首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of Ca2+/calmodulin-dependent processes in the activation of the Na+/H+ antiport of primary cultures of rat aortic smooth muscle was studied using 22Na+ uptake and measurement of intracellular pH (pHi) with the fluorescent pH dye 2',7'-bis-(2-carboxyethyl)-5(and 6)-carboxyfluorescein. Antiport activation following exposure to serum and by the induction of an intracellular acidosis could be markedly attenuated by calmodulin antagonists. Ionomycin also transiently elevated pHi and 5-(N-ethyl-N-isopropyl) amiloride-sensitive 22Na+ influx, effects consistent with activation of the antiport; these effects were abolished in cells exposed to calmodulin antagonists or [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. Activation of the antiport following intracellular acidosis was markedly affected by cellular ATP depletion. A comparison of the abilities of control and 2-deoxy-D-glucose-treated cells to increase 5-(N-ethyl-N-isopropyl)amiloride-sensitive 22Na+ influx in response to graded acidifications indicated that attenuation of Na+/H+ antiport activity was due to both a shift of its pHi dependence and to a reduction in maximal activity. The results suggest that the Na+/H+ antiport of rat aortic smooth muscle is dependent on Ca2+/calmodulin-dependent processes, presumably phosphorylation, which influences its activity by modulating (i) an intracellular proton dependent regulatory mechanism (allosteric site) and (ii) the maximum activity of the antiport.  相似文献   

2.
The Na+/H+ antiport is an important regulator of cellular volume, pH and Na+ concentration in mammalian cells. The stoichiometry of this antiporter has previously been shown to be a 1:1 exchange of internal H+ for external Na+. We have investigated this stoichiometry in human leucocytes by using a novel intracellular pH-clamping technique and measuring 22Na+ influx and H+ efflux in the same cells. As internal pH was lowered, the stoichiometry of H+/Na+ exchange rose to a mean +/- S.D. of 2.23 +/- 0.69. This mechanism allows a higher H+ efflux in the face of intracellular acid stress without causing excessive intracellular Na+ overload.  相似文献   

3.
The role of intracellular pH in ligand internalization   总被引:1,自引:0,他引:1  
Internalization of EGF and transferrin measured as the rate of uptake of 125I-labeled ligands was compared in the cell line CCL39 and a mutant derivative, PS-120, lacking the Na+/H+ antiport system. No significant alteration was detected between the two cell lines. In contrast, pretreatment of the mutant cells PS-120 with 20 mM NH4Cl for 30 min to decrease persistently intracellular pH resulted in an increase in 125I-EGF and 125I-transferrin uptake by 60% and 25%, respectively. However, similar NH4Cl pretreatment of the parental cell line, CCL-39, which only affected intracellular pH very transiently did not cause an increase of ligand uptake. The binding of 125I-EGF to CCL-39 and PS-120 cells with or without NH4Cl pretreatment showed that NH4Cl pretreatment did not affect EGF binding in either CCL-39 or PS-120 cells. Since cells regulate intracellular pH by ion transport systems, we also examined the role of Na+, K+-ATPase. Ouabain, an inhibitor of Na+, K+-ATPases, showed no effect on 125I-EGF uptake in either of the cell types with or without NH4Cl pretreatment. Taken together, these results suggest that the plasma membrane-bound Na+/H+ antiport, a major pHi-regulating system in vertebrates, indirectly plays a role in ligand internalization through regulation of intracellular pH.  相似文献   

