首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of Suaeda glauca (Bge.), an alkali-resistant succulent halophyte, were compared. The results showed that alkali stress clearly inhibited the growth of S. glauca. Moreover, the concentrations of Na+ and K+ both increased with increasing salinity under both stresses, suggesting no competitive inhibition between absorptions of Na+ and K+. The mechanism underlying osmotic adjustment during salt stress was similar to alkali stress in shoots. The shared essential features were that organic acids, betaine and inorganic ions (dominated by Na+) mostly accumulated. On the other hand, the mechanisms governing ionic balance under both stresses were different. Under salt stress, S. glauca accumulated organic acids and inorganic anions to maintain the intracellular ionic equilibrium, but the anion contribution of inorganic ions was greater than that of organic acids. However, the concentrations of inorganic anions under alkali stress were significantly lower than those under salt stress of the same intensity, suggesting that alkali stress might inhibit uptake of anions, such as NO3 and H2PO4 . Under alkali stress, organic acids were the dominant factor in maintaining ionic equilibrium. The contribution of organic acids to anions was 74.1%, while that of inorganic anions was only 25.9%. S. glauca enhanced the synthesis of organic acids, dominated by oxalic acid, to compensate for the shortage of inorganic anions.  相似文献   

2.
Two membrane proteins encoded by the malonate fermentation gene cluster of Malonomonas rubra, MadL and MadM, have been synthesized in Escherichia coli. MadL and MadM were shown to function together as a malonate transport system, whereas each protein alone was unable to catalyze malonate transport. Malonate transport by MadLM is Na+ dependent, and imposition of a ΔpNa+ markedly enhanced the rate of malonate uptake. The kinetics of malonate uptake into E. coli BL21(DE3) cells synthesizing MadLM at different pH values indicated that Hmalonate is the transported malonate species. The stimulation of malonate uptake by Na+ ions showed Michaelis-Menten kinetics, and a Km for Na+ of 1.2 mM was determined. These results suggest that MadLM is an electroneutral Na+/Hmalonate symporter and that it is dependent on two separate genes.  相似文献   

3.
M. J. Kropff 《Plant and Soil》1991,131(2):235-245
The impact of SO2 on the ionic balance of plants and its implications for intracellular pH regulation was studied to find explanations for long-term effects of SO2. When sulphur, taken up as SO2 by the shoots of plants, is not assimilated in organic compounds, but stored as sulphate, an equivalent amount of H+ is produced. These H+ ions are not buffered chemically, but removed by metabolic processes.On the basis of knowledge on metabolic buffering mechanisms a conceptual model is proposed for the removal of shoot-generated H+ by (i) OH- ions, produced in the leaves when sulphate and nitrate are assimilated in organic compounds and/or by (ii) OH- ions produced by decarboxylation of organic anions (a biochemical pH stat mechanism). The form in which nitrogen is supplied largely determines the potential of the plant to neutralize H+ in the leaves during SO2 uptake by the proposed mechanisms.In field experiments with N2 fixing Vicia faba L. crops, the increase of sulphate in the shoots of SO2-exposed plants was equivalent in charge to the decrease of organic anion content, calculated as the difference between inorganic cation content (C) and inorganic anion content (A), indicating that H+ ions produced in the leaves following SO2 uptake were partly removed by OH- from sulphate reduction and partly by decarboxylation of organic anions.The appearance of chronic SO2 injury (leaf damage) in the field experiment at the end of the growing period is discussed in relation to the impact of SO2 on the processes involved in regulation of intracellular pH. It is proposed that the metabolic buffering capacity of leaf cells is related to the rates of sulphate and nitrate reduction and the import rate of organic anions, rather than to the organic anion content in the vacuoles of the leaf cells.  相似文献   

