首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MHC class I molecules devoid of peptide are expressed on the cell surface of the mouse mutant lymphoma cell line RMA-S upon culture at reduced temperature. Empty class I molecules are thermolabile at the cell surface and in detergent lysates, but can be stabilized by the addition of presentable peptide; peptide binding appears to be a rapid process. Furthermore, class I molecules on the surface of RMA-S (H-2b haplotype) cells cultured at 26 degrees C can efficiently and specifically bind iodinated peptide presented by H-2Kb. Binding of iodinated peptide is also observed at a lower level for nonmutant cells (RMA) cultured at 26 degrees C. These experiments underscore the role for peptide in maintenance of the structure of class I molecules and, more importantly, provide two assay systems to study the interactions of peptides with MHC class I molecules independent of the availability of T cells that recognize a particular peptide-MHC class I complex.  相似文献   

2.
This study investigates the differential capacity of TAP-deficient T2 cells, TAP-competent EBV cells, and immature and mature dendritic cells to present peptides to preformed CTL lines. It demonstrates that presentation of exogenous peptides involves peptide uptake and loading onto newly synthesized MHC class I molecules. This mechanism was best demonstrated for low affinity peptides in the presence of irrelevant peptides competing for HLA binding sites. Under these circumstances, inhibition of protein synthesis with cycloheximide or vesicular trafficking with brefeldin A significantly reduced the presentation of low affinity peptides. This was not restored by adding exogenous beta(2)-microglobulin to stabilize the MHC complex on the cell surface. In contrast, presentation of high affinity peptides was not sensitive to cycloheximide or brefeldin A, which suggests that different mechanisms may operate for presentation of high and low affinity peptides by TAP-competent cells. High affinity peptides can apparently compete with peptides in preloaded MHC class I molecules at the cell surface, whereas low affinity peptides require empty MHC molecules within cells. Accordingly, very high concentrations of exogenous low affinity peptides in conjunction with active MHC class I metabolism were required to allow successful presentation against a background of competing intracellular high affinity peptides in TAP-competent cells. These findings have implications for the design of peptide and protein-based vaccines.  相似文献   

3.
MHC class I molecules usually bind short peptides of 8-10 amino acids, and binding is dependent on allele-specific anchor residues. However, in a number of cellular systems, class I molecules have been found containing peptides longer than the canonical size. To understand the structural requirements for MHC binding of longer peptides, we used an in vitro class I MHC folding assay to examine peptide variants of the antigenic VSV 8 mer core peptide containing length extensions at either their N or C terminus. This approach allowed us to determine the ability of each peptide to productively form Kb/beta2-microglobulin/peptide complexes. We found that H-2Kb molecules can accommodate extended peptides, but only if the extension occurs at the C-terminal peptide end, and that hydrophobic flanking regions are preferred. Peptides extended at their N terminus did not promote productive formation of the trimolecular complex. A structural basis for such findings comes from molecular modeling of a H-2Kb/12 mer complex and comparative analysis of MHC class I structures. These analyses revealed that structural constraints in the A pocket of the class I peptide binding groove hinder the binding of N-terminal-extended peptides, whereas structural features at the C-terminal peptide residue pocket allow C-terminal peptide extensions to reach out of the cleft. These findings broaden our understanding of the inherent peptide binding and epitope selection criteria of the MHC class I molecule. Core peptides extended at their N terminus cannot bind, but peptide extensions at the C terminus are tolerated.  相似文献   