4.
Proton circulation in Vibrio costicola.   总被引:3,自引:2,他引:1       下载免费PDF全文
The importance of proton movements was assessed in the moderate halophile Vibrio costicola. When anaerobic cells in acidic buffer (pH 6.5) were given an O2 pulse, protons were extruded regardless of the presence of Na+. At pH 8.5, however, V. costicola produced an acidic response to an O2 pulse in the absence of Na+ and an alkaline response when Na+ was present. An Na+/H+ antiport activity was confirmed at pH 8.5. All of these effects were prevented by protonophores or butanol treatment. Growth in complex medium at pH 8.5 was prevented by a high concentration (50 microM) of carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) or a low concentration (5 microM) of another protonophore, 3,3',4',5-tetrachlorosalicylanilide (TCS). The relative ineffectiveness of the former protonophore was caused by the proteose peptone and tryptone ingredients of the complex medium, since 5 microM completely prevented growth in their absence. The results are explained by a primary respiratory-linked proton efflux coupled to a secondary Na+/H+ antiport operating at alkaline pH. Evidence was seen for a role of Na+ in stimulating proton influx at alkaline pH, presumably via the pH homeostasis mechanism.  相似文献   

5.
Growth factors (alpha-thrombin and insulin) activate a Na+/H+ antiport in G0/G1-arrested Chinese hamster lung fibroblasts (CCL39). In this report, we have examined the influence of intracellular pH on this exchange activity, measured by initial rates of amiloride-sensitive 22Na+ uptake, in the absence and presence of growth factors. Our results indicate the following. 1) In quiescent as in mitogen-stimulated cells, Na+/H+ antiport is regulated by internal H+ in an allosteric way, whereas, in contrast, interactions with external H+ and Na+ obey simple saturation kinetics. 2) The growth factor-induced activation of Na+/H+ exchange, which, under physiological conditions, is responsible for a sustained cytoplasmic alkalinization, is due to an increased affinity for internal H+ (the apparent pK is shifted by approximately 0.3 pH unit towards alkaline pH values). Therefore, we propose that growth factors promote a conformational change of the Na+/H+ antiporter, possibly at the level of an internal modifier site(s).  相似文献   

6.
Mg2+ efflux is accomplished by an amiloride-sensitive Na+/Mg2+ antiport   总被引:1,自引:0,他引:1  
Mg2+ efflux from Mg2+-preloaded chicken erythrocytes is caused by an electroneutral Na+/Mg2+ antiport. It depends specifically on extracellular Na+, according to Michaelis-Menten kinetics (Km = 25 mM), and is reversibly noncompetitively inhibited by amiloride (Ki = 0.59 mM). In contrast to Na+/H+ antiport, Li+, Ca2+ and N-ethylmaleimide do not interfere with Na+/Mg2+ antiport. The Na+/Mg2+ antiport is driven by the intracellular/extracellular Mg2+ gradient.  相似文献   

7.
The activity of the Na+/H+ exchange system of rat thymic lymphocytes was determined by means of intracellular (pHi) and extracellular pH (pH0) measurements. In isotonic media, the antiport is virtually quiescent at physiological pHi (7.0-7.1), but is greatly activated by cytoplasmic acidification. At normal pHi, the antiport can also be activated by osmotic shrinking. Osmotic activation occurs after a delay of 20-30 s and is reversed several minutes after iso-osmolarity is restored. The mechanism of activation was analyzed by comparing the kinetic parameters of transport in resting (isotonic) and hyperosmotically stressed cells. The affinities of the external substrate site for Na+ and H+ are not altered in shrunken cells. In contrast, the Hi+ sensitivity of the antiport (which is largely dictated by an allosteric modifier site) was increased, which accounted for the activation. The concentration of free cytoplasmic Ca2+ [( Ca2+]i) increased after osmotic shrinking. This increase was dependent on the presence of extracellular Ca2+ and Na+ and was blocked by inhibitors of Na+/H+ exchange, which suggests that it is a consequence, rather than the cause, of the activation of the antiport. It is concluded that the shift in the pHi dependence of the modifier site of the Na+/H+ antiport is the primary event underlying the regulatory volume increase that follows osmotic shrinkage.  相似文献   

