首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Dienococcus radiodurans is notoriously resistant to far-ultraviolet radiation (FUV; 254 nm), it is highly sensitive to near-ultraviolet radiation (NUV; 300-400 nm), thus demonstrating that the mechanisms of damage (and/or recovery) by the two types of irradiation are different. This observed difference between FUV and NUV effects in D. radiodurans agrees with previous studies with Escherichia coli. Near-ultraviolet radiation produces DNA damage which is presumed to be single-strand breaks (SSB) in the DNA of D. radiodurans. Unique lesions, such as DNA-protein crosslinks could not be demonstrated in this study. Cells that were pre-irradiated with a small dose of NUV were subsequently protected against inactivating doses of NUV. The data presented are consistent with induced DNA repair following NUV damage in D. radiodurans; this is in contrast to FUV damage where DNA repair is constitutive but not induced.  相似文献   

2.
Cell killing and mutation induction in the lacI gene of Escherichia coli by cis-Pt(NH3)2Cl2 were studied in cells with different repair capacities, with and without pKM101. The presence of the plasmid pKM101 made repair-proficient cells more susceptible to killing by cis-Pt(NH3)2Cl2 and strongly enhanced mutation induction by that compound. Both effects were shown to be dependent upon excision repair. Characterization of the induced mutations in the lacI gene after cis-Pt(NH3)2Cl2 treatment of E. coli cells, by the LacI system, revealed that the mutagenic specificity of the Pt compound was strongly influenced by the presence of the pKM101 plasmid. With pKM101, 23% of the induced amber and ochre mutations resulted from substitutions at AT base pairs, whereas these mutations were hardly induced in cells without pKM101. These results suggest that pKM101-induced repair differs from normal SOS repair.  相似文献   

3.
In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid pKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions.  相似文献   

4.
The dependence of expression of PABA antimutagenic action in bacterial cells on the character of genetic control of the mutagenic process was studied. PABA antimutagenic activity was largely connected with the negative control of SOS repair which is controlled by bacterial cell genes, but not by pKM101 plasmid genes. These results are in agreement with the idea that the systems of repair and mutagenesis specified by cell genome and plasmids are not identical.  相似文献   

5.
Near-UV (NUV) (300 to 400 nm) and far-UV (FUV) (254 nm) radiations damage bacteriophage by different mechanisms. Host cell reactivation, Weigle reactivation, and multiplicity reactivation were observed upon FUV, but not upon NUV irradiation. Also, the number of his+ recombinants increased with P22 bacteriophage transduction in Salmonella typhimurium after FUV, but not after NUV irradiation. This loss of reactivation and recombination after NUV irradiation was not necessarily due to host incapability to repair phage damage. Instead, the phage genome failed to enter the host cell after NUV irradiation. In the case of NUV-irradiated T7 phage, this was determined by genetic crosses with amber mutants, which demonstrated that either "all" or "none" of a T7 genome entered the Escherichia coli cell after NUV treatment. Further studies with radioactively labeled phage indicated that irradiated phage failed to adsorb to host cells. This damage by NUV was compared with the protein-DNA cross-link observed previously, when phage particles were irradiated with NUV in the presence of H2O2. H2O2 (in nonlethal concentration) acts synergistically with NUV so that equivalent phage inactivation is achieved by much lower irradiation doses.  相似文献   

6.
Introduction of the R-factor plasmid pKM101 increased resistance to UV-killing in uvr lexA(Ind-) recA+ strains of E. coli K12 as well as B, while their UV mutability was not affected. Similar effects were also observed in those strains when the 18-B plasmid (a pBR322 derivative carrying the region (about 5 kb) of the 35.4 kb pKM101 plasmid) was introduced. The muc genes which are considered to be involved in error-prone repair are contained in 18-B. These results suggest the possibility that the pKM101 effect requires the host recA gene and a common genetic region, including the muc genes, in both plasmids and is associated with some unmutable repair systems.  相似文献   

7.
In strains of Escherichia coli deficient in excision repair (uvrA or uvrB), plasmid pKM101 muc+ but not pGW219 mucB::Tn5 enhanced resistance to angelicin monoadducts but reduced resistance to 8-methoxy-psoralen interstrand DNA crosslinks. Thermally induced recA-441 (= tif-1) bacteria showed an additional resistance to crosslinks that was blocked by pKM101. Plasmid-borne muc+ genes also conferred some additional sensitivity to gamma-radiation and it is suggested that a repair step susceptible to inhibition by muc+ gene products and possibly involving double-strand breaks may be involved after both ionizing radiation damage and psoralen crosslinks.  相似文献   

