首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secretion of platelet-activating factor by periovulatory ovine follicles   总被引:1,自引:0,他引:1  
Secretion of platelet-activating factor (PAF) in vitro by ovine follicles and ovarian interstitium obtained at various times before, during and after the endogenous preovulatory surge of luteinizing hormone (LH) and ovulation was quantified by radioimmunoassay. Release of PAF by the preovulatory follicle increased within 2 h after initiation of the surge of LH. Capacity for secretion of PAF was greatest at the time of ovulation, then declined thereafter. Production of PAF by ovarian interstitium throughout the periovulatory period was relatively low and did not change with time. It appears that PAF could act as an intrafollicular mediator in the mechanisms of ovulation and(or) luteinization.  相似文献   

2.
The preovulatory surge of gonadotropins induces meiotic maturation of the oocyte, the follicular/luteal phase shift in hormone production, and ovulation. This complex and rapid series of developmental changes is difficult to study in large mammals, such as primates and ruminants, because variability in the length of individual reproductive cycles makes it virtually impossible to predict the time of the LH surge. We have validated an experimental model for inducing the LH surge and ovulation in cattle and used it to study the sequence of changes in hormone secretion and some of the mechanisms of these changes. Luteolysis and a follicular phase were induced by injection of prostaglandin F(2alpha); injection of a GnRH analogue 36 h later induced an LH surge and ovulation. The LH surge peaked 2 h after GnRH and ovulation followed 22-31 h after the surge, consistent with the periovulatory interval in natural cycles. The ensuing luteal phase was normal, both in length and in concentrations of circulating progesterone. In experiment I, the uteroovarian effluent was collected, via cannulation of the vena cava, at frequent intervals relative to GnRH injection. Circulating estradiol declined progressively after GnRH, reaching a nadir by 8-10 h before ovulation, whereas concentrations of androstenedione and testosterone remained constant. In experiment II, preovulatory follicles were obtained at 0, 3.5, 6, 12, 18, or 24 h after GNRH: Concentrations of androgens and estradiol were measured in follicular fluid and medium from cultures of follicle wall (theca + granulosa cells); steady-state levels of mRNA for 17alpha-hydroxylase (17alphaOH) and P450 aromatase were measured in follicular tissue. Shortly after the LH surge (3.5 h post-GnRH) there was an acute increase in the capacity of follicular tissue to secrete androstenedione, but not estradiol, in vitro. Thereafter, both androgens and estradiol declined, both in follicular fluid and in medium collected from cultures of follicle wall. Levels of mRNA for 17alphaOH and aromatase in follicle wall decreased significantly by 6 h after GnRH, suggesting that declining levels of these enzymes underlie the decreases in steroid production by follicular cells. These results show that in cattle the preovulatory decrease in follicular estradiol production is mediated by redundant mechanisms, because androgen production and the capacity of granulosa cells to convert androgens to estradiol decline coordinately, in concert with decreases in mRNA for 17alphaOH and P450 aromatase.  相似文献   

3.
Corpora lutea and follicles were taken from the ovaries of 12 ewes at intervals from the start of luteolysis until 3 days after ovulation. RIA analysis of the tissue oxytocin content showed that luteal oxytocin concentrations declined during luteolysis to reach basal values at about the time of the next ovulation. Oxytocin was first measurable in the walls of 3 out of 6 preovulatory follicles during the LH surge, with a small increase in concentration to 26.1 +/- 6.6 pg/mg before ovulation, and a further increase in the young corpus luteum to concentrations exceeding 1 ng/mg 2-3 days later. After the LH surge, oxytocin was also found in the follicular fluid at a concentration of 3.4 +/- 0.3 ng/ml. Using immunocytochemical techniques, oxytocin and neurophysin were first detected in the follicle wall immediately before ovulation, and were localized in the granulosa cells. After ovulation the stained cells initially formed strands which appeared to break down to clusters and then to individual cells as the corpus luteum matured. The immunocytochemical picture also suggested that neurophysin immunoreactivity increased within a few hours of ovulation but that processing to oxytocin may be delayed. Measurements of circulating oxytocin concentrations revealed a pulsatile release pattern throughout the follicular phase with the height of the pulses decreasing from 25 +/- 5 pg/ml during luteolysis to a minimum of 11 +/- 2 pg/ml during the LH surge.  相似文献   

4.