8.
Chinese hamster lung fibroblasts (CCl39) possess in their plasma membrane an amiloride-sensitive Na+/H+ antiport, activated by growth factors. Measurements of intracellular pH (pHi), using equilibrium distribution of benzoic acid, provide evidence for a major role of this antiport in 1) regulation of cytoplasmic pH, in response to an acute acid load or to varying external pH values, and 2) the increase in cytoplasmic pH (by 0.2-0.3 pH unit) upon addition of growth factors (alpha-thrombin and insulin) to G0/G1-arrested cells. Indeed, these two processes are Na+-dependent and amiloride-sensitive; furthermore, CCl39-derived mutant cells, lacking the Na+/H+ exchange activity, are greatly impaired in pHi regulation and present no cytoplasmic alkalinization upon growth factor addition. In wild type G0-arrested cells, the amplitude of the mitogen-induced alkalinization reflects directly the activity of the Na+/H+ antiport, and is tightly correlated with the magnitude of DNA synthesis stimulation. Therefore, we conclude that cytoplasmic pH, regulated by the Na+/H+ antiport, is of crucial importance in the mitogenic response.  相似文献   

9.
The amiloride-sensitive Na+/H+ antiport in 3T3 fibroblasts   总被引:14,自引:0,他引:14  
BALB/c 3T3 fibroblasts have an amiloride-sensitive Na+ uptake mechanism which is hardly detectable under normal physiological conditions. The activity of this Na+ transport system can be increased to a large extent by treatments that decrease the internal pH such as loss of intracellular NH4+ as NH3 or incubation with nigericin in the presence of a low external K+ concentration. These treatments have made possible an analysis of the interaction of the Na+/H+ antiport with amiloride and of the external pH dependence of the system. The addition of fetal bovine serum to quiescent 3T3 cells stimulates the initial rate of the amiloride-sensitive 22Na+ uptake by only 50%. However, after treatment of the cells with ammonia or nigericin, serum produces a 40-fold stimulation of the rate of the amiloride-sensitive 22Na+ uptake. Control experiments show that serum does not stimulate the activity of the Na+/H+ antiport by an indirect mechanism involving a depolarization of the membrane or a modification of the internal Ca2+ concentration. It is suggested that some serum component directly interacts with the Na+/H+ exchanger to modify its catalytic properties.  相似文献   

10.
In several cell types, proliferation initiated by growth factors is associated with a rapid increase in cytoplasmic pH (pHi). This cytoplasmic alkalinization is due to the activation of an amiloride-sensitive Na+/H+ antiport. It is unclear whether growth factor-induced activation of the antiport or the resultant increase in pHi is the trigger for proliferation, an obligatory requirement for proliferation, or simply an associated phenomenon. Interleukin 2 (IL 2) acts as a growth factor for mitogen or antigen-stimulated thymus-derived (T) lymphocytes. In this study, we established that IL 2 produces an increase in pHi and determined whether this increase in pHi plays a role in the proliferative response to IL 2. Monitoring pHi with an intracellularly trapped, pH-sensitive, fluorescent dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein, we demonstrated that IL 2 rapidly (less than 90 s) initiates an increase in pHi in IL 2-sensitive human and murine T cells. Because intracellular alkalinization requires extracellular Na+ and is amiloride-sensitive, it likely occurs through activation of the Na+/H+ antiport. Using partitioning of a weak acid, 5,5-dimethyl-2,4-oxazolidinedione, we confirmed that the IL 2-dependent increase in pHi is sustained for several hours and returns to near base-line levels by 18 h. We also investigated the consequence of preventing Na+/H+ exchange on the proliferative response induced by IL 2. IL 2-driven proliferation occurred in nominally bicarbonate-free medium in the presence of concentrations of amiloride analogs sufficient to inhibit the Na+/H+ antiport and prevent intracellular alkalinization. These data suggest that although the antiport is activated by binding of IL 2 to its receptor, intracellular alkalinization is not essential for IL 2-dependent proliferation. It seems unlikely that either cytoplasmic alkalinization or activation of the Na+/H+ antiport are triggers for T cell proliferation.  相似文献   

