and DF was found, which means that there is no autoregulation in the capillary bed at 45 degrees C. Transcutaneous PO2 can be also taken as an indication of CBF. The transcutaneous index, transcutaneous PO2/Pao2, is helpful for estimating local O2 availability.  相似文献   

15.
The hemodynamic response during and after acute asphyxia was studied in 14 newborn piglets. An apnea-like asphyxial insult was produced in paralyzed mechanically ventilated piglets by discontinuing ventilation until the piglets became bradycardic (heart rate less than 80 beats/min). Seven piglets had organ blood flow measured by microspheres at control, during asphyxia (PO2 = 16 +/- 11 Torr, pH = 7.31 +/- 0.07, PCO2 = 47 +/- 9 Torr), and during recovery from asphyxia. During acute asphyxia, rapid organ blood flow redistribution occurred, producing decreased renal and skeletal muscle blood flow, while coronary blood flow increased. Although total brain blood flow changed little during asphyxia, regional cerebral blood flow (rCBF) analysis revealed significant nonhomogeneous blood flow distribution within the brain during asphyxia, with decreases to the cerebral gray and white matter and the choroid plexus, whereas brain stem structures had increased flow. During recovery with reventilation, total brain blood flow increased 24% above control, with a more uniform distribution and increased flow to all brain regions. The time course of rCBF changes during acute asphyxia was then determined in seven additional piglets with CBF measurements made sequentially at 30-60 s, 60-120 s, and 120-180 s of asphyxia. The vasoconstriction seen in cortical structures, concurrent with the reduction in skeletal and kidney blood flow, known to be sympathetically mediated, suggest a selective reflex effect in this brain region. The more gradual and progressive vasodilation in brain stem regions during asphyxia is consistent with chemical control. These findings demonstrate significant regional heterogeneity in CBF regulation in newborn piglets.  相似文献   

16.
To examine the effects of vasopressin on fetal oxygenation the hormone was infused intravenously for 1 h (1.4-3.5 mU X min-1 X kg fetal weight-1) to chronically catheterized fetal lambs in utero (113-137 days gestation). Arterial pressure rose (48.3 to 59.6 mmHg) (1 mmHg = 133.322 Pa) and heart rate fell (185.3 to 141.0 beats/min) during the infusion. There was a significant increase in fetal arterial PO2 (20.0 to 23.1 mmHg) and significant declines in pH (7.414 to 7.381) and base excess. Umbilical blood flow rose, and the percentage increase in flow (23%) was identical to the proportional rise in arterial pressure. Accompanying the rise in umbilical blood flow was a rise in umbilical oxygen delivery. But as there was no change in fetal oxygen consumption, fractional oxygen extraction by the fetus fell significantly (0.31 to 0.25). These data indicate that the vasopressin-induced rise in fetal vascular PO2 results from an increase in umbilical oxygen delivery and concomitant fall in fractional extraction. Fetal vasopressin levels are greatly elevated during hypoxia, and under conditions of reduced oxygen supply, the effects of the hormone on umbilical oxygen delivery and vascular PO2 could have definite survival value.  相似文献   

17.
To examine the responses of the sympatho-adrenal system to reduced oxygen supply we studied plasma and tissue concentrations of catecholamines during normoxemia, hypoxemia, and asphyxia in 22 fetal guinea pigs near term. Fetal blood was obtained by cardiopuncture in utero under ketamine/xylazine-anesthesia. Catecholamines were determined in plasma and tissue of 15 organs and 14 brain parts by HPLC-ECD. During normoxemia (SO2 54 +/- 4 (SE) %, pH 7.36 +/- 0.02, n = 5) plasma catecholamine levels were low (norepinephrine 447 +/- 53, epinephrine 42 +/- 12, dopamine 44 +/- 6 pg/ml). During hypoxemia (SO2 27 +/- 3%, pH 7.32 +/- 0.01, n = 6) and asphyxia (SO2 24 +/- 2%, pH 7.23 +/- 0.02, n = 11) tissue catecholamine concentrations changed with changing blood gases and with increasing plasma catecholamines. Norepinephrine concentrations increased in both skin and lung and decreased in liver, pancreas, and scalp; those of epinephrine increased in the heart, lung liver, and scalp and decreased in the adrenal. There were only minor changes in brain catecholamine concentrations except for a 50% reduction in dopamine in the caudate nucleus. Concentrations of dopamine catabolite 3,4-dihydroxyphenylacetic acid decreased in many brain parts, suggesting that cerebral catecholamine metabolism was affected by hypoxemia and asphyxia. We conclude that the sympatho-adrenal system of fetal guinea pigs near term is mature and that its stimulation by reduced fetal oxygen supply leads to changes in both plasma and tissue catecholamine concentrations.  相似文献   