4.
Vera Istvánovics 《Hydrobiologia》1993,253(1-3):193-201
In order to estimate microbial P content and biological P uptake in sediments, the tungstate precipitation method of Orrett & Karl (1987) was used in sediment extracts. This method allows a simple and rapid separation of organic and inorganic 32P radioactivity. Either inorganic 32P (as carrierfree H3 32PO4) or organic 32P (as 32P-labelled algal material) was added to surface sediment suspensions of shallow Lake Balaton. Inorganic 32P was rapidly transformed into organic 32P, and this process was completely inhibited by formaline. P content of living benthic microorganisms was estimated from steady state distribution of the radioactivity. Transformation of algal organic P into inorganic P could also be detected.In extremely P limited Lake Balaton benthic microorganisms were shown to supplement their high P requirements by inorganic P uptake. The velocity of the inorganic into organic P transformation, i.e. the rate of microbial P uptake, was comparable to P uptake in the water column. Microbial P uptake contributed significantly to total P fixation by sediments, particularly at low ( 100 µg P l–1) phosphate additions.  相似文献   

5.
An investigation was carried out to study the cation-anion balance in different tissues of tomato plants supplied with nitrate, urea, or ammonium nitrogen in water culture.

Irrespective of the form of nutrition, a very close balance was found in the tissues investigated (leaves, petioles, stems, and roots) between total cations (Ca, Mg, K and Na), and total anions (NO3, H2PO4, SO4−−, Cl) total non-volatile organic acids, oxalate, and uronic acids. In comparison with the tissues of the nitrate fed plants, the corresponding ammonium tissues contained lower concentrations of inorganic cations, and organic acids and a correspondingly higher proportion of inorganic anions. Tissues from the urea plants were intermediate between the other 2 treatments. These results were independent of concentration or dilution effects, caused by growth. In all tissues approximately equivalent amounts of diffusible cations (Ca++, Mg++, K+ and Na+), and diffusible anions (No3, SO4−−, H2PO4, Cl) and non-volatile organic acids were found. An almost 1:1 ratio occurred between the levels of bound calcium and magnesium, and oxalate and uronic acids. This points to the fact that in the tomato plant the indiffusible anions are mainly oxalate and pectate. Approximately equivalent values were found for the alkalinity of the ash, and organic anions (total organic acids including oxalate, and uronic acids).

The influence of nitrate, urea, and ammonium nitrogen nutrition on the cation-anion balance and the organic acid content of the plant has been considered and the effects of these different nitrogen forms on both the pH of the plant and the nutrient medium and its consequences discussed.

  相似文献   

6.
7.
Growth characteristics and nutrient changes in medium and cells of batch-grown sugarcane cultures were investigated over a period of 14 days. Amino acids, PO 4 3− and K+ were substantially removed from the medium during the first seven days of culture; a strong preference for uptake of organic nitrogen over inorganic nitrogen was observed. Sodium uptake increased during the time when K+ was becoming deficient in the medium. The main anions taken up were SO 4 2− and PO 4 3− . Strong acidification and a virtually total extracellular hydrolysis of sucrose in the medium during the first seven days of culture were also observed. Tapering off of the rapid growth phase was accompanied by an increase of intra-cellular sucrose and a decrease of intracellular protein. As cells went from rapid growth into stationary phase, cytoplasmic space of the cells decreased slightly in favor of vacuolar space. Overall cell volume stayed constant throughout the growth cycle, except during a short period before onset of rapid growth. Transport of the glucose analog 3-O-methyl glucose remained constant in terms of Km value but the Vmax was slightly higher in rapidly growing cells. Published with the approval of the Director as paper no. 495 in theJournal Series of the Experiment Station, Hawaiian Sugar Planters' Association  相似文献   

8.
Equations have been developed which quantitatively predict the theoretical time-course of photosynthetic 14C incorporation when CO2 or HCO3 serves as the sole source of exogenous inorganic carbon taken up for fixation by cells during steady state photosynthesis. Comparison between the shape of theoretical (CO2 or HCO3) and experimentally derived time-courses of 14C incorporation permits the identification of the major species of inorganic carbon which crosses the plasmalemma of photosynthetic cells and facilitates the detection of any combined contribution of CO2 and HCO3 transport to the supply of intracellular inorganic carbon. The ability to discriminate between CO2 or HCO3 uptake relies upon monitoring changes in the intracellular specific activity (by 14C fixation) which occur when the inorganic carbon, present in the suspending medium, is in a state of isotopic disequilibrium (JT Lehman 1978 J Phycol 14: 33-42). The presence of intracellular carbonic anhydrase or some other catalyst of the CO2-HCO3 interconversion reaction is required for quantitatively accurate predictions. Analysis of equations describing the rate of 14C incorporation provides two methods by which any contribution of HCO3 ions to net photosynthetic carbon uptake can be estimated.  相似文献   