11.
It has been suggested that an intracellular alkalinization, resulting from stimulation of Na+/H+ exchange, is a necessary step and perhaps the signal leading to cellular proliferation in cells stimulated by mitogens. This hypothesis was tested by measuring the early stages of the proliferative cascade in cells where antiport activity was precluded by omission of Na+ or by the addition of potent amiloride analogs. To circumvent possible nonspecific effects due to long incubations under these conditions, an early response to mitogens, the increased level of c-fos mRNA, was monitored. In rat thymic lymphocytes, the increase in the level of c-fos RNA induced by the combination of 12-O-tetradecanoylphorbol 13-acetate and ionomycin was unaffected by inhibition of the antiport with 5-(N-ethyl-N-propyl)amiloride. Increased c-fos RNA was also observed in the absence of Na+ and when alkalinization was prevented by means of nigericin. Similar results were obtained with phytohemagglutinin-stimulated human T lymphocytes. Moreover, although the lectin stimulated the antiport in these cells, an alkalinization was not observed, due to the concomitant occurrence of an acidifying process. It was concluded that the stimulation of the Na+/H+ antiport that accompanies the addition of mitogens is neither sufficient nor necessary for the initiation of cellular proliferation.  相似文献   

12.
Na+/H+ antiporters   总被引:41,自引:0,他引:41  
Na+/H+ antiports or exchange reactions have been found widely, if not ubiquitously, in prokaryotic and eukaryotic membranes. In any given experimental system, the multiplicity of ion conductance pathways and the absence of specific inhibitors complicate efforts to establish that the antiport observed actually results from the activity of a specific secondary porter which catalyzes coupled exchanged of the two ions. Nevertheless, a large body of evidence suggests that at least some prokaryotes possess a delta psi-dependent, mutable Na+/H+ antiporter which catalyzes Na+ extrusion in exchange for H+; in other bacterial species, the antiporter my function electroneutrally, at least at some external pH values. The bacterial Na+/H+ antiporter constitutes a critical limb of Na+ circulation, functioning to maintain a delta mu Na+ for use by Na+-coupled bioenergetic processes. The prokaryotic antiporter is also involved in pH homeostasis in the alkaline pH range. Studies of mutant strains that are deficient in Na+/H+ antiporter activity also indicate the existence of a relationship, e.g., a common subunit or regulatory factor, between the Na+/H+ antiporter and Na+/solute symporters in several bacterial species. In eukaryotes, an electroneutral, amiloride-sensitive Na+/H+ antiport has been found in a wide variety of cell and tissue types. Generally, the normal direction of the antiport appears to be that of Na+ uptake and H+ extrusion. The activity is thus implicated as part of a complex system for Na+ circulation, e.g., in transepithelial transport, and might have some role in acidification in the renal proximal tubule. In many experimental systems, the Na+/H+ antiport appears to influence intracellular pH. In addition to a role in general pH homeostasis, such Na+-dependent changes in intracellular pH could be part of the early events in a variety of differentiating and proliferative systems. Reconstitution and structural studies, as well as detailed analysis of gene loci and products which affect the antiport activity, are in their very early stages. These studies will be important in further clarification of the precise structural nature and role(s) of the Na+/H+ antiporters. In neither prokaryotes nor eukaryotes systems is there yet incontrovertible evidence that a specific protein carrier, that catalyzes Na+/H+ antiport, is actually responsible for any of the multitude of effects attributed to such antiporters. The Na+-H+ exchange might turn out to be side reactions of other porters or the additive effects of several conductance pathways; or, as appears most likely in at least some bacteria and in renal tissue, the antiporter may be a discrete, complex carr  相似文献   