Background  

Follicular fluid contains substances involved in follicle activity, cell differentiation and oocyte maturation. Studies of its components may contribute to better understanding of the mechanisms underlying follicular development and oocyte quality. The canine species is characterized by several ovarian activity features that are not extensively described such as preovulatory luteinization, oocyte ovulated at the GV stage (prophase 1) and poly-oocytic follicles. In this study, we examined the hypothesis that the preovulatory LH surge is associated with changes in steroid and protein content of canine follicular fluid prior to ovulation.  相似文献   

5.
A few recent investigations have indicated that it is possible for mammalian ovulation to progress to completion in the absence of a preovulatory rise in ovarian prostanoid production and that the antiovulatory mode of action of antiinflammatory agents (e.g., indomethacin) could be independent of their ability to inhibit the cyclooxygenase pathway of arachidonate metabolism. Mature ewes were treated during the preovulatory period with a systemic dosage of indomethacin that either consistently did (500 mg) or did not (100 mg) prevent follicular rupture. With both dosages, the rise in follicular production of prostaglandin F2 alpha following the surge in secretion of LH was negated. Indomethacin did not affect periovulatory patterns of change in follicular tissue concentrations of estradiol-17 beta, testosterone, or progesterone. The 500-mg dose of indomethacin inhibited collagen breakdown within the follicular wall as deduced from measurement of tissue levels of hydroxyproline. In vitro secretion of a follicular leukotactic agent and accumulation of extravascular white blood cells within the theca interna of periovulatory follicles were also suppressed by the ovulation-inhibiting dose of indomethacin. It appears that the blockage of ovulation induced by indomethacin in the sheep is largely unrelated to its capacity to suppress follicular prostaglandin biosynthesis; rather, it is more directly associated with effects on follicular collagenolysis and leukocyte chemoattraction.  相似文献   

6.
Interrelationships between production of progesterone (P4), prostaglandin (PG) E2 and PGF2 alpha, and collagenase by periovulatory ovine follicles and their possible involvements in the ovulatory process were investigated. Follicles were isolated from ovaries at intervals (0 to 24 h) after the initiation of the preovulatory surge of luteinizing hormone (LH). Progesterone and PGs within follicles were determined by radioimmunoassay. Digestion of radioactive collagen during coincubation with tissue homogenates was used to assess the production of a bioactive follicular collagenase(s). Follicular accumulation of PGs and P4 increased at 12 and 16 h, respectively, after the onset of the surge of LH; PGE2 then decreased at 20 h. Collagenolytic activity of follicular tissue increased at 20 h and was maximal at 24 h (during the time of follicular rupture). An inhibitor of synthesis of P4 (isoxazol) or PGs (indomethacin) was injected into the follicular antrum at 8 h. Isoxazol did not prevent the initial rise in PGs, but inhibited synthesis of PGF2 alpha at 16 h and therafter. Isoxazol negated the decline in PGE2 and increase in collagenolysis. Indomethacin did not influence synthesis of P4; however, it suppressed collagenolytic activity of follicular tissue. Ovaries with treated follicles were left in situ and observed for an ovulation point at 30 h. Isoxazol or indomethacin was a potent inhibitor of ovulation. The blockade of ovulation by isoxazol was reversed by systemic administration of P4 or PGF2 alpha, but not by PGE2. Reversal of the blockade by indomethacin was accomplished with PGE2 or PGF2 alpha. Collagenolytic activity of follicular tissue was likewise restored by such treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Ovarian function in ewes at the onset of the breeding season   总被引:2,自引:0,他引:2  
Transrectal ultrasonography of ovaries was performed each day, during the expected transition from anoestrus to the breeding season (mid-August to early October), in six Western white-faced cross-bred ewes, to record ovarian antral follicles > or = 3 mm in size and luteal structures. Jugular blood samples were collected daily for radioimmunoassay (RIA) of follicle-stimulating hormone (FSH), oestradiol and progesterone. The first ovulation of the breeding season was followed by the full-length oestrous cycle in all ewes studied. Prior to the ovulation, all ewes exhibited a distinct increase in circulating concentrations of progesterone, yet no corpora lutea (CL) were detected and luteinized unovulated follicles were detected in only three ewes. Secretion of FSH was not affected by the cessation of anoestrus and peaks of episodic FSH fluctuations were associated with the emergence of ovarian follicular waves (follicles growing from 3 to > or = 5 mm). During the 17 days prior to the first ovulation of the breeding season, there were no apparent changes in the pattern of emergence of follicular waves. Mean daily numbers of small antral follicles (not growing beyond 3 mm in diameter) declined (P < 0.05) after the first ovulation. The ovulation rate, maximal total and mean luteal volumes and maximal serum progesterone concentrations, but not mean diameters of ovulatory follicles, were ostensibly lower during the first oestrous cycle of the breeding season compared with the mid-breeding season of Western white-faced ewes. Oestradiol secretion by ovarian follicles appeared to be fully restored, compared with anoestrous ewes, but it was not synchronized with the growth of the largest antral follicles of waves until after the beginning of the first oestrous cycle. An increase in progesterone secretion preceding the first ovulation of the breeding season does not result, as previously suggested, from the ovulation of immature ovarian follicles and short-lived CL, but progesterone may be produced by luteinized unovulated follicles and/or interstitial tissue of unknown origin. This increase in serum concentrations of progesterone does not alter the pattern of follicular wave development, hence it seems to be important mainly for inducing oestrous behaviour, synchronizing it with the preovulatory surge of luