首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the relationship between peptide sequence and the interaction of amphipathic alpha-helical peptides with phosphatidylcholines, various methods of mixing the peptide and lipid were explored. A series of amphipathic alpha-helical peptides containing from 10 to 18 residues were synthesized by solid-phase techniques. An 18-residue peptide and two relatively hydrophobic 10-residue peptides did not disrupt dimyristoylphosphatidylcholine liposomes when added to the lipid in buffer. However, when the peptides were premixed with lipid in a suitable organic solvent and then reconstituted with aqueous buffer, clear micelles were formed, indicating association of the amphipathic alpha-helical peptide with lipid. In general, the best solvent for this purpose was trifluoroethanol. The circular dichroic and fluorescence spectra of peptides which readily formed clear mixtures when mixed in buffer with dimyristoylphosphatidylcholine liposomes were similar when prepared either by the alternative pathway technique using trifluoroethanol or by a cholate removal technique. For the peptides which did not clear liposomes in buffer, first mixing with dimyristoylphosphatidylcholine in trifluoroethanol resulted in an increase in the alpha-helicity of the peptides as judged by circular dichroic spectra and a blue-shift in the fluorescence emission maxima of the single tryptophan residue in each peptide. These data are consistent with formation of an amphipathic alpha-helix in lipid by peptides which based on mixing experiments with dimyristoylphosphatidylcholine liposomes in buffer at the phase transition temperature of the lipid would be considered ineffective in lipid binding. Thus, simple mixing of peptides with liposomes may give misleading results concerning the intrinsic affinity of a particular peptide sequence for lipid. In addition, the data demonstrate that relatively hydrophobic amphipathic alpha-helical peptides which do not form small micelles with dimyristoylphosphatidylcholine spontaneously in aqueous solution may interact with lipid as typical amphipathic alpha-helices when mixed by an alternative pathway.  相似文献   

2.
N G Park  S Lee  O Oishi  H Aoyagi  S Iwanaga  S Yamashita  M Ohno 《Biochemistry》1992,31(48):12241-12247
The mode of action of tachyplesin I, an antimicrobial cationic heptadecapeptide amide isolated from the hemocyte debris of a horseshoe crab, Tachypleus tridentatus, toward lipid matrices was studied with synthetic tachyplesin I, its analogs with Phe in place of Trp or Tyr, a linear analog with no disulfide bonds, and two linear short fragments. Circular dichroism spectra showed that tachyplesin I took an antiparallel beta-structure in buffer solution and a certain less ordered structure in acidic liposomes composed of egg phosphatidylcholine and egg phosphatidylglycerol (3:1). Spectrophotometric titration of the peptides with laurylphosphorylcholine revealed that both Trp and Tyr residues orient toward the inside of lipid matrices, suggesting that they are on the same side of the peptide backbone. The carboxyfluorescein leakage experiment and fluorescence data indicated that tachyplesin I interacted strongly with neutral and acidic lipid bilayers and an aromaticity-rich hydrophobic part of the peptide was embedded in lipid membranes. All the peptides except for the short fragments were almost equally active in lipopolysaccharide binding. The energy-transfer experiment showed that a conformational change occurred such that the Tyr and Trp residues are positioned more closely to each other in acidic liposomes than in buffer solution. The present study strongly suggested that amphipathic lipid bilayers induced a conformational change of tachyplesin I from an energetically stable beta-structure to a less ordered, probably more amphipathic structure.  相似文献   

3.
We recently demonstrated that a linear 18-residue peptide, (KIGAKI)(3)-NH(2), designed to form amphipathic beta-sheet structure when bound to lipid bilayers, possessed potent antimicrobial activity and low hemolytic activity. The ability of (KIGAKI)(3)-NH(2) to induce leakage from lipid vesicles was compared to that of the amphipathic alpha-helical peptide, (KIAGKIA)(3)-NH(2), which had equivalent antimicrobial activity. Significantly, the lytic properties of (KIGAKI)(3)-NH(2) were enhanced for mixed acidic-neutral lipid vesicles containing phosphatidylethanolamine instead of phosphatidylcholine as the neutral component, while the potency of (KIAGKIA)(3)-NH(2) was significantly reduced [Blazyk, J., et al. (2001) J. Biol. Chem. 276, 27899-27906]. In this paper, we measured the lytic properties of these peptides, as well as several fluorescent analogues containing a single tryptophan residue, by monitoring permeability changes in large unilamellar vesicles with varying lipid compositions and in Escherichia coli cells. The binding of these peptides to lipid bilayers with defined compositions was compared using surface plasmon resonance, circular dichroism, and fluorescence spectroscopy. Surprisingly large differences were observed in membrane binding properties, particularly in the case of KIGAKIKWGAKIKIGAKI-NH(2). Since all of these peptides possess the same charge and very similar mean hydrophobicities, the binding data cannot be explained merely in terms of electrostatic and/or hydrophobic interactions. In light of their equivalent antimicrobial and hemolytic potencies, some of these peptides may employ mechanisms beyond simply increasing plasma membrane permeability to exert their lethal effects.  相似文献   