4.
The B-subunit component of Escherichia coli heat-labile enterotoxin (EtxB), which binds to cell surface GM1 ganglioside receptors, was recently shown to be a highly effective vehicle for delivery of conjugated peptides into the major histocompatibility complex (MHC) class I pathway. In this study we have investigated the pathway of epitope delivery. The peptides used contained the epitope either located at the C terminus or with a C-terminal extension. Pretreatment of cells with cholesterol-disrupting agents blocked transport of EtxB conjugates to the Golgi/endoplasmic reticulum, but did not affect EtxB-mediated MHC class I presentation. Under these conditions, EtxB conjugates entered EEA1-positive early endosomes where peptides were cleaved and translocated into the cytosol. Endosome acidification was required for epitope presentation. Purified 20 S immunoproteasomes were able to generate the epitope from peptides in vitro, but 26 S proteasomes were not. Only presentation from the C-terminal extended peptide was proteasome-dependent in cells, and this was found to be significantly slower than presentation from peptides with the epitope at the C terminus. These results implicate the proteasome in the generation of the correct C terminus of the epitope and are consistent with proteasome-independent N-terminal trimming. Epitope presentation was blocked in a TAP-deficient cell line, providing further evidence that conjugated peptides enter the cytosol as well as demonstrating a requirement for the peptide transporter. Our findings demonstrate the utility of EtxB-mediated peptide delivery for rapid and efficient loading of MHC class I epitopes in several different cell types. Conjugated peptides are released from early endosomes into the cytosol where they gain access to proteasomes and TAP in the "classical" pathway of class I presentation.  相似文献   

5.
Major histocompatibility complex (MHC) class I molecules present antigenic peptides to CD8 T cells. The peptides are generated in the cytosol, then translocated across the membrane of the endoplasmic reticulum by the transporter associated with antigen processing (TAP). TAP is a trimeric complex consisting of TAP1, TAP2, and tapasin (TAP-A) as indicated for human cells by reciprocal coprecipitation with anti-TAP1/2 and anti-tapasin antibodies, respectively. TAP1 and TAP2 are required for the peptide transport. Tapasin is involved in the association of class I with TAP and in the assembly of class I with peptide. The mechanisms of tapasin function are still unknown. Moreover, there has been no evidence for a murine tapasin analogue, which has led to the suggestion that murine MHC class I binds directly to TAP1/2. In this study, we have cloned the mouse analogue of tapasin. The predicted amino acid sequence showed 78% identity to human tapasin with identical consensus sequences of signal peptide, N-linked glycosylation site, transmembrane domain and double lysine motif. However, there was less homology (47%) found at the predicted cytosolic domain, and in addition, mouse tapasin is 14 amino acids longer than the human analogue at the C terminus. This part of the molecule may determine the species specificity for interaction with MHC class I or TAP1/2. Like human tapasin, mouse tapasin binds both to TAP1/2 and MHC class I. In TAP2-mutated RMA-S cells, both TAP1 and MHC class I were coprecipitated by anti-tapasin antiserum indicative of association of tapasin with TAP1 but not TAP2. With crosslinker-modified peptides and purified microsomes, anti-tapasin coprecipitated both peptide-bound MHC class I and TAP1/2. In contrast, anti-calreticulin only coprecipitated peptide-free MHC class I molecules. This difference in association with peptide-loaded class I suggests that tapasin functions later than calreticulin during MHC class I assembly, and controls peptide loading onto MHC class I molecules in the endoplasmic reticulum.  相似文献   

6.
The transporters associated with antigen processing (TAP) allow the supply of peptides derived from the cytosol to translocate to the endoplasmic reticulum, where they complex with nascent human leukocyte antigen (HLA) class I molecules. However, infected and tumor cells with TAP molecules blocked or individuals with nonfunctional TAP complexes are able to present HLA class I ligands generated by TAP-independent processing pathways. These peptides are detected by the CD8(+) lymphocyte cellular response. Here, the generation of the overall peptide repertoire associated with four different HLA class I molecules in TAP-deficient cells was studied. Using different protease inhibitors, four different proteolytic specificities were identified. These data demonstrate the different allele-dependent complex processing pathways involved in the generation of the HLA class I peptide repertoire in TAP-deficient cells.  相似文献   

7.
Presentation of antigen-derived peptides by major histocompatibility complex (MHC) class I molecules is dependent on an endoplasmic reticulum (ER) resident glycoprotein, tapasin, which mediates their interaction with the transporter associated with antigen processing (TAP). Independently of TAP, tapasin was required for the presentation of peptides targeted to the ER by signal sequences in MHC class I-transfected insect cells. Tapasin increased MHC class I peptide loading by retaining empty but not peptide-containing MHC class I molecules in the ER. Upon co-expression of TAP, this retention/release function of tapasin was sufficient to reconstitute MHC class I antigen presentation in insect cells, thus defining the minimal non-housekeeping functions required for MHC class I antigen presentation.  相似文献   

