首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Background

Experience during early postnatal development plays an important role in the refinement of specific neural connections in the brain. In the mammalian visual system, altered visual experiences induce plastic adaptation of visual cortical responses and guide rearrangements of afferent axons from the lateral geniculate nucleus. Previous studies using visual deprivation demonstrated that the afferents serving an open eye significantly retract when cortical neurons are pharmacologically inhibited by applying a γ-aminobutyric acid type A receptor agonist, muscimol, whereas those serving a deprived eye are rescued from retraction, suggesting that presynaptic activity can lead to the retraction of geniculocortical axons in the absence of postsynaptic activity. Because muscimol application suppresses the spike activity of cortical neurons leaving transmitter release intact at geniculocortical synapses, local synaptic interaction may underlie the retraction of active axons in the inhibited cortex.

Method and Findings

New studies reported here determined whether experience-driven axon retraction can occur in the visual cortex inactivated by blocking synaptic inputs. We inactivated the primary visual cortex of kittens by suppressing synaptic transmission with cortical injections of botulinum neurotoxin type E, which cleaves a synaptic protein, SNAP-25, and blocks transmitter release, and examined the geniculocortical axon morphology in the animals with normal vision and those deprived of vision binocularly. We found that afferent axons in the animals with normal vision showed a significant retraction in the inactivated cortex, as similarly observed in the muscimol-treated cortex, whereas the axons in the binocularly deprived animals were preserved.

Conclusions

Therefore, the experience-driven axon retraction in the inactivated cortex can proceed in the absence of synaptic transmission. These results suggest that presynaptic mechanisms play an important role in the experience-driven refinement of geniculocortical axons.  相似文献   

2.
Spontaneous network activity constitutes a central theme during the development of neuronal circuitry [1, 2]. Before the onset of vision, retinal neurons generate waves of spontaneous activity that are relayed along the ascending visual pathway [3, 4] and shape activity patterns in these regions [5, 6]. The spatiotemporal nature of retinal waves is required to establish precise functional maps in higher visual areas, and their disruption results in enlarged axonal projection areas (e.g., [7-10]). However, how retinal inputs shape network dynamics in the visual cortex on the cellular level is unknown. Using in vivo two-photon calcium imaging, we identified two independently occurring patterns of network activity in the mouse primary visual cortex (V1) before and at the onset of vision. Acute manipulations of spontaneous retinal activity revealed that one type of network activity largely originated in the retina and was characterized by low synchronicity (L-) events. In addition, we identified a type of high synchronicity (H-) events that required gap junction signaling but were independent of retinal input. Moreover, the patterns differed in wave progression and developmental profile. Our data suggest that different activity patterns have complementary functions during the formation of synaptic circuits in the developing visual cortex.  相似文献   

3.
Refinement of the neural circuit during brain maturation is regulated by experience-driven neural activity. In the mammalian visual cortex, monocular visual deprivation (MD) in the early postnatal life causes a significant loss of cortical responses to a deprived eye and the retraction of input axons serving the deprived eye. A competitive interaction between inputs serving both eyes has been supposed to underlie the effects of MD because the loss of cortical response is much weaker when both eyes are deprived of vision. Also, the input axons do not retract after binocular deprivation. Here, we report that uncorrelated activity between presynaptic and postsynaptic neurons can solely lead to the retraction of geniculocortical axons in the absence of activity imbalance between two inputs. We analyzed the morphology of geniculocortical axons in a pharmacologically inhibited visual cortex of animals with normal vision and of binocularly deprived animals. In the normal vision animals, the axonal arbors in the inhibited cortex showed robust retraction. On the other hand, the arbors in binocularly deprived animals remained mostly intact. These results suggest that a homosynaptic associative mechanism, rather than a heterosynaptic competition between inputs, may play an important role in experience-driven axon retraction.  相似文献   

4.
The role of activity in development of the visual system   总被引:6,自引:0,他引:6  
Neuronal activity is important for both the initial formation and the subsequent refinement of anatomical and physiological features of the mammalian visual system. Here we examine recent evidence concerning the role that spontaneous activity plays in axonal segregation, both of retinogeniculate afferents into eye-specific layers and of geniculocortical afferents into ocular dominance bands. We also assess the role of activity in the generation and plasticity of orientation selectivity in the primary visual cortex. Finally, we review recent challenges to textbook views on how inputs representing the two eyes interact during the critical period of visual cortical plasticity.  相似文献   

5.
A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+)-activated K(+) channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.  相似文献   