4.
The interaction of many lytic cationic antimicrobial peptides with their target cells involves electrostatic interactions, hydrophobic effects, and the formation of amphipathic secondary structures, such as alpha helices or beta sheets. We have shown in previous studies that incorporating approximately 30%d-amino acids into a short alpha helical lytic peptide composed of leucine and lysine preserved the antimicrobial activity of the parent peptide, while the hemolytic activity was abolished. However, the mechanisms underlying the unique structural features induced by incorporating d-amino acids that enable short diastereomeric antimicrobial peptides to preserve membrane binding and lytic capabilities remain unknown. In this study, we analyze in detail the structures of a model amphipathic alpha helical cytolytic peptide KLLLKWLL KLLK-NH2 and its diastereomeric analog and their interactions with zwitterionic and negatively charged membranes. Calculations based on high-resolution NMR experiments in dodecylphosphocholine (DPCho) and sodium dodecyl sulfate (SDS) micelles yield three-dimensional structures of both peptides. Structural analysis reveals that the peptides have an amphipathic organization within both membranes. Specifically, the alpha helical structure of the L-type peptide causes orientation of the hydrophobic and polar amino acids onto separate surfaces, allowing interactions with both the hydrophobic core of the membrane and the polar head group region. Significantly, despite the absence of helical structures, the diastereomer peptide analog exhibits similar segregation between the polar and hydrophobic surfaces. Further insight into the membrane-binding properties of the peptides and their depth of penetration into the lipid bilayer has been obtained through tryptophan quenching experiments using brominated phospholipids and the recently developed lipid/polydiacetylene (PDA) colorimetric assay. The combined NMR, FTIR, fluorescence, and colorimetric studies shed light on the importance of segregation between the positive charges and the hydrophobic moieties on opposite surfaces within the peptides for facilitating membrane binding and disruption, compared to the formation of alpha helical or beta sheet structures.  相似文献   

5.
The design of amphipathic peptides resulted in a novel peptide with a selective ability to destabilize lipid bilayers of acidic liposomes. The newly synthesized peptide, termed mast 21, is a 21-residue long amino acid chain and can only act effectively on acidic liposomes lacking cholesterol. Moreover, mast 21 killed gram-positive and gram-negative bacteria, and it had no hemolytic activity. The antimicrobial and hemolytic activities paralleled the results of membrane destabilizing activity using liposomes. Circular dichroism and Trp-fluorescence emission spectra showed changes in the peptide conformation and circumstances around the peptide during interaction with liposomes. These changes were consistent with an increased alpha-helical content and a less polar environment for the tryptophan residue of the peptide. Mast 21 was observed under dark-field microscopy in real time attacking liposomes. Acidic liposomes were attacked, which resulted in peeling of the lipid bilayer with its subsequent destruction.  相似文献   

6.
The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. We describe the use of frequency domain fluorescence spectroscopy to determine the conformational and environmental changes associated with the interaction of single tryptophan amphipathic peptides with a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide known to associate with lipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. In aqueous solution, the peptides are unstructured and a triple-exponential function is required to fit the decay data. Association of the peptides with small unilamellar vesicles composed of egg phosphatidylcholine reduces the complexity of the fluorescence decays to a double exponential function, with a reduced dependence of the preexponential amplitude on peptide sequence. The data are interpreted in terms of a rotamer model in which the modality and relative proportions of the lifetime components are related to the population distribution of tryptophan chi1 rotamers about the Calpha-Cbeta bond. Peptide secondary structure and the disposition of the tryptophan residue relative to the lipid and aqueous phases in the peptide-lipid complex affect the local environment of tryptophan and influence the distribution of side-chain rotamers. The results show that measurement of the temporal decay of tryptophan emission provides a useful adjunct to other biophysical techniques for investigating peptide-lipid and protein-membrane interactions.  相似文献   