18.
Experiments were conducted in 8 chronically-catheterized fetal sheep at 125-135 days gestation in order to determine the effect of exogenously administered lactic acid to the fetus on fetal heart rate, blood pressure, breathing movements (FBM), electrocortical activity (ECOG), plasma immunoreactive (IR-ACTH) and cortisol concentrations. When fetal arterial pH decreased from 7.37 +/- 0.01 during the control period to 7.20 +/- 0.01, there was an initial bradycardia followed by tachycardia but no change in blood pressure. The amplitude of FBM increased 2-fold initially in association with an increase in PCO2 from 47.9 +/- 2.1 mmHg to 58.8 +/- 3.6 mmHg at 5 min into the lactate infusion. There was no change in the incidence of FBM or low-voltage ECOG and there was no change in the plasma concentrations of IR-ACTH and cortisol with the infusion of lactate. We conclude that the major effects of acutely elevating circulatory lactate concentrations in fetal sheep are to increase the amplitude of FBM and to cause an initial bradycardia followed by a tachycardia.  相似文献   

19.
Renal impairment is common in preterm infants, often after exposure to hypoxia/asphyxia or other circulatory disturbances. We examined the hypothesis that this association is mediated by reduced renal blood flow (RBF), using a model of asphyxia induced by complete umbilical cord occlusion for 25 min (n = 13) or sham occlusion (n = 6) in chronically instrumented preterm fetal sheep (104 days, term is 147 days). During asphyxia there was a significant fall in RBF and urine output (UO). After asphyxia, RBF transiently recovered, followed within 30 min by a secondary period of hypoperfusion (P < 0.05). This was mediated by increased renal vascular resistance (RVR, P < 0.05); arterial blood pressure was mildly increased in the first 24 h (P < 0.05). RBF relatively normalized between 3 and 24 h, but hypoperfusion developed again from 24 to 60 h (P < 0.05, analysis of covariance). UO significantly increased to a peak of 249% of baseline between 3 and 12 h (P < 0.05), with increased fractional excretion of sodium, peak 10.5 +/- 1.4 vs. 2.6 +/- 0.6% (P < 0.001). Creatinine clearance returned to normal after 2 h; there was a transient reduction at 48 h to 0.32 +/- 0.02 ml.min(-1).g(-1) (vs. 0.45 +/- 0.04, P < 0.05) corresponding with the time of maximal depression of RBF. No renal injury was seen on histological examination at 72 h. In conclusion, severe asphyxia in the preterm fetus was associated with evolving renal tubular dysfunction, as shown by transient polyuria and natriuresis. Despite a prolonged increase in RVR, there was only a modest effect on glomerular function.  相似文献   

20.
We determined the effect of breathing 9% CO2/10% O2/81% N2 (asphyxia) on cardiac output distribution (microspheres) in 4–5 day old unanesthetized, chronically instrumented piglets prior to and following intravenous indomethacin administration. Thirty minutes of asphyxia caused PaCO2 to increase from 35 ± 2 mmHg to 66 ± 2 mmHg, PaO2 to decrease form 73 ± 4 mmHg to 41 ± 1 mmHg, and pH to decrease from 7.52 ± 0.05 to 7.21 ± 0.07. Arterial pressure was increased slightly but cardiac output was not changed significantly. Asphyxia caused blood flow to the brain, diaphragm, liver, heart, and adrenal glands to increase while causing decreases in blood flow to the skin, small intestine, and colon. Blood flows to the stomach and kidneys tended to decrease, but the changes were not significant. Treatment with indomethacin during asphyxia did not alter arterial pressure or cardiac output but decreased cerebral blood flow to the preasphyxiated level and decreased adrenal blood flow about 20%. Indomethacin did not alter blood flow to any other systemic organ. At this time the piglet was allowed to breathe air for 2.5 hr undisturbed. Two and a half hours after indomethacin administration, blood flows to all organs returned to the preasphyxia control levels with the exception of cerebral blood flow which was reduced (93 ± 13 to 65 ± 5 ml/100 g·min. Three hours after indomethacin administration, the cerebral hyperemia caused by asphyxia was less (134 ± 17b ml/100 g·min) than prior to indomethacin (221 ± 15 ml/100 g·min. Indomethacin did not alter the asphyxia-induced changes to any other systemic organ. We conclude that in newborn pigs, systemic treatment with indomethacin decreases cerebral blood flow and cerebral hyperemia in response to asphyxia, without affecting blood flow to any other systemic organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号