8.
The muc genes of pKM101 are induced by DNA damage   总被引:20,自引:11,他引:9       下载免费PDF全文
A gene fusion was constructed in vitro that resulted in the synthesis of a hybrid protein consisting of the amino-terminal segment of the MucB protein of the mutagenesis-enhancing plasmid pKM101 joined to an enzymatically active carboxy-terminal segment of the beta-galactosidase protein. In strains bearing this fusion, beta-galactosidase activity was induced by UV radiation and other DNA-damaging agents. A genetic analysis of the regulation of expression of the phi (mucB'-lacZ') fusion was consistent with the LexA protein acting as the direct repressor of the mucB gene. Examination of the expression of the mucA and phi (mucB'-lacZ') gene products in maxicells in the presence and absence of a high-copy-number plasmid carrying the lexA+ gene demonstrated that lexA regulated both the mucA and mucB genes, thus supporting our conclusion that the two genes are organized in an operon with the mucA gene transcribed first. An analysis of the effects of the recA430(lexB30) mutation on muc expression led to the discovery of the differential ability of the recA430 gene product to induce expression of a dinB::Mu d1(Ap lac) fusion located on the chromosome and the same phi (dinB'-lacZ+) fusion cloned into plasmid pBR322. Models to account for the role of the recA430 allele on the expression of damage-inducible genes and on mutagenesis are discussed.  相似文献   

9.
In the three (parent-daughter) pairs of Ames Salmonella tester strains TA1535-TA100, TA1537-TA2637, and TA1538-TA98 in which the daughter strains carry the pKM101 plasmid but the parent strains do not, the pKM101 plasmid uniformly confers resistance of the host to uv radiation which indicates that the muc genes of the plasmid are present and function correctly in all three daughter strains. This uniform protection against killing by uv contrasts with the lethality responses of the same parent-daughter pairs to ionizing radiation (ir) where pKM101 again confers lethality protection to TA100 and TA2637 but sensitizes TA98 toward the lethal effects of ir. From these results we conclude that the pathways for error-prone repair of lethal lesions induced by uv and by ionizing radiation are not the same and that the muc genes of the plasmid alone are not sufficient to carry out error-prone repair of lethal lesions induced by ionizing radiation. We infer that a segment of plasmid DNA that is present in TA100 and TA2637 and is required to repair potentially lethal damage induced by ir is deleted in TA98.  相似文献   

10.
Most mutagenesis by UV and many chemicals in Escherichia coli requires the products of the umuDC operon or an analogous plasmid-derived operon mucAB. Activated RecA protein is also required for, or enhances, this process. MucA and UmuD proteins share homology with the LexA protein, suggesting that they might interact with the RecA protein as LexA does. We used oligonucleotide-directed mutagenesis to alter a site in MucA homologous to the Ala-Gly cleavage site of LexA. The mutation, termed mucA101(Glu26), results in a change of Gly26 of MucA to Glu26. A lexA(Def) recA441 umuC122::Tn5 strain carrying a mucA101(Glu26)B+ plasmid did not exhibit the greatly increased frequency of spontaneous mutagenesis in response to RecA activation that a strain carrying a mucA+B+ plasmid did but retained a basal recA-dependent ability to confer increased spontaneous mutagenesis that was independent of the state of RecA activation. These results are consistent with a model in which RecA plays two distinct roles in mutagenesis apart from its role in the cleavage of LexA. A pBR322-derived plasmid carrying mucA+B+, but not one carrying mucA101(Glu26)B+, inhibited the UV induction of SOS genes, suggesting that MucA+ and MucA(Glu26) proteins may have different abilities to compete with LexA for activated RecA protein. The spectrum of UV-induced mutagenesis was also altered in strains carrying the mucA101(Glu26) mutation. These results are consistent with the hypothesis that activated RecA protein interacts with wild-type MucA protein, possibly promoting proteolytic cleavage, and that this interaction is responsible for facilitating certain mutagenic processes.  相似文献   

11.
The antitumour drug nitracrine [1-nitro-9-(dimethylaminopropylamino)acridine], known to be a potent frameshift mutagen in strains of Salmonella typhimurium, also strongly reverts the lacZ19124 frameshift marker in Escherichia coli. The results in E. coli indicate that nitracrine causes DNA damage which can be excised by the UvrA,B,C excinuclease, can generate mutations by a recA-dependent mechanism, and gives enhanced yields of mutants when plasmid pKM101 is present. Despite these observations, mutagenesis by nitracrine appears to be independent of the UmuC gene product, and hence nitracrine differs from most (but not all) other chemicals which generate mutations via the SOS response. Given that umuC mutants are about as mutable by nitracine as the wild-type parent strain, it is somewhat surprising that plasmid pKM101 causes an enhancement of nitracrine mutagenesis. Nevertheless, we have found that the observed enhancement of mutagenesis by pKM101 is a function of the mucB gene, normally assumed to be essentially homologous to the umuC gene.  相似文献   