7.
Reaction of the melanotropin hormone analogs [Nle(4),D-Phe(7)]-alpha-MSH and [Nle(4),D-Phe(7)]-alpha-MSH(4-10), which were extended at their N-terminus by a thiol-functionalized spacer arm, with preformed liposomes containing thiol-reactive (phospho)lipid derivatives resulted in the aggregation of the vesicles and in a partial leakage of their inner contents. This aggregation/leakage effect, which was only observed when the peptides were covalently conjugated to the surface of the liposomes, was correlated with the fusion of the vesicles as demonstrated by the observed decrease in resonance energy transfer between probes in a membrane lipid mixing assay. A limited fusion was confirmed by monitoring the mixing of the liposome inner contents (formation of 1-aminonaphthalene-3,6,8-trisulfonic acid/p-xylene bis(pyridinium bromide) complex). The membrane-active properties of the peptides could be correlated with changes in the fluorescence emission spectra of their tryptophan residue, which suggested that after their covalent binding to the outer surface of the liposomes they can partition within the core of the bilayers. A blue shift of 10 nm was observed for [Nle(4),D-Phe(7)]-alpha-MSH which was correlated with an increase in fluorescence anisotropy and with changes in the accessibility of the coupled peptide as assessed by the quenching of fluorescence of its tryptophan residue by iodide (Stern-Volmer plots). These results should be related to the previously described capacity of alpha-MSH, and analogs, to interact with membranes and with the favored conformation of these peptides which, via a beta-turn, segregate their central hydrophobic residues into a domain that could insert into membranes and, as shown here, trigger their destabilization.  相似文献   

8.
Cecropins are a group of anti-bacterial, cationic peptides that have an amphipathic N-terminal segment, and a largely hydrophobic C-terminal segment and normally form a helix-hinge-helix structure. In this study, the ability of cecropin B (CB) and two analogs to lyse phospholipid bilayers, which have two levels of anionic content, has been examined by dye-leakage measurements over the pH range 2. 0-12.0. The two analogs differ from the natural peptide by having either two amphipathic segments (CB1) or two hydrophobic segments (CB3). All these peptides (except CB3 on low anionic content bilayers where it is not active) have maximal lytic activity on both types of bilayers at high pH. However, the pattern of secondary structure formation on these bilayers by the peptides, as measured by circular dichroism (CD), and the pattern of their ability to bind lipid monolayers, as measured using a biosensor, do not directly correlate with the pattern of their lytic ability. CB and CB1 with low anionic content bilayers have secondary structures as measured by CD with a similar pattern to membrane lysis, but binding is maximal near neutral, not high, pH. CB3 has some secondary structures on low anionic content bilayers at low pH and this becomes maximal over the basic range, but CB3 neither binds to nor lyses with these lipid layers. On high anionic content lipid layers, all peptides show high levels of secondary structures over most of the pH range and maximal binding at neutral pH (except for CB3, which does not bind). All three peptides lyse with high anionic content bilayers, but show no activity at neutral pH and reach maximal activity at very high pH. This work shows that pH is a major factor in the capability of antibacterial peptides to lyse with liposomes and that secondary structure and binding ability may not be the main determinants.  相似文献   