9.
The purpose of this study was to investigate the characteristics of carbonic anhydrase (CA) and the Cl/HCO3 exchanger (Band 3; AE1) in the erythrocytes of bowfin (Amia calva), a primitive air-breathing fish, in order to further understand the strategies of blood CO2 transport in lower vertebrates and gain insights into the evolution of the vertebrate erythrocyte proteins, CA and Band 3. A significant amount of CA activity was measured in the erythrocytes of bowfin (70 mmol CO2 min−1 ml−1), although it appeared to be lower than that in the erythrocytes of teleost fish. The turnover number (Kcat) of bowfin erythrocyte CA was intermediate between that of the slow type I CA isozyme in agnathans and elasmobranchs and the fast type II CA in the erythrocytes of the more recent teleost fishes, but the inhibition properties of bowfin erythrocyte CA were similar to the fast mammalian CA isozyme, CA II. In contrast to previous findings, a plasma CA inhibitor was found to be present in the blood of bowfin. Bowfin erythrocytes were also found to possess a high rate of Cl/HCO3 exchange (6 nmol HCO3 s−1 cm−2) that was sensitive to DIDS. Visualization of erythrocyte membrane proteins by SDS-PAGE revealed a major band in the 100 kDa range for the trout, which would be consistent with the anion exchanger. In contrast, the closest major band for the membranes of bowfin erythrocytes was around the 140 kDa range. Taken together, these results suggest that the strategy for blood CO2 transport in bowfin is probably similar to that in most other vertebrates despite several unique characteristics of erythrocyte CA and Band 3 in these primitive fish.  相似文献   

10.
The species of inorganic carbon (CO2 or HCO3) taken up a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO2 or HCO3 transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO2 or HCO3 transport) and experimental time-courses of 14C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO2, rather than HCO3, is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO3 transport, as the incorporation of 14C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO2 uptake alone. The contribution of HCO3 to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO3 concentration. The evidence for direct HCO3 transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO2, which is partially alleviated by a high extracellular concentration of HCO3.  相似文献   

11.
Summary Tetrathionate (S4O 6 –– ) markedly inhibits anion exchange across the human erythrocyte membrane. This phenomenon has been studied in order to obtain further insight into the mechanism of action of reversible inhibitors, in particular disulfonate inhibitors, of anion exchange. Anion fluxes were measured by tracer techniques at equilibrium. The following results were obtained: Tetrathionate, although an inorganic compound, inhibits the self-exchange of sulfate and of divalent organic anions (oxalate, malonate) noncompetitively atK i values (0.5mm) as yet only observed for amphiphilic inhibitors. The inhibitor is effective only from the outside of the cell. The inhibition is temperature-dependent,K i increasing by a factor of 5 between 5 and 35°C, and instantaneously and fully reversible. The presence of small monovalent anions (fluoride, bromide, chloride, nitrate, acetate) counteracts inhibition by tetrathionate to a varying and concentration-dependent extent, divalent anions have only a minor effect at high concentrations. Chloride exchange is also inhibited, while glycolate and lactate fluxes are much less sensitive or almost insensitive, in agreement with their alleged transfer by a different transport system. Tetrathionate is unique in its inhibitory action, its structural congeners, peroxodisulfate (S2O 8 –– ) and ethanedisulfonate (C2H4S2O 6 –– ) are much less effective.The results can be interpreted by assuming that tetrathionate inhibits the movement of anions via the inorganic anion exchange system by binding-in a 11 stoichiometry-to inhibitory modifier sites, for which it competes with other anions. These sites are located only on the exofacial surface of the membrane. The high affinity of tetrathionate is probably due to a local excess of electrons in the region of its central disulfide bond. These may stabilize the binding by their ability to form electron donor-acceptor complexes with membrane sites, thus compensating for the absence of a hydrophobic binding domain in tetrathionate.  相似文献   

12.
13.
R. J. Haynes 《Plant and Soil》1990,126(2):247-264
The processes responsible for maintenance of cation-anion balance in plants and their relation to active ion accumulation and changes in rhizosphere pH are outlined and discussed. The major processes involved are: (1) accumulation and degradation of organic acids which occur in the plant mainly as organic acid anions (and their transfer within the plant) and (2) extrusion of H+ or OH into the rhizosphere. The relative importance of the two processes is determined by the size of the excess anion or cation uptake. Indeed, plants typically absorb unequal quantities of nutritive cations (NH4 ++Ca2++ Mg2++K++Na+) and anions (NO3 +Cl+SO4 2–+H2PO4 ) and charge balance is maintained by excretion of an amount of H+ or OH which is stoichiometrically equal to the respective excess cation or anion uptake. The mechanisms and processes by which H+ and in particular OH ions are excreted in response to unequal cation-anion uptake are, however, poorly understood.The contemporary view is that primary active extrusion of H+, catalyzed by a membrane-located ATPase, is the major driving force for secondary transport of cations and anions across the plasma membrane. However, the fact that net OH extrusion often occurs (since excess anion absorption commonly takes place) implies there is a yet-to-be characterized OH ion efflux mechanism at the plasma membrane that is associated with anion uptake. There is, therefore, a need for future studies of the uptake mechanisms and stoichiometry of anion uptake; particularly that of NO3 which is often the predominant anion absorbed. Another related phenonenon which requires detailed study in terms of cation-anion balance is localized rhizosphere acidification which can occur in response to deficiencies of Fe and P.  相似文献   

14.
The influence of NO3 uptake and reduction on ionic balance in barley seedlings (Hordeum vulgare, cv. Compana) was studied. KNO3 and KCl treatment solutions were used for comparison of cation and anion uptake. The rate of Cl uptake was more rapid than the rate of NO3 uptake during the first 2 to 4 hours of treatment. There was an acceleration in rate of NO3 uptake after 4 hours resulting in a sustained rate of NO3 uptake which exceeded the rate of Cl uptake. The initial (2 to 4 hours) rate of K+ uptake appeared to be independent of the rate of anion uptake. After 4 hours the rate of K+ uptake was greater with the KNO3 treatment than with the KCl treatment, and the solution pH, cell sap pH, and organic acid levels with KNO3 increased, relative to those with the KCl treatment. When absorption experiments were conducted in darkness, K+ uptake from KNO3 did not exceed K+ uptake from KCl. We suggest that the greater uptake and accumulation of K+ in NO3-treated plants resulted from (a) a more rapid, sustained uptake and transport of NO3 providing a mobile counteranion for K+ transport, and (b) the synthesis of organic acids in response to NO3 reduction increasing the capacity for K+ accumulation by providing a source of nondiffusible organic anions.  相似文献   

15.
The aim of the present investigation was to verify the effect of H2O2-induced oxidative stress on SO4= uptake through Band 3 protein, responsible for Cl-/HCO3- as well as for cell membrane deformability, due to its cross link with cytoskeletal proteins. The role of cytoplasmic proteins binding to Band 3 protein has been also considered by assaying H2O2 effects on hemoglobin-free resealed ghosts of erythrocytes. Oxidative conditions were induced by 30 min exposure of human erythrocytes to different H2O2 concentrations (10 to 300 μM), with or without GSH (glutathione, 2 mM) or curcumin (10 μM), compounds with proved antioxidant properties. Since SO4= influx through Band 3 protein is slower and better controllable than Cl- or HCO3- exchange, the rate constant for SO4= uptake was measured to prove anion transport efficiency, while MDA (malondialdehyde) levels and –SH groups were estimated to quantify the effect of oxidative stress. H2O2 induced a significant decrease in rate constant for SO4= uptake at both 100 and 300 μM H2O2. This reduction, observed in erythrocytes but not in resealed ghosts and associated to increase in neither MDA levels nor in –SH groups, was impaired by both curcumin and GSH, whereas only curcumin effectively restored H2O2-induced changes in erythrocytes shape. Our results show that: i) 30 min exposure to 300 μM H2O2 reduced SO4= uptake in human erythrocytes; ii) oxidative damage was revealed by the reduction in rate constant for SO4= uptake, but not by MDA or –SH groups levels; iii) the damage was produced via cytoplasmic components which cross link with Band 3 protein; iv) the natural antioxidant curcumin may be useful in protecting erythrocytes from oxidative injury; v) SO4= uptake through Band 3 protein may be reasonably suggested as a tool to monitor erythrocytes function under oxidative conditions possibly deriving from alcohol consumption, use of drugs, radiographic contrast media administration, hyperglicemia or neurodegenerative diseases.  相似文献   

16.
The effects of monovalent cations - inorganic alakali metal cations and organic quanternary ammonium cations - and monovalent inorganic anions on ADP-induced aggregation of bovine platelets were investigated. In the presence of K+, Rb+, Cs+, choline or tetramethylammonium, aggeregation proceeded. However, aggregation was markedly restricted in media containing Li+, Na+, tetrabutylammonium or dimethyldibenzylammonium. With anions, aggregation proceeded in the order Cl > Br > I > Clo4 > SCN. The effects of cations significantly depended on Ca2+ concentration, whereas those of the anions depended little of Ca2+. Anions such as SCN and ClO4 markedly decreased the fluorescence of the surface charge probe 2-p-tuluidinylnaphthalene-6-sulfonate, whereas cations had less pronouced effects. The relative effects of the anions on the fluorescence were consistent with their relative inhibitory effects on aggregation. These results suggest that inhibition of platelet aggregation by the anions is due to a change in the surface change of the platelet plasma membrane. On the other hand, kinetic analysis suggests that the effects of monovalent cations on platelet aggregation are due to their competition with Ca2+ during the process of aggregation.  相似文献   

17.
Plant and microbial use of nitrogen (N) can be simultaneously mutualistic and competitive, particularly in ecosystems dominated by mycorrhizal fungi. Our goal was to quantify plant uptake of organic and inorganic N across a broad latitudinal gradient of forest ecosystems that varied with respect to overstory taxon, edaphic characteristics, and dominant mycorrhizal association. Using 13C and 15N, we observed in situ the cycling dynamics of NH4 + and glycine through various soil pools and fine roots over 14 days. Recovery of 15N as soil N varied with respect to N form, forest type, and sampling period; however, there were similarities in the cycling dynamics of glycine and NH4 + among all forest types. Microbial immobilization of 15N was immediately apparent for both treatments and represented the largest sink (~25%) for 15N among extractable soil N pools during the first 24 h. In contrast, fine roots were a relatively small sink (<10%) for both N forms, but fine root 13C enrichment indicated that plants in all forest types absorbed glycine intact, suggesting that plants and microbes effectively target the same labile soil N pools. Relative uptake of amino acid-N versus NH4 + varied significantly among sites and approximately half of this variation was explained by mycorrhizal association. Estimates of plant uptake of amino acid-N relative to NH4 + were 3× higher in ectomycorrhizal-dominated stands (1.6 ± 0.2) than arbuscular mycorrhizae-dominated stands (0.5 ± 0.1). We conclude that free amino acids are an important component of the N economy in all stands studied; however, in these natural environments plant uptake of organic N relative to inorganic N is explained as much by mycorrhizal association as by the availability of N forms per se.  相似文献   

18.
镉是土壤环境中对土壤质量有着极其重要影响的污染物之一,低含量下就能对人体和动物产生危害.镉在土壤中的有效态既决定了它的生物有效性及对环境的危害程度,又是人们对受污染土壤进行治理和修复的基础.作为盐化土壤中的典型组分,无机盐不可避免对镉的有效态及生物有效性等地球化学行为产生明显影响.研究了碱性土壤盐化过程中无机盐阴离子对土壤中镉有效态和植物吸收镉影响.研究方法为:以钠盐为例,实验研究了碱性土壤盐化过程中无机盐阴离子对土壤中镉有效态的影响;通过油菜种植试验,分析了无机盐阴离子对土壤中镉生物有效性的影响.研究结果表明,土壤盐化过程中,土壤溶液中Cl-浓度较低时,土壤中镉的有效态含量随Cl-浓度增加而增大,但当土壤中Cl-/Cd的比值大于100∶1时,土壤中镉的有效态含量达到最大值.土壤溶液中SO42-含量对土壤中镉有效态含量的影响不明显;随着土壤溶液中HCO3-含量的增加,土壤中镉的有效态含量明显减少.由于Cl-、SO42-是土壤溶液中的主要成分,随着盐度的增加,镉的有效态含量增加.油菜种植试验显示,当土壤中Cl-的含量增加时,土壤中镉的有效态含量增加,有利于植物对镉的吸收,因此油菜中镉的含量随土壤中Cl-的含量增加而增加,但当土壤有效态含量超过2 mg/kg后,油菜吸收镉已经达到最大.随着土壤溶液中SO42-浓度的增加,油菜中镉含量基本不变;土壤溶液中HCO3-的含量增加,植物中镉的含量随土壤中HCO3-含量增加而减少.这些特征与土壤镉有效态变化相吻合.通过各种措施控制土壤盐度和调节阴离子类型和含量,有利于降低土壤中镉的有效态含量,减轻镉的活化;农业生产中适当调整无机肥料的种类,可以减少农作物对镉的吸收.  相似文献   

19.
Extracts of denitrifying bacteria grown anaerobically with phenol and nitrate catalyzed an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate. This exchange reaction is ascribed to a novel enzyme, phenol carboxylase, initiating the anaerobic degradation of phenol by para-carboxylation to 4-hydroxybenzoate. Some properties of this enzyme were determined by studying the isotope exchange reaction. Phenol carboxylase was rapidly inactivated by oxygen; strictly anoxic conditions were essential for preserving enzyme activity. The exchange reaction specifically was catalyzed with 4-hydroxybenzoate but not with other aromatic acids. Only the carboxyl group was exchanged; [U-14C]phenol was not exchanged with the aromatic ring of 4-hydroxybenzoate. Exchange activity depended on Mn2+ and inorganic phosphate and was not inhibited by avidin. Ortho-phosphate could not be substituted by organic phosphates nor by inorganic anions; arsenate had no effect. The pH optimum was between pH 6.5–7.0. The specific activity was 100 nmol 14CO2 exchange · min-1 · mg-1 protein. Phenol grown cells contained 4-hydroxybenzoyl CoA synthetase activity (40 nmol · min-1 · mg-1 protein). The possible role of phenol carboxylase and 4-hydroxybenzoyl CoA synthetase in anaerobic phenol metabolism is discussed.  相似文献   

20.
Seedling of Euphorbia lambii Svent. were grown in the dark, and the levels of organic acids in the endosperm were monitored during the 6–7 day period in which all the reserves were depleted. Glycolate, glyoxylate, succinate, fumarate and 2-oxoglutarate occurred in traces only, the citrate concentration remained rather constant (0.4 μmol endosperm?1), malate varied from 0.2 to 0.4 μmol endosperm?1, but malonate appeared to be the major organic acid in the endosperm ranging from 0.75 to 1.25 μmol endosperm?1. Radioactive malonate was easily taken up by the cotyledons of growing seedlings, and up to 11.2% of the label proceeded to the sterols, the triterpenes and triterpene esters in a 48 h incorporation period. No label from [14C]-malonate was built into the triacylglycerols in the seedling. Maximum uptake values of 0.6 μmol malonate seedling?1 day?1 were measured, and this value was not altered by a simultaneous uptake of sucrose. Conversely, the uptake of labeled sucrose and its subsequent conversion into sterols and (latex) triterpenes was not altered by a simultaneous uptake of low concentrations of malonate. Increased amounts (from 0.25 μmol malonate seedling?1 and up) caused a 75–90% reduction of both uptake and conversion of sucrose into neutral lipids. To maintain a daily uptake of 4 μmol of sucrose by the cotyledons (required to maintain seedling growth) the simultaneous in vivo uptake of malonate from the endosperm was supposed not to exceed 0.2 μmol seedling?1 day?1. Thin sections of the endosperm revealed the morphology of the process of reserve depletion. The occurrence of vacuoles 2 days after germination, coincided with the increase in the malonate level. The protein bodies first disappeared completely from the outer layers, whereas the triacylglycerols gradually disappeared from the entire endosperm. About 80% of the endosperm cells contained a large vacuole until the stage of complete depletion, probably serving as the major site of malonate storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号