6.
Spontaneous activity in the developing brain helps refine neuronal connections before the arrival of sensory‐driven neuronal activity. In mouse neocortex during the first postnatal week, waves of spontaneous activity originating from pacemaker regions in the septal nucleus and piriform cortex propagate through the neocortex. Using high‐speed Ca2+ imaging to resolve the spatiotemporal dynamics of wave propagation in parasagittal mouse brain slices, we show that the hippocampus can act as an additional source of neocortical waves. Some waves that originate in the hippocampus remain restricted to that structure, while others pause at the hippocampus‐neocortex boundary and then propagate into the neocortex. Blocking GABAergic neurotransmission decreases the likelihood of wave propagation into neocortex, whereas blocking glutamatergic neurotransmission eliminates spontaneous and evoked hippocampal waves. A subset of hippocampal and cortical waves trigger Ca2+ waves in astrocytic networks after a brief delay. Hippocampal waves accompanied by Ca2+ elevation in astrocytes are more likely to propagate into the neocortex. Finally, we show that two structures in our preparation that initiate waves—the hippocampus and the piriform cortex—can be electrically stimulated to initiate propagating waves at lower thresholds than the neocortex, indicating that the intrinsic circuit properties of those regions are responsible for their pacemaker function. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 661–672, 2016  相似文献   

7.
TK Sato  I Nauhaus  M Carandini 《Neuron》2012,75(2):218-229
Electrode recordings and imaging studies have revealed that localized visual stimuli elicit waves of activity that travel across primary visual cortex. Traveling waves are present also during spontaneous activity, but they can be greatly reduced by widespread and intensive visual stimulation. In this Review, we summarize the evidence in favor of these traveling waves. We suggest that their substrate may lie in long-range horizontal connections and that their functional role may involve the integration of information over large regions of space.  相似文献   

8.
The topographic representation of visual space is preserved from retina to thalamus to cortex. We have previously shown that precise mapping of thalamocortical projections requires both molecular cues and structured retinal activity. To probe the interaction between these two mechanisms, we studied mice deficient in both ephrin-As and retinal waves. Functional and anatomical cortical maps in these mice were nearly abolished along the nasotemporal (azimuth) axis of the visual space. Both the structure of single-cell receptive fields and large-scale topography were severely distorted. These results demonstrate that ephrin-As and structured neuronal activity are two distinct pathways that mediate map formation in the visual cortex and together account almost completely for the formation of the azimuth map. Despite the dramatic disruption of azimuthal topography, the dorsoventral (elevation) map was relatively normal, indicating that the two axes of the cortical map are organized by separate mechanisms.  相似文献   

9.
During retinocollicular map development, spontaneous waves of action potentials spread across the retina, correlating activity among neighboring retinal ganglion cells (RGCs). To address the role of retinal waves in topographic map development, we examined wave dynamics and retinocollicular projections in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. beta2(-/-) mice lack waves during the first postnatal week, but RGCs have high levels of uncorrelated firing. By P8, the wild-type retinocollicular projection remodels into a refined map characterized by axons of neighboring RGCs forming focal termination zones (TZs) of overlapping arbors. In contrast, in P8 beta2(-/-) mice, neighboring RGC axons form large TZs characterized by broadly distributed arbors. At P8, glutamatergic retinal waves appear in beta2(-/-) mice, and later, visually patterned activity appears, but the diffuse TZs fail to remodel. Thus, spontaneous retinal waves that correlate RGC activity are required for retinotopic map remodeling during a brief early critical period.  相似文献   

10.
Patterns of spontaneous activity in the developing retina, LGN, and cortex are necessary for the proper development of visual cortex. With these patterns intact, the primary visual cortices of many newborn animals develop properties similar to those of the adult cortex but without the training benefit of visual experience. Previous models have demonstrated how V1 responses can be initialized through mechanisms specific to development and prior to visual experience, such as using axonal guidance cues or relying on simple, pairwise correlations on spontaneous activity with additional developmental constraints. We argue that these spontaneous patterns may be better understood as part of an "innate learning" strategy, which learns similarly on activity both before and during visual experience. With an abstraction of spontaneous activity models, we show how the visual system may be able to bootstrap an efficient code for its natural environment prior to external visual experience, and we continue the same refinement strategy upon natural experience. The patterns are generated through simple, local interactions and contain the same relevant statistical properties of retinal waves and hypothesized waves in the LGN and V1. An efficient encoding of these patterns resembles a sparse coding of natural images by producing neurons with localized, oriented, bandpass structure-the same code found in early visual cortical cells. We address the relevance of higher-order statistical properties of spontaneous activity, how this relates to a system that may adapt similarly on activity prior to and during natural experience, and how these concepts ultimately relate to an efficient coding of our natural world.  相似文献   