9.
Biological functions of lysozyme, including its antimicrobial, antitumor, and immune-modulatory activities have been suggested to be largely determined by the lipid binding properties of this protein. To gain further insight into these interactions on a molecular level the association of lysozyme to liposomes composed of either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or its mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-phosphatidylserine, or bovine heart cardiolipin was studied by a combination of fluorescence techniques. The characteristics of the adsorption of lysozyme to lipid bilayers were investigated using fluorescein 5'-isothiocyanate labeled protein, responding to membrane association by a decrease in fluorescence. Upon increasing the content of anionic phospholipids in lipid vesicles, the binding isotherms changed from Langmuir-like to sigmoidal. Using adsorption models based on scaled particle and double-layer theories, this finding was rationalized in terms of self-association of the membrane-bound protein. The extent of quenching of lysozyme tryptophan fluorescence by acrylamide decreased upon membrane binding, revealing a conformational transition for the protein upon its surface association, resulting in a diminished access of the fluorophore to the aqueous phase. Steady-state fluorescence anisotropy of bilayer-incorporated probe 1,6-diphenyl-1,3,5-hexatriene was measured at varying lipid-to-protein molar ratios. Lysozyme was found to increase acyl-chain order for liposomes with the content of acidic phospholipid exceeding 10 mol %. Both electrostatic and hydrophobic protein-lipid interactions can be concluded to modulate the aggregation behavior of lysozyme when bound to lipid bilayers. Modulation of lysozyme aggregation propensity by membrane binding may have important implications for protein fibrillogenesis in vivo. Disruption of membrane integrity by the aggregated protein species is likely to be the mechanism responsible for the cytotoxicity of lysozyme.  相似文献   

10.
We recently described a novel antimicrobial peptide, RTA3, derived from the commensal organism Streptococcus mitis, with strong anti-Gram-negative activity, low salt sensitivity, and minimal mammalian cell toxicity in vitro and in vivo. This peptide conforms to the positively charged, amphipathic helical peptide motif, but has a positively charged amino acid (Arg-5) on the nonpolar face of the helical structure that is induced upon membrane binding. We surmised that disruption of the hydrophobic face with a positively charged residue plays a role in minimizing eukaryotic cell toxicity, and we tested this using a mutant with an R5L substitution. The greatly enhanced toxicity in the mutant peptide correlated with its ability to bind and adopt helical conformations upon interacting with neutral membranes; the wild type peptide RTA3 did not bind to neutral membranes (binding constant reduced by at least 1000-fold). Spectroscopic analysis indicates that disruption of the hydrophobic face of the parent peptide is accommodated in negatively charged membranes without partial peptide unfolding. These observations apply generally to amphipathic helical peptides of this class as we obtained similar results with a peptide and mutant pair (Chen, Y., Mant, C. T., Farmer, S. W., Hancock, R. E., Vasil, M. L., and Hodges, R. S. (2005) J. Biol. Chem. 280, 12316-12329) having similar structural properties. In contrast to previous interpretations, we demonstrate that these peptides simply do not bind well to membranes (like those of eukaryotes) with exclusively neutral lipids in their external bilayer leaflet. We highlight a significant role for tryptophan in promoting binding of amphipathic helical peptides to neutral bilayers, augmenting the arsenal of strategies to reduce mammalian toxicity in antimicrobial peptides.  相似文献   

11.
A clear understanding of the specific secondary structure and binding domain resulting from the interactions of proteins and peptides with lipid surfaces will provide insight into the specific functions of biologically active molecules. We have shown in earlier studies that the stationary phases used in reverse-phase high-performance liquid chromatography represent a model artificial lipid surface for the study of induced conformational states of peptides on lipid interaction. We have now used reverse-phase high-performance liquid chromatography to determine the binding domains of peptides and, by extension, of proteins to a lipid surface. This approach consists of performing chemical modifications of specific amino acid side-chain functionalities after the interaction of the peptides with the reverse-phase high-performance liquid chromatography C18 groups. The susceptibility to oxidation was also studied after binding of the same peptides to liposomes. Oxidation of a single methionine residue "walked" through an amphipathic alpha-helical 18-mer peptide was selected to illustrate this approach. The extent of oxidation was found to be clearly dictated by the accessibility of the methionine residue to the aqueous mobile phase. The binding domain found for the peptide in its lipid-induced conformational state was unequivocally the entire hydrophobic face of the amphipathic alpha-helix.  相似文献   

12.
The interactions of a series of amphipathic alpha-helical peptides containing from 6 to 18 amino acid residues with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were studied by optical and calorimetric methods. Several peptides rapidly decreased the turbidity of DMPC and DPPC liposomes when mixed at the phase transition temperatures of the lipids. The extent of the clearing depended upon the chain length of the peptides, with the most effective clearing attained with peptides 10-12 residues in length. An eight-residue peptide was somewhat less effective and a six-residue peptide had no effect on liposome structure. The peptides formed small micellar structures, as judged by gel filtration chromatography. The effects of the peptides on the phase transitions of the lipids were examined by differential scanning calorimetry. The peptides that were most effective in disrupting the liposomes and forming clear micelles were also most effective in reducing the enthalpy of the gel to liquid-crystalline phase transition of the lipid. The addition of DMPC or DPPC liposomes to the peptides increased the magnitude of the negative bonds at 208 and 222 nm in circular dichroism measurements, consistent with the expected formation of alpha-helical structure on binding to lipid. The extent of burial of the single tryptophan residue in the peptides was determined by fluorescence spectroscopy. In peptides that bound to lipid, the tryptophan was in a less solvent-exposed environment in the presence of lipid, as evidenced by a blue shift in the fluorescence emission maximum of the peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Moll GN  Brul S  Konings WN  Driessen AJ 《Biochemistry》2000,39(39):11907-11912
Ac-MB21-NH(2) (Ac-FASLLGKALKALAKQ-NH(2)) and dermaseptin S3(1-16)-NH(2) (ALWKNMLKGIGKLAGK-NH(2)) are cationic amphipathic peptides with antimicrobial activity against a broad spectrum of microorganisms including various fungi. The interaction of the peptides with liposomes was studied by exploiting the tryptophan fluorescence of F1W-Ac-MB21-NH(2) and dermaseptin S3(1-16)-NH(2). Spectral analysis and the use of quenchers indicate that the tryptophans of both peptides insert more deeply in anionic than in zwitterionic liposomes. Membrane insertion correlates with the formation of an alpha-helical peptide structure. Both peptides permeabilize liposomes composed of anionic, cylindric phospholipids more efficiently than liposomes formed of zwitterionic, conic (phospho)lipids.  相似文献   

14.
Hung SC  Wang W  Chan SI  Chen HM 《Biophysical journal》1999,77(6):3120-3133
Custom antibacterial peptides, cecropins B1 (CB1) and B3 (CB3), were synthesized. These peptides have particular sequence characteristics, with CB1 having two amphipathic alpha-helical segments and CB3 having two hydrophobic alpha-helical segments. These differences were exploited for a study of their efficacy in breaking up liposomes, which had different combinations of phosphatidic acid (PA) and phosphatidylcholine (PC), and a study of their lipid binding ability. Binding and nonbinding lysis actions of CB1 and CB3 on liposomes were examined further by electron spin resonance (ESR). The spin-labeled lipids 5'SL-PC, 7'SL-PC, 10'SL-PC, 12'SL-PC, and 16'SL-PC were used as probes. The ESR spectra revealed larger outer hyperfine splittings (2A(max)) for CB1 when the interactions of CB1 and CB3 with liposomes were compared. These observations indicate a larger restriction of the motion of the spin-labeled chains in the presence of CB1. Plots of the effective order parameter at the various probe positions (chain flexibility gradient) versus the peptide-lipid ratio further suggested that the lysis action of CB1 is related to its capacity to bind to the lipid bilayers. In contrast, there is no evidence of binding for CB3. To augment these findings, four spin-labeled peptides, C8SL-CB1, C32SL-CB1, C5SL-CB3, and C30SL-CB3, were also examined for their binding to and their state of aggregation within the lipid bilayers. Association isotherms of the peptides were measured for liposomes containing two molar fractions of PA (0.25 and 0.75). The membrane binding of the CB1 peptides exhibited a cooperative behavior, whereas the association isotherm of CB3 revealed binding to the lipid only for beta = 0.75 liposomes. To further identify the location of CB1 in the lipid bilayers, measurements of the collision rate with chromium oxalate in solution were conducted. Results from ESR power saturation measurements suggested that the NH(2)-terminal alpha-helix of CB1 is located on the surface of the lipid bilayers, whereas the COOH-terminal alpha-helix of CB1 is embedded below the surface of the lipid bilayers. These conclusions were further supported by the observed relationship between the partition distribution of peptides bound to liposomes at different PA/PC ratios and the amounts of free peptides. Based on the above observations, possible mechanisms of the bilayer lysis induced by CB1 and CB3 on liposomes of different composition are discussed.  相似文献   