12.
2 strains of S. typhimurium, TA98 and TA100, and 2 strains of E. coli, WP2(pKM101) and WP2uvrA-(pKM101) were used to study mutagenesis by 8-methoxypsoralen (8-MOP) and 4,5',8-trimethylpsoralen (4,5',8-TMP) in the dark and in the presence of near-ultraviolet (NUV) light both without metabolic activation and with rat-liver S9 at 3 levels (4, 10 and 30% in standard cofactors). The S9-independent base substitution mutagenic activity of 8-MOP plus NUV light was confirmed in WP2(pKM101), and a similar activity was seen for 4,5',8-TMP, although neither substance was active in TA100. The frameshift mutagenic activity of 8-MOP in the dark in TA98 was not confirmed despite histidine levels which would ensure DNA replication, but this may be due to the lower concentrations of 8-MOP achieved in the common solvent system adopted. Both 8-MOP and 4,5',8-TMP were mutagenic in WP2uvrA-(pKM101) after microsomal activation, and the responses were similar whether experiments were conducted in the dark or in NUV light. In view of the oral administration of 8-MOP to psoriasis patients, this finding may be of relevance in risk assessment, and tends to suggest that topical application of 4,5',8-TMP to psoriatic patients may present reduced risk of malignant disease.  相似文献   

13.
The presence of plasmid pKM101 in Escherichia coli cells results in a slight increase in their sensitivity of lethal effect of formaldehyde. Plasmid ability to sensitize bacterial cells to formaldehyde inactivation is controlled by some chromosomal (uvrE, uvrA, recA) and plasmid-borne (mucAB) genes and depends on SOS-DNA repair activity. Plasmid pKM101 is capable of decreasing the level of repair reliability of DNA damaged by formaldehyde thus causing increased bacterial sensitivity to this agent.  相似文献   

14.
The effect of plasmid pKM101 on the survival of Escherichia coli AB1157, growing in minimal medium, in the presence of a 4-quinolone DNA gyrase inhibitor was investigated. The presence of this plasmid decreased susceptibility to the quinolone ciprofloxacin, whereas mucAB genes present in a multicopy plasmid did not. The same effect of pKM101 was detected in a recA430 mutant, confirming that it was not really related to the SOS response. In contrast, when survival assays were performed under amino acid starvation conditions, pKM101 did not confer protection against ciprofloxacin. All of these results indicated that the synthesis of a product(s), different from MucAB, which was encoded by the plasmid pKM101 increased the rate of survival of the AB1157 strain in the presence of quinolone. To identify the gene(s) responsible for this phenotype, several plasmid derivatives carrying different portions of pKM101 were constructed. The 2.2-kb region containing korB, traL, korA, and traM genes was sufficient to decrease susceptibility to quinolone. This plasmidic fragment also made the AB1157 host strain grow more slowly (the Slo phenotype). Moreover, the suppression of the Slo phenotype by addition of adenine to the cultures abolished the decreased susceptibility to quinolone. These results are evidence that the protection against quinolone conferred by this region of pKM101 in strain AB1157 is a direct consequence of the slow growth rate.  相似文献   

15.
We examined the effects of host mutations affecting "SOS"-mediated UV light reactivation on the survival of bacteriophage T7 damaged by UV light or methyl methanesulfonate (MMS). Survival of T7 alkylated with MMS was not affected by the presence of plasmid pKM101 or by a umuC mutation in the host. The survival of UV light-irradiated T7 was similar in umuC+ and umuC strains but was slightly enhanced by the presence of pKM101. When phage survival was determined on host cells preirradiated with a single inducing dose of UV light, these same strains permitted higher survival than that seen with noninduced cells for both UV light- and MMS-damaged phage. The extent of T7 reactivation was approximately proportional to the UV light inducing dose inflicted upon each bacterial strain and was dependent upon phage DNA damage. Enhanced survival of T7 after exposure to UV light or MMS was also observed after thermal induction of a dnaB mutant. Thus, lethal lesions introduced by UV light or MMS are apparently repaired more efficiently when host cells are induced for the SOS cascade, and this inducible reactivation of T7 is umuC+ independent.  相似文献   

16.
A system has been developed for the analysis of basepair substitutions that are involved in the reversion of a specific missense mutation. The method is based on the ability of restriction enzymes to recognize and cut specific DNA sequences. Wild-type revertants arising from AT----GC transitions, pseudo wild-type revertants arising from AT-transversions and second site revertants can be distinguished. 4 mutagenic agents have been used, 2,6-diaminopurine, MMS, EMS and ENU, which differ in the types of damage they cause in DNA and in the susceptibility of the damage to repair. All 4 mutagens effectively enhanced the reversion of the mutation studied, trpA223, particularly by increasing the fraction of AT----GC transitions. In this system the influence of the muc genes of plasmid pKM101 was investigated. The presence of these genes reduced the fraction of AT----GC transitions and enhanced the fraction of AT-transversions as well as the fraction of second-site mutations. This change in mutation specificity is found irrespective whether mutation induction occurs mainly via SOS repair (MMS, ENU) or via mainly misreplication (2,6-diAP, EMS). These data suggest that the muc genes are involved in the induction of mutations not only during SOS repair, but also during misreplication. The change in mutation specificity may be caused by a change in the selection and insertion of nucleotides by the DNA-polymerising complex, or by interference with the repair of mismatched bases.  相似文献   