13.
The fluorescence of 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) has been used to follow the Na+/H+ antiport activity of isolated heart mitochondria as a Na+-dependent extrusion of matrix H+. The antiport activity measured in this way shows a hyperbolic dependence on external Na+ or Li+ concentration when the external pH (pHo) is 7.2 or higher. The apparent Km for Na+ decreases with increasing pHo to a limit of 4.6 mM. The Ki for external H+ as a competitive inhibitor of Na+/H+ antiport averages 3.0 nM (pHo 8.6). The Vmax at 24 degrees C is 160 ng ion of H+ min-1 (mg of protein)-1 and does not vary with pHo. Li+ reacts with the antiporter with higher affinity, but much lower Vmax, and is a competitive inhibitor of Na+/H+ antiport. The rate of Na+/H+ antiport is optimal when the pHi is near 7.2. When pHo is maintained constant, Na+-dependent extrusion of matrix H+ shows a hyperbolic dependence on [H+]i with an apparent Km corresponding to a pHi of 6.8. The Na+/H+ antiport is inhibited by benzamil and by 5-N-substituted amiloride analogues with I50 values in the range from 50 to 100 microM. The pH profile for this inhibition seems consistent with the availability of a matrix binding site for the amiloride analogues. The mitochondrial Na+/H+ antiport resembles the antiport found in the plasma membrane of mammalian cells in that Na+, Li+, and external H+ appear to compete for a common external binding site and both exchanges are inhibited by amiloride analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The fluorescence of internalized fluorescein isothiocyanate dextran has been used to monitor the intravesicular pH of submitochondrial particles (SMP). Respiring SMP maintain a steady-state delta pH (interior acid) that results from the inwardly directed H+ flux of respiration and an opposing passive H+ leak. Addition of K+, Na+, or Li+ to SMP results in a shift to a more alkaline interior pH (pHi) in both respiring and nonrespiring SMP. The K+-dependent change in pHi, like the K+/H+ antiport in intact mitochondria, is inhibited by quinine and by dicyclohexylcarbodiimide. The Na+-dependent reaction is only partially inhibited by these reagents. Both the Na+- and the K+-dependent pH changes are sensitive to amiloride derivatives. The Km for both Na+ and K+ is near 20 mM whereas that for Li+ is closer to 10 mM. The K+/H+ exchange reaction is only slightly inhibited by added Mg2+, but abolished when A23187 is added with Mg2+. The passive exchange is optimal at pHi 6.5 with either Na+ or K+, and cannot be detected above pHi of 7.2. Both the Na+/H+ and the K+/H+ exchange reactions are optimal at an external pH of 7.8 in respiring SMP (pHi 7.1). Valinomycin stimulates the K+-dependent pH change in nonrespiring SMP, as does nigericin. It is concluded that SMP show K+/H+ antiport activity with properties distinct from those of Na+/H+ antiport. However, the properties of the K+/H+ exchange do not correspond in all respects to those of the antiport in intact mitochondria. Donnan equilibria and parallel uniport pathways for H+ and cations appear to contribute to cation-dependent pH changes in SMP.  相似文献   

15.
The effect of matrix pH (pHi) on the activity of the mitochondrial Na+/Ca2+ antiport has been studied using the fluorescence of SNARF-1 to monitor pHi and Na(+)-dependent efflux of accumulated Ca2+ to follow antiport activity. Heart mitochondria respiring in a KCl medium maintain a large delta pH (interior alkaline) and show optimal Na+/Ca2+ antiport only when the pH of the medium (pH0) is acid. Addition of nigericin to these mitochondria decreases delta pH and increases the membrane potential (delta psi). Nigericin strongly activates Na+/Ca2+ antiport at values of pH0 near 7.4 but inhibits antiport activity at acid pH0. When pHi is evaluated in these protocols, a sharp optimum in Na+/Ca2+ antiport activity is seen near pHi 7.6 in the presence or absence of nigericin. Activity falls off rapidly at more alkaline values of pHi. The effects of nigericin on Na+/Ca2+ antiport are duplicated by 20 mM acetate and by 3 mM phosphate. In each case the optimum rate of Na+/Ca2+ antiport is obtained at pHi 7.5 to 7.6 and changes in antiport activity do not correlate with changes in components of the driving force of the reaction (i.e., delta psi, delta pH, or the steady-state Na+ gradient). It is concluded that the Na+/Ca2+ antiport of heart mitochondria is very sensitive to matrix [H+] and that changes in pHi may contribute to the regulation of matrix Ca2+ levels.  相似文献   