15.
In the direct cell membrane penetration, arginine-rich cell-penetrating peptides are thought to penetrate into cells across the hydrophobic lipid membranes. To investigate the effect of the amphipathic property of arginine-rich peptide on the cell-penetrating ability, we designed a novel amphipathic cell-penetrating peptide, A2-17, and its derivative, A2-17KR, in which all lysine residues are substituted with arginine residues, based on the glycosaminoglycan binding region in the N-terminal α-helix bundle of human apolipoprotein E. Isothermal titration calorimetry showed that A2-17 variants have a strong ability to bind to heparin with high affinity. Circular dichroism and tryptophan fluorescence measurements demonstrated that A2-17 variants bind to lipid vesicles with a structural change from random coil to amphipathic α-helix, being inserted into the hydrophobic membrane interiors. Flow cytometric analysis and confocal laser scanning microscopy demonstrated the great cell penetration efficiency of A2-17 variants into CHO-K1 cells when incubated at low peptide concentrations (2 μM or less), suggesting that the increased amphipathicity with α-helix formation enhances the cell membrane penetration ability of arginine-rich peptides. Interestingly, A2-17KR exhibited lower efficiency of cell membrane penetration compared to A2-17 despite of their similar binding affinity to lipid membranes. Since high peptide concentrations (typically >10 μM) are usually prerequisite for efficient cell penetration of arginine-rich peptides, A2-17 is a unique amphipathic cell-penetrating peptide that exhibits an efficient cell penetration ability even at low peptide concentrations.  相似文献   

16.
Treatment of Gram-negative bacterial infections with antimicrobial agents can cause release of the endotoxin lipopolysaccharide (LPS), the potent initiator of sepsis, which is the major cause of mortality in intensive care units worldwide. Structural information on peptides bound to LPS can lead to the development of more effective endotoxin neutralizers. Short linear antimicrobial and endotoxin-neutralizing peptide LF11, based on the human lactoferrin, binds to LPS, inducing a peptide fold with a "T-shaped" arrangement of a hydrophobic core and two clusters of basic residues that match the distance between the two phosphate groups of LPS. Side chain arrangement of LF11 bound to LPS extends the previously proposed LPS binding pattern, emphasizing the importance of both electrostatic and hydrophobic interactions in a defined geometric arrangement. In anionic micelles, the LF11 forms amphipathic conformation with a smaller hydrophobic core than in LPS, whereas in zwitterionic micelles, the structure is even less defined. Protection of tryptophan fluorescence quenching in the order SDS>LPS>DPC and hydrogen exchange protection indicates the decreasing extent of insertion of the N terminus and potential role of peptide plasticity in differentiation between bacterial and eukaryotic membranes.  相似文献   

17.
Song YM  Park Y  Lim SS  Yang ST  Woo ER  Park IS  Lee JS  Kim JI  Hahm KS  Kim Y  Shin SY 《Biochemistry》2005,44(36):12094-12106
To develop a useful method for designing cell-selective antimicrobial peptides and to investigate the effect of incorporating peptoid residues into an alpha-helical model peptide on structure, function, and mode of action, we synthesized a series of model peptides incorporating Nala (Ala-peptoid) into different positions of an amphipathic alpha-helical model peptide (KLW). Incorporation of one or two Nala residues into the hydrophobic helix face of KLW was more effective at disrupting the alpha-helical structure and bacterial cell selectivity than incorporation into the hydrophilic helix face or hydrophobic/hydrophilic interface. Tryptophan fluorescence studies of peptide interaction with model membranes indicated that the cell selectivity of KLW-L9-a and KLW-L9,13-a is closely correlated with their selective interactions with negatively charged phospholipids. KLW-L9,13-a, which has two Nala residues in its hydrophobic helix face, showed a random structure in membrane-mimicking conditions. KLW-L9,13-a exhibited the highest selectivity toward bacterial cells, showing no hemolytic activity and no or less cytotoxicity compared with other peptides against four mammalian cell lines. Unlike other model peptides, KLW-L9,13-a caused no or little membrane depolarization in Staphylococcus aureus or lipid flip-flop in negatively charged vesicles. In addition, KLW-L9,13-a caused very little fluorescent dye leakage from negatively charged vesicles. Furthermore, confocal laser-scanning microscopy and DNA-binding assays showed that KLW-L9,13-a probably exerts its antibacterial action by penetrating the bacterial membrane and binding to cytoplasmic compounds (e.g., DNA), resulting in cell death. Collectively, our results demonstrate that the incorporation of two Nala residues into the central position of the hydrophobic helix face of noncell-selective alpha-helical peptides is a promising strategy for the rational design of intracellular, cell-selective antimicrobial peptides.  相似文献   