11.
In conscious 2-6-day rat puppies, studies have been made on the bioelectrical activity in the visual and sensorimotor cortex. ECG in newborn rat puppies exhibits characteristic intermittence of complexes of the electrical activity with intervals of partial or almost complete absence of the activity in a minute scale. This phenomenon reflects the ancient property of immature nervous system, i.e. a capacity to autogenic periodic excitation. The structure of these complexes may be different, since it reflects the condition of animals at the given moment, the degree of maturation of elements involved in realization of the bioelectrical activity and interrelationship with other parts of the brain. With respect to amplitude-frequency parameters, age dynamics and the relationship to the spontaneous motor activity, four distinct types of complexes were revealed in the ECG of rat puppies during the first week of their postnatal life.  相似文献   

12.
Han F  Caporale N  Dan Y 《Neuron》2008,60(2):321-327
Spontaneous waves of activity propagating across large cortical areas may play important roles in sensory processing and circuit refinement. However, whether these waves are in turn shaped by sensory experience remains unclear. Here we report that visually evoked cortical activity reverberates in subsequent spontaneous waves. Voltage-sensitive dye imaging in rat visual cortex shows that following repetitive presentation of a given visual stimulus, spatiotemporal activity patterns resembling the evoked response appear more frequently in the spontaneous waves. This effect is specific to the response pattern evoked by the repeated stimulus, and it persists for several minutes without further visual stimulation. Such wave-mediated reverberation could contribute to short-term memory and help to consolidate the transient effects of recent sensory experience into long-lasting cortical modifications.  相似文献   

13.
Spontaneous waves of activity that propagate across large structures during specific developmental stages play central roles in CNS development. To understand the genesis and functions of these waves, it is critical to understand the spatial and temporal patterns of their propagation. We recently reported that spontaneous waves in the neonatal cerebral cortex originate from a ventrolateral pacemaker region. We have now analyzed a large number of spontaneous waves using calcium imaging over the entire area of coronal slices from E18‐P1 mouse brains. In all waves, the first cortical region active is this ventrolateral pacemaker. In half of the waves, however, the cortical pacemaker activity is itself triggered by preceding activity in the septal nuclei. Most waves are restricted to the septum and/or ventral cortex, with only some invading the dorsal cortex or the contralateral hemisphere. Waves fail to propagate at very stereotyped locations at the boundary between ventral and dorsal cortex and at the dorsal midline. Waves that cross these boundaries pause at these same locations. Waves at these stages are blocked by both picrotoxin and CNQX, indicating that both GABAA and AMPA receptors are involved in spontaneous activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 679–692, 2010  相似文献   

14.
Tu YL  Liu YB  Zhang L  Zhao YJ  Wang L  Hu ZA 《生理学报》2003,55(2):206-212
为研究大鼠不同发育阶段视皮层神经元电的生理学与形态学特性,实验观察了神经元电生理和形态学特性的变化与年龄的同步化程度,探讨视皮层视觉依赖性突触的形成和重新分布的细胞内机制。应用脑片膜片钳全细胞记录技术和细胞内生物家标记相结合的方法,记录4—28d SD大鼠视皮层神经元的突触后电流(postsynaptic currents,PSCs)。共记录156个大鼠视皮层神经元,睁眼前与睁眼后组中无反应型细胞数量,多突触反应型细胞数量、细胞的输入阻抗有显著性差异。成功标记23例神经元,不同年龄的神经元的形态学成熟度不同。低输入阻抗神经元在形态学上属成熟型,高输入阻抗神经元属幼稚型。该结果表明,大鼠在发育过程中,视皮层神经元功能的成熟表现为在形觉刺激以及局部神经元网络的整合作用下的视觉依赖性突触的形成和重新分布。在视觉发育可塑性关键期内,视皮层神经元形态和电生理特性的变化与年龄的同步化程度大于皮层下结构。  相似文献   

15.
L Zheng  H Yao 《PloS one》2012,7(7):e41960
Previous studies in cat visual cortex reported that area 18 can actively drive neurons in area 17 through cortico-cortical projections. However, the dynamics of such cortico-cortical interaction remains unclear. Here we used multielectrode arrays to examine the spatiotemporal pattern of neuronal activity in cat visual cortex across the 17/18 border. We found that full-field contrast reversal gratings evoked oscillatory wave activity propagating from area 18 to 17. The wave direction was independent of the grating orientation, and could not be accounted for by the spatial distribution of receptive field latencies, suggesting that the waves are largely mediated by intrinsic connections in the cortex. Different from the evoked waves, spontaneous waves propagated along both directions across the 17/18 border. Together, our results suggest that visual stimulation may enhance the flow of information from area 18 to 17.  相似文献   

16.
Chiu C  Weliky M 《Neuron》2002,35(6):1123-1134
Utilizing a multielectrode array to record spontaneous and visually evoked activity of cortical neurons in area 17, we investigate the relationship between long-range correlated spontaneous activity and functional ocular dominance columns during early ferret postnatal development (P24-P29). In regions of visual cortex containing alternating ocular dominance patches, periodic fluctuations in correlated activity are observed in which spontaneous activity is most highly correlated between cortical patches exhibiting the same eye preference. However, these fluctuations are present even within large contralateral eye-dominated bands which lack any periodic alternations in ocular dominance. Thus, the organization of ocular dominance columns cannot fully account for the patterns of correlated activity we observe. Our results suggest that patterns of long-range correlated activity reflect an intrinsic periodicity of cortical connectivity that is constrained by segregated eye-specific LGN afferents.  相似文献   

17.
Compression and reflection of visually evoked cortical waves   总被引:2,自引:0,他引:2  
Xu W  Huang X  Takagaki K  Wu JY 《Neuron》2007,55(1):119-129
Neuronal interactions between primary and secondary visual cortical areas are important for visual processing, but the spatiotemporal patterns of the interaction are not well understood. We used voltage-sensitive dye imaging to visualize neuronal activity in rat visual cortex and found visually evoked waves propagating from V1 to other visual areas. A primary wave originated in the monocular area of V1 and was "compressed" when propagating to V2. A reflected wave initiated after compression and propagated backward into V1. The compression occurred at the V1/V2 border, and local GABAA inhibition is important for the compression. The compression/reflection pattern provides a two-phase modulation: V1 is first depolarized by the primary wave, and then V1 and V2 are simultaneously depolarized by the reflected and primary waves, respectively. The compression/reflection pattern only occurred for evoked waves and not for spontaneous waves, suggesting that it is organized by an internal mechanism associated with visual processing.  相似文献   

18.
幼年大鼠视皮层神经元对闪光刺激的反应特性   总被引:1,自引:0,他引:1  
哺乳动物视觉系统的发育延续到出生后,大鼠出生后 3~5 周是视觉系统发育的关键期 . 在关键期中,视皮层的兴奋性和抑制性突触连接逐渐成熟,形成有效的皮层内回路 . 为了观察发育关键期大鼠视皮层神经元的反应特性与成年大鼠的异同,使用胞外单细胞记录的方法对比研究了幼年和成年大鼠对闪光刺激的视觉反应特性 . 结果显示:与成年大鼠相比较,幼年大鼠视皮层神经元对持续闪光刺激显示出更强的适应性,对光刺激的诱发放电频率更低,而在没有光刺激时的自发放电频率更高,从而导致信噪比更低 . 这一结果表明,幼年大鼠视皮层对连续刺激的反应能力下降,对信号的分辨能力也更弱,其原因可能是兴奋性突触和抑制性突触发育的不同步所致 .  相似文献   

19.
The segregation and maintenance of eye-specific inputs in the dorsal lateral geniculate nucleus (dLGN) during early postnatal development requires the patterned spontaneous activity of retinal waves. In contrast to the development of the mouse, ferret eye-specific segregation is not complete at the start of stage III glutamatergic retinal waves, and the remaining overlap is limited to the C/C1 lamina of the dLGN. To investigate the role of patterned spontaneous activity in this late segregation, we disrupted retinal waves pharmacologically for 5 day windows from postnatal day (P) 10 to P25. Multi-electrode array recordings of the retina in vitro reveal that the cholinergic agonist epibatidine disrupts correlated retinal activity during stage III waves. Epibatidine also prevents the segregation of eye-specific inputs in vivo during that period. Our results reveal a novel role for cholinergic influence on stage III retinal waves as an instructive signal for the continued segregation of eye-specific inputs in the ferret dLGN.  相似文献   

20.
We studied the spatial and temporal pattern of basic fibroblast growth factor (bFGF) immunoreactivity in the rat adrenal gland during postnatal development. In the cortex the glomerulosa zone reveals a strong anti-bFGF immunoreactivity at all developmental ages studied. In the fasciculata zone the high number of anti-bFGF immunoreactive cells in the first week decreases during the second and third week. The late developing reticularis zone shows only few anti-bFGF labeled cells at all postnatal ages. This distributional pattern of bFGF immunoreactivity matches that of mitotic activity in the rat adrenal cortex strengthening the role of bFGF as an autocrine growth factor for adrenocortical cells. In the medulla anti-bFGF positive chromaffin cells become detectable at postnatal day (P) 8 and increase in number during the second and third week. In the adult rat the staining intensity of the chromaffin cells was higher than at P18. In the adult medulla bFGF colocalizes with noradrenaline suggesting its presence in a chromaffin cell subpopulation. In accordance with previous results the role of the chromaffin cell bFGF as a neurotrophic factor for preganglionic sympathetic neurons is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号