16.
Na+/H+ exchange activity was investigated in cultured rat thyroid follicular FRTL-5 cells using the pH sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Basal intracellular pH (pHi) was 7.13 +/- 0.10 in cells incubated in Hepes-buffered saline solution. The intracellular buffering capacity beta i was determined using the NH4Cl-pulse method, yielding a beta i value of 85 +/- 12 mM/pH unit. The relationship between extracellular Na+ and the initial rate of alkalinization of acid-loaded cells showed simple saturation kinetics, with an apparent Km value of 44 +/- 26 mM, and an Vmax value of 0.3 +/- 0.01 pH unit/min. The agonist-induced activation of Na+/H+ exchange was investigated in cells acidified with nigericin. Addition of 12-O-tetradecanoylphorbol 13-acetate (TPA) or ATP induced rapid cytosolic alkalinization in acid-loaded cells. The action of both TPA and ATP was abolished by preincubating the cells with 100 microM amiloride, by substituting extracellular Na+ with equimolar concentrations of choline+, and by pretreating the cells with TPA for 24 h. Chelating extracellular Ca2+, or depleating intracellular Ca2+ pools did not affect the ATP-induced alkalinization. The results indicate, that FRTL-5 cells have a functional Na+/H+ exchange mechanism. Furthermore, stimulation of protein kinase C activity is of importance in activating the antiport.  相似文献   

17.
A new method based on the toxicity of low intracellular pH (pHi) was developed to isolate fibroblast variants overexpressing Na+/H+ antiport activity. Chinese hamster lung fibroblasts (CCL39) were incubated for 60 min in medium containing 50 mM NH4Cl. Removal of external NH+4 induced a rapid and lethal intracellular acidification when the Na+/H+ antiporter was inhibited during the 60 min of the pHi recovery phase. The inhibition was provoked either by adding 5-(N-methyl,N-propyl)amiloride (MPA, LD50 = 0.3 microM) or by reducing external [Na+] (LD50 = 25 mM). Progressively increasing the MPA concentration during the acid-load selection led to the isolation of two stable variants: AR40 and AR300, resistant, respectively, to 40 and 300 microM MPA. In response to an acid-load, these variants display a much higher rate of pHi recovery due to an overexpression of Na+/H+ antiport activity. In addition, AR40 and AR300 have an altered Na+/H+ antiporter: in AR300 cells K0.5 of MPA for inhibiting Na+/H+ exchange is shifted from 5 X 10(-8) to 1.5 X 10(-6) M, Km (Na+) is decreased 2-fold, and Vmax is increased 4.5-fold. Alternatively reducing Na+ concentration of the pHi recovery saline medium in a stepwise manner led to the selection of another class of variants (DD8 and DD12) also characterized by an altered Na+/H+ antiporter and an increased expression level. The 10-fold increased rate of amiloride-sensitive Na+ influx of DD12 is accounted for by a 4-fold increase in Vmax and a 2.5-fold increase in affinity for Na+ or Li+ at the external site. Interestingly, the affinity for the amiloride analog MPA and for external H+ is unchanged in DD12. In conclusion, the genetic approach presented here: provides a general and specific method for selecting variants of the Na+/H+ antiporter with increased expression levels and/or with structural alterations and demonstrates that the external Na+- and amiloride-binding sites are not identical, since they can be genetically altered independently of each other.  相似文献   

18.
Previous studies have documented the activation of Na+/H+ exchange in A431 cells by the addition of epidermal growth factor or serum (Rothenberg et al., 1983b). Here we show that exposure of A4 31 cells to medium of increased osmolarity also leads to activation of Na+/H+ exchange and to an increase in intracellular pH (pHi), which under a variety of conditions displays similar kinetics to that observed upon addition of mitogens to the cells. Measurements of cell volume using the 3-0-methylglucose equilibration technique clearly show that mitogens do not activate Na+/H+ exchange by an osmotic mechanism (i.e., a decrease in cell volume). In fact, mitogens can induce further intracellular alkalinization if added to cells which have been shrunken in hypertonic medium. Activation of the Na+/H+ antiport does not lead to an obligatory change in pHi. Addition of epidermal growth factor of hypertonic solution to A431 cells in bicarbonate buffer activates Na+/H+ exchange without a concomitant increase in pHi. Under these conditions the increased proton efflux via Na+/H+ exchange must therefore be compensated by other mechanisms that control cytoplasmic pH.  相似文献   