18.
Reaction of the melanotropin hormone analogs [Nle4,D-Phe7]-α-MSH and [Nle4,D-Phe7]-α-MSH(4-10), which were extended at their N-terminus by a thiol-functionalized spacer arm, with preformed liposomes containing thiol-reactive (phospho)lipid derivatives resulted in the aggregation of the vesicles and in a partial leakage of their inner contents. This aggregation/leakage effect, which was only observed when the peptides were covalently conjugated to the surface of the liposomes, was correlated with the fusion of the vesicles as demonstrated by the observed decrease in resonance energy transfer between probes in a membrane lipid mixing assay. A limited fusion was confirmed by monitoring the mixing of the liposome inner contents (formation of 1-aminonaphthalene-3,6,8-trisulfonic acid/p-xylene bis(pyridinium bromide) complex). The membrane-active properties of the peptides could be correlated with changes in the fluorescence emission spectra of their tryptophan residue, which suggested that after their covalent binding to the outer surface of the liposomes they can partition within the core of the bilayers. A blue shift of 10 nm was observed for [Nle4,D-Phe7]-α-MSH which was correlated with an increase in fluorescence anisotropy and with changes in the accessibility of the coupled peptide as assessed by the quenching of fluorescence of its tryptophan residue by iodide (Stern-Volmer plots). These results should be related to the previously described capacity of α-MSH, and analogs, to interact with membranes and with the favored conformation of these peptides which, via a β-turn, segregate their central hydrophobic residues into a domain that could insert into membranes and, as shown here, trigger their destabilization.  相似文献   

19.
The membrane lipid phase may be an important mediator of the peptide-receptor interaction. In order to understand the mechanism of this interaction, it is important to know the peptide structure, not only in the hydrophobic lipid bilayer environment, but also at the bilayer surface and in solution. To investigate this problem we have measured the secondary structure of the 11-residue neuropeptide substance P (SP) and its fragments in aqueous solutions, in membrane mimetic solvents, and associated with lipid bilayers using Raman and CD spectroscopy. Raman and CD spectra of SP bound to liposomes indicate a less than 20% helix content. We interpret these results to indicate that SP contains virtually no helix when bound to negatively charged liposomes. These spectra are similar to spectra of peptides in type I and III beta-turns. SP forms between 10 and 30% (1-3 residues) helical structure in sodium dodecyl sulfate micelles and less than 10% helix in methanol and trifluoroethanol. The binding of SP to negatively charged liposomes significantly changes the structure of the lipid acyl chains, decreasing order in some cases and increasing it in others. Raman spectra of SP in water indicates that SP near 30 mM forms an ensemble of structures in water that is distinct from completely unfolded peptide and from the aggregated beta-sheet form observed in saline solutions. We conclude from our CD results that methods used to quantitate secondary structure from CD spectra of short peptides cannot be used to distinguish between very short helical segments and beta-turns.  相似文献   

20.
The solution properties and bilayer association of two synthetic 30 amino acid peptides, GALA and LAGA, have been investigated at pH 5 and 7.5. These peptides have the same amino acid composition and differ only in the positioning of glutamic acid and leucine residues which together compose 47% of each peptide. Both peptides undergo a similar coil to helix transition as the pH is lowered from 7.5 to 5.0. However, GALA forms an amphipathic alpha-helix whereas LAGA does not. As a result, GALA partitions into membranes to a greater extent than LAGA and can initiate leakage of vesicle contents and membrane fusion which LAGA cannot (Subbarao et al., 1987; Parente et al., 1988). Membrane association of the peptides has been studied in detail with large phosphatidylcholine vesicles. Direct binding measurements show a strong association of the peptide GALA to vesicles at pH 5 with an apparent Ka around 10(6). The single tryptophan residue in each peptide can be exploited to probe peptide motion and positioning within lipid bilayers. Anisotropy changes and the quenching of tryptophan fluorescence by brominated lipids in the presence of vesicles also indicate that GALA can interact with uncharged vesicles in a pH-dependent manner. By comparison to the peptide LAGA, the membrane association of GALA is shown to be due to the amphipathic nature of its alpha-helical conformation at pH 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号