8.
MHC class Ia H chains and beta 2-microglobulin assemble with appropriate peptides to form stable cell surface molecules that serve as targets for Ag-specific CTL. The structural similarities of class Ia and the less polymorphic Q/T/M (class Ib) molecules suggest that class Ib molecules also play a role in antigen presentation, although the origin of the peptides they present remains mostly unclear. The cell line RMA-S has a defect in class I Ag presentation, presumably due to a mutation in a peptide transporter gene. This defect can be overcome by transfection of RMA-S cells with the Tap-2 gene (formerly Ham-2) that encodes an ATP-binding transporter protein. We now show that a substantial portion of alloreactive CTL specific for Qa-1 class Ib molecules recognize Qa-1b on RMA-S cells and thus differ from most class Ia specific CTL. Those anti-Qa-1b CTL that do not recognize untransfected RMA-S do lyse RMA-S transfected with Tap-2. We also examine the effects of Qdm, a gene that maps to the D region and alters recognition of Qa-1. Qdm(k) strains lack an epitope(s) recognized by some (Qdm dependent) anti-Qa-1 CTL whereas Qdm+ strains express this epitope. Thus, Qdm-dependent CTL do not recognize Qa-1 on Qdm(k) targets whereas Qdm-independent CTL recognize Qa-1 epitopes in all strains. Although Qdm-independent CTL varied as to whether they recognized RMA-S vs RMA, all nine Qdm-dependent clones only recognized Qa-1b on RMA and not RMA-S. This result is consistent with Qdm encoding a peptide dependent upon the TAP transporter for cell membrane expression.  相似文献   

9.
MHC class I molecules display peptides selected from a poorly characterized pool of peptides available in the endoplasmic reticulum. We analyzed the diversity of peptides available to MHC class I molecules by monitoring the generation of an OVA-derived octapeptide, OVA257-264 (SL8), and its C-terminally extended analog, SL8-I. The poorly antigenic SL8-I could be detected in cell extracts only after its conversion to the readily detectable SL8 with carboxypeptidase Y. Analysis of extracts from cells expressing the minimal precursor Met-SL8-I by this method revealed the presence of SL8/Kb and the extended SL8-I/Kb complexes, indicating that the peptide pool contained both peptides. In contrast, cells expressing full length OVA generated only the SL8/Kb complex, demonstrating that the peptide pool generated from the full length precursor contained only a subset of potential MHC-binding peptides. Deletion analysis revealed that SL8-I was generated only from precursors lacking additional C-terminal flanking residues, suggesting that the generation of the C terminus of the SL8 peptide involves a specific endopeptidase cleavage. To investigate the protease responsible for this cleavage, we tested the effect of different protease inhibitors on the generation of the SL8 and SL8-I peptides. Only the proteasome inhibitors blocked generation of SL8, but not SL8-I. These findings demonstrate that the specificities of the proteases in the Ag-processing pathway, which include but are not limited to the proteasome, limit the diversity of peptides available for binding by MHC class I molecules in the endoplasmic reticulum.  相似文献   

10.
This report describes the effects of NH4Cl, CH3NH2, and chloroquine on class I and II MHC-restricted Ag presentation. OVA-specific T-T hybridomas were used to detect processed OVA in association with class I, H-2Kb, and class II, I-Ad/b, molecules on a B lymphoblastoid APC. OVA, internalized by APC under hypertonic conditions, was presented in association with class I and II MHC molecules. Treating the APC with NH4Cl or CH3NH2 inhibited class I- and II-restricted Ag presentation. In contrast, chloroquine markedly inhibited class II, but not class I-restricted Ag presentation. Controls indicated that drug-treated APC were fully competent to interact with T cells and present processing-independent antigenic peptides in association with both class I and II MHC molecules. NH4Cl and CH3NH2 did not inhibit the uptake of radiolabeled Ag by the APC. After the proteolytic removal of H-2Kb from the surface of APC, NH4Cl and CH3NH2-treated and control APC regenerated identical amounts of surface H-2Kb and this regeneration required de novo protein synthesis. These latter results indicate that NH4Cl and CH3NH2 can inhibit Ag presentation without affecting the synthesis, transport, or surface expression of H-2Kb. Also, NH4Cl did not affect the transport of H-2Db to the surface of mutant RMA-S cells that were cultured with exogenous peptides. Taken together these results strongly suggest that NH4Cl and CH3NH2 but not chloroquine can inhibit a critical and early intracellular step in class I-restricted Ag presentation while simultaneously inhibiting class II-restricted Ag presentation.  相似文献   