19.
The effect of serum, phorbol-12-myristate-13-acetate (TPA), and forskolin on the activity Na+/H+ antiport and the Na(+)-coupled and Na(+)-independent Cl-/HCO3- antiport was studied in Vero cells by measuring 22Na+ and 36Cl- fluxes and changes in cytosolic pH (pHi). The Na(+)-independent Cl-/HCO3- antiport, which acts as an acidifying mechanism, is strongly pH-sensitive. In serum-starved cells it is activated at alkaline cytosolic pH, with a half-maximal activity at pHi approximately 7.20. Incubation with serum increased the activity of the Na(+)-independent Cl-/HCO3- antiport at pHi values from 6.8 to 7.2. Thus serum appeared to alter the pHi sensitivity of this antiporter such that the threshold value for activation of the antiport was shifted to a more acidic value. Na+/H+ antiport was somewhat stimulated initially by addition of serum, but further incubation with serum (greater than 45 min) decreased its activity. The activity of the Na(+)-coupled Cl-/HCO3- antiport, which is the major alkalinizing antiport in Vero cells, was not altered by short-term incubation with serum (less than 10 min) but decreased after prolonged incubation (greater than 45 min). Our findings with TPA and forskolin indicate that the effect of serum is partly mediated by the protein kinase C pathway, whereas the cyclic adenosine monophosphate pathway does not appear to play an important role. The net effect of serum on the pHi-regulating antiports was a slight decrease in intracellular pH.  相似文献   

20.
Treatment of thymic lymphocytes with the mitogenic lectin concanavalin A (ConA) increases the intracellular free Ca2+ concentration and stimulates phosphoinositide turnover. ConA also induced a rapid, amiloride-sensitive, Na+-dependent increase in cytosolic pH of 0.13 +/- 0.01, indicative of stimulation of the Na+/H+ antiport. To investigate the mechanism underlying activation of Na+/H+ exchange by ConA, the intracellular free Ca2+ concentration changes induced by this lectin were precluded by loading the cells with Ca2+-buffering agents and suspension in Ca2+-free media. Under these conditions, the ConA-induced cytoplasmic alkalinization proceeded normally. Two approaches were used to assess the role of protein kinase C. First, this enzyme was inhibited by the addition of 1-(5-isoquinolinysulfonyl)-2-methylpiperazine. In the presence of this potent antagonist, stimulation of the antiport by 12-O-tetradecanoylphorbol-13-acetate was greatly inhibited. In contrast, stimulation by ConA was unaffected. Second, protein kinase C was depleted by overnight incubation with phorbol esters. Following this treatment, Na+/H+ exchange was no longer activated by 12-O-tetradecanoyl-13-acetate, but was still stimulated by ConA. These data suggest that a Ca2+- and protein kinase C-independent mechanisms mediates the activation of Na+/H+ exchange by ConA. The possible role of GTP-binding proteins in the activation was also studied. The antiport was not stimulated by either fluoroaluminate or vanadate. Moreover, pretreatment with pertussis toxin failed to inhibit the ConA-induced cytoplasmic alkalinization. In contrast, preincubation with cholera toxin partially inhibited activation. Under these conditions, cholera toxin significantly elevated intracellular cAMP levels. Inhibition was also observed in cells treated with forskolin at concentrations that increased [cAMP]. The data suggest that a novel cAMP-sensitive signaling mechanism not involving Ca2+ and protein kinase C is involved in the stimulation of Na+/H+ exchange by mitogens in T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号