17.
We have studied the effects of different repair capacities on reversion of two Escherichia coli strains (lacZ19124 and lacZ19136) by 9-aminoacridine (9AA) and the acridine half-mustard ICR191. Introduction of a uvrB mutation into these strains led to enhanced ICR191-induced reversion of lacZ19136 and reduced ICR191-induced reversion of lacZ19124. 9AA-induced reversion of lacZ19124 was essentially unchanged while reversion of lacZ19136 was reduced. Plasmid pKM101 reduced reversion of the two markers by each of the mutagens, except in the case of ICR191-induced reversion of the lacZ19124 marker where mutagenesis was slightly enhanced. Mutations in the recA and lexA genes had minimal effects on ICR191- and on 9AA-induced reversion of the lacZ markers; although 9AA-induced reversion of the lacZ19124 marker was somewhat reduced, most of the other results indicated that mutation yields were if anything higher in the recA or lexA backgrounds. Mutagenesis by 9AA and ICR191 would therefore appear to occur independently of the inducible error-prone repair process commonly referred to as SOS repair.  相似文献   

18.
The effects of deletion of various regions of the pKM101 genome on several phenotypes conferred by pKM101 in Escherichia coli WP2 cells were investigated. Differences in the response of cells carrying pKM101 or various pKM101 deletion derivatives to the mutagenic effects of phleomycin E can be attributed to differences in sensitivity to the lethal effects of phleomycin E. Resistance to phleomycin E is conferred by the pKM101 mucAB genes (or an adjacent gene) but observed only with pKM101 derivatives which have lost a 2.2-kilobase (BalI-KpnI-2) segment which completely includes the pKM101 endonuclease gene nuc. A pKM101 slow-growth determinant, distinct from the slo gene, has also been identified and localized in the 2.4-kilobase (BalI-KpnI-3) segment which is adjacent to the nuc gene. Loss of this region does not appear to substantially influence the toxic or mutagenic effects of phleomycin E.  相似文献   

19.
Bacterial survival after UV irradiation was increased in E. coli K12 lexB30 and tif zab-53 mutants harboring plasmid pKM101. Mutagenesis in response to UV was observed in these bacteria which, in absence of pKM101, are not UV-mutable. The mutator effect observed in unirradiated wild-type cells containing pKM101 was higher after incubation at 30°C with adenine than at 37°C. This effect was still enhanced by tif mutation, even in the tif zab-53 strain, but it was abolished by lexB30 mutation. In the tif zab-53 (pKM101) strain, repair and mutagenesis of UV-irradiated phage λ was observed, but not in the lexB30 mutant carrying pKM101. The pKM101 mutant, pGW1, was unable to protect tif zab-53 bacteria against killing by UV, whereas the protection of lexB30 was intermediate; moreover, it did not promote the mutator effect at 30°C or enhance phage repair and mutagenesis in tif zab-53 cells. All UV-induced bacterial mutations in lexB30 (pKM101) strain were suppressors; in contrast, true revertants were found after UV irradiation of the tif zab-53 (pKM101) cells.We suggest that the constitutive activity of RecA protein is enough for the production of UV-promoted suppressor mutations, whereas true reversions require a more active form of this protein which could exert its effects directly or by acting at a regulatory level on other cellular functions.  相似文献   

20.
A screening procedure was developed for identifying mutants of the plasmid pKM101 no longer capable of enhancing mutagenesis. The test was based on the large pKM101-mediated increase in the number of Gal+ papillae observed on colonies of Salmonella typhimurium gal mutants plated on tetrazolium-galactose plates in the presence of a mutagen. The pKM101 mutant plasmids transferred normally, were stably maintained in cells, caused normal levels of ampicillin resistance, and still imparted sensitivity to phage Ike to their hosts. However, the pKM101 mutants had lost the ability to (i) enhance the reversion of both point and frameshift mutations, (ii) protect the cells against killing by UV irradiation, (iii) increase the spontaneous reversion rates of point mutations, (iv) enhance plasmid-mediated reactivation of UV-irradiated phage P22, (v) enhance Weigle reactivation. One pKM101 mutant with different properties from the others was identified by its increased spontaneous mutator effect. It is suggested that pKM101 amplifies the activity of the inducible error-prone repair systems in bacteria and that this is the function of pKM101 in the Ames Salmonella tester strains used for detection of carcinogens as mutagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号