11.
It is generally accepted that as the result of positive thymic selection, CD8-expressing T cells recognize peptide antigens presented in the context of MHC class I molecules and CD4-expressing T cells interact with peptide antigens presented by MHC class II molecules. Here we report the generation of TCRalpha/beta(+), CD3(+), CD4(+), CD8(-), MHC class I-restricted alloreactive T-cell clones which were induced using peripheral blood mononuclear cells from healthy individuals following in vitro stimulation with transporter associated with antigen processing (TAP)-deficient cell lines T2. The CD4(+) T-cell clones showed an HLA-A2.1-specific proliferative response against T2 cells which was inhibited by anti-CD3 and anti-CD4 monoclonal antibodies. These results suggest that interaction of the TCR with peptide-bound HLA class I molecules contributes to antigen-specific activation of these co-receptor-mismatched T-cell clones. Antigen recognition by alloreactive MHC class I-restricted CD4(+) T cells was inhibited by removing peptides bound to HLA molecules on T2 cells suggesting that the alloreactive CD4(+) T cells recognize peptides that bind in a TAP-independent manner to HLA-A2 molecules. The existence of such MHC class I-restricted CD4(+) T cells which can recognize HLA-A2 molecules in the absence of TAP function may provide a basis for the development of immunotherapy against TAP-deficient tumor variants which would be tolerant to immunosurveillance by conventional MHC class I-restricted cytotoxic lymphocytes.  相似文献   

12.
The mutant murine lymphoma cell line RMA-S is unable to present endogenous antigens due to its inability to efficiently assemble class I major histocompatibility complex molecules and antigenic peptides. Therefore, it has been suggested that RMA-S cells are defective either in peptide generation or in peptide transport into the endoplasmic reticulum, where class I major histocompatibility complex molecule assembly is believed to occur. As proteasomes and the putative peptide transporters HAM1 and HAM2 have been implicated in class I antigen processing, we have investigated their expression in RMA-S and its wild-type counterpart RMA. Both proteasomes and HAM1 proteins are expressed at similar levels and show identical subcellular distributions in the two cell lines. However, only one copy of the HAM2 gene is present in RMA-S cells, and it contains a point mutation that leads to a premature stop codon. Thus, the HAM2 protein is absent from RMA-S cells. These data demonstrate that HAM2 is essential for peptide loading onto class I molecules.  相似文献   

13.
Using a direct binding assay based on photoaffinity labeling, we have studied the interaction of antigenic peptides with murine MHC class I molecules on living cells. Photoreactive derivatives were prepared by N-terminal amidation with iodo, 4-azido salicylic acid of the Kd restricted Plasmodium berghei circumsporozoite (P.b. CS) peptide 253-260 (YIPSAEKI) and the Db-restricted Adenovirus 5 early region 1A (Ad5 E1A) peptide 234-243 (SGPSNTPPEI). As assessed in functional competition experiments, both peptide derivatives retained the specific binding activity of the parental peptides for Kd or Dd, respectively. The P.b. CS photoprobe specifically labeled Kd molecules on P815 (H-2d) cells, but failed to label RMA (H-2b) cells. Conversely, the Ad5 E1A photoprobe specifically labeled Db molecules on RMA cells, but failed to label P815 cells. When the two photoprobes were tested on a panel of Con A-activated spleen cells expressing 10 different H-2 haplotypes, significant photoaffinity labeling was observed only on H-2d cells with the P.b. CS photoprobe and on H-2b cells with the Ad5 E1A photoprobe. Labeling of cell-associated Kd or Db molecules with the photoprobes was specifically inhibited by antigenic peptides known to be presented by the same class I molecule. Photoaffinity labeling of Kd with the P.b. CS photoprobe was used to study the dynamics of peptide binding on living P815 cells. Binding increased steadily with the incubation period (up to 8 h) at 37 degrees C and at ambient temperature, but was greatly reduced (greater than 95%) at 0 to 4 degrees C or in the presence of ATP synthesis inhibitors. The magnitude of the labeling was twofold higher at room temperature than at 37 degrees C. In contrast, binding to isolated Kd molecules in solution rapidly reached maximal binding, particularly at 37 degrees C. Dissociation of the photoprobe from either cell-associated or soluble Kd molecules was similar, with a half time of approximately 1 h at 37 degrees C, whereas the complexes were long-lived at 4 degrees C in both instances.  相似文献   

14.
To identify epitopes recognized by alloreactive CTL we have examined H-2Kb-specific CTL for their recognition of synthetic peptides with sequences derived from the native Kb class I molecule. Consecutive nested peptides spanning the immunogenic alpha 1 and alpha 2 domains of Kb were tested for their capacity to inhibit CTL clones in their recognition of cells expressing the native Kb molecule. Inhibition by these peptides was found to be an extremely rare event. One peptide (Kb.111-122) did inhibit recognition by one particular CTL clone, clone 13. Upon further investigation it was observed that clone 13 also recognized peptide Kb.111-122 when presented in the context of the syngeneic MHC molecule, Kd. Considering that residues 111 to 122 are located at the base of the antigen groove, and clone 13 is able to recognize Kb.111-122 when presented by syngeneic target cells, we suggest that inhibition of this CTL clone may be due to MHC restricted, self-presentation of peptide rather than to direct binding of free peptide to the TCR. Taken together, these results suggest inhibition of allospecific CTL by MHC peptides is a rare event at least for Kb recognition. Furthermore, they demonstrate the need for caution when interpreting inhibition by peptide as evidence for recognition by the TCR of the corresponding region on the native molecule.  相似文献   

15.
Assembly of MHC class I molecules analyzed in vitro   总被引:35,自引:0,他引:35  
A Townsend  T Elliott  V Cerundolo  L Foster  B Barber  A Tse 《Cell》1990,62(2):285-295
Recent evidence suggests that peptide ligands take part in the assembly of class I molecules in living cells. We now describe a simple system for studying class I assembly in vitro. Detergent extracts of the mutant cells RMA-S and .174, in which class I assembly does not occur spontaneously, will support assembly in vitro when specific peptides are added. Peptides stabilize a conformational change in the class I heavy chain and association with beta 2-microglobulin, at concentrations approximately 100-fold lower than required in "peptide feeding" experiments with whole cells. We show that peptides bind class I molecules during assembly and demonstrate that the conformational change induced in the heavy chain is influenced by the concentrations of both peptide and beta 2-microglobulin.  相似文献   

16.
MHC class I molecules assemble with peptides in the endoplasmic reticulum (ER). To ensure that only peptide-loaded MHC molecules leave the ER, empty molecules are retained by ER-resident chaperones, most notably the MHC-specific tapasin. ER exit of class I MHC is also controlled by viruses, but for the opposite purpose of preventing peptide presentation to T cells. Interestingly, some viral proteins are able to retain MHC class I molecules in the ER despite being transported. By contrast, other viral proteins exit the ER only upon binding to class I MHC, thereby rerouting newly synthesized class I molecules to intracellular sites of proteolysis. Thus, immune escape can be achieved by reversing, inhibiting or redirecting the chaperone-assisted MHC class I folding, assembly and intracellular transport.  相似文献   

17.
Within the adaptive immune system the transporter associated with antigen processing (TAP) plays a pivotal role in loading of peptides onto major histocompatibility (MHC) class I molecules. As a central tool to investigate the structure and function of the TAP complex, we created cysteine-less human TAP subunits by de novo gene synthesis, replacing all 19 cysteines in TAP1 and TAP2. After expression in TAP-deficient human fibroblasts, cysteine-less TAP1 and TAP2 are functional with respect to adenosine triphosphate (ATP)-dependent peptide transport and inhibition by ICP47 from herpes simplex virus. Cysteine-less TAP1 and TAP2 restore maturation and intracellular trafficking of MHC class I molecules to the cell surface.  相似文献   

18.
Level and persistence of antigenic peptides presented by APCs on MHC class I (MHC-I) molecules influence the magnitude and quality of the ensuing CTL response. We recently demonstrated the unique immunological properties conferred on APCs by expressing beta2-microglobulin (beta2m) as an integral membrane protein. In this study, we explored membrane-anchored beta2m as a platform for cancer vaccines using as a model MO5, an OVA-expressing mouse B16 melanoma. We expressed in mouse RMA-S cells two H-2Kb binding peptides from MO5, OVA257-264, and TRP-2181-188, each genetically fused with the N terminus of membranal beta2m via a short linker. Specific Ab staining and T cell hybridoma activation confirmed that OVA257-264 was properly situated in the MHC-I binding groove. In vivo, transfectants expressing both peptides elicited stronger CTLs and conferred better protection against MO5 than peptide-saturated RMA-S cells. Cells expressing OVA257-264/beta2m were significantly superior to OVA257-264-charged cells in their ability to inhibit the growth of pre-established MO5 tumors. Our results highlight the immunotherapeutic potential of membranal beta2m as a universal scaffold for optimizing Ag presentation by MHC-I molecules.  相似文献   

19.
In this study we demonstrate that a disarmed version of the cytotoxin ricin can deliver exogenous CD8(+) T cell epitopes into the MHC class I-restricted pathway by a TAP-independent, signal peptidase-dependent pathway. Defined viral peptide epitopes genetically fused to the N terminus of an attenuated ricin A subunit (RTA) that was reassociated with its partner B subunit were able to reach the early secretory pathway of sensitive cells, including TAP-deficient cells. Successful processing and presentation by MHC class I proteins was not dependent on proteasome activity or on recycling of MHC class I proteins, but rather on a functional secretory pathway. Our results demonstrated a role for signal peptidase in the generation of peptide epitopes associated at the amino terminus of RTA. We showed, first, that potential signal peptide cleavage sites located toward the N terminus of RTA can be posttranslationally cleaved by signal peptidase and, second, that mutation of one of these sites led to a loss of peptide presentation. These results identify a novel MHC class I presentation pathway that exploits the ability of toxins to reach the lumen of the endoplasmic reticulum by retrograde transport, and suggest a role for endoplasmic reticulum signal peptidase in the processing and presentation of MHC class I peptides. Because TAP-negative cells can be sensitized for CTL killing following retrograde transport of toxin-linked peptides, application of these results has direct implications for the development of novel vaccination strategies.  相似文献   

20.
Tapasin plays an important role in the quality control of major histocompatibility complex (MHC) class I assembly, but its precise function in this process remains controversial. Whether tapasin participates in the assembly of HLA-G has not been studied. HLA-G, an MHC class Ib molecule that binds a more restricted set of peptides than class Ia molecules, is a particularly interesting molecule, because during assembly, it recycles between the endoplasmic reticulum (ER) and the cis-Golgi until it is loaded with a high affinity peptide. We have taken advantage of this unusual trafficking property of HLA-G and its requirement for high affinity peptides to demonstrate that a critical function of tapasin is to transform class I molecules into a high affinity, peptide-receptive form. In the absence of tapasin, HLA-G molecules cannot bind high affinity peptides, and an abundant supply of peptides cannot overcome the tapasin requirement for high affinity peptide loading. The addition of tapasin renders HLA-G molecules capable of loading high affinity peptides and of transporting to the surface, suggesting that tapasin is a prerequisite for the binding of high-affinity ligands. Interestingly, the "tapasin-dependent" HLA-G molecules are not empty in the absence of tapasin but are in fact associated with suboptimal peptides and continue to recycle between the ER and the cis-Golgi. Together with the finding that empty HLA-G heterodimers are strictly retained in the ER and degraded, our data suggest that MHC class I molecules bind any available peptides to avoid ER-mediated degradation and that the peptides are in turn replaced by higher affinity peptides with the aid of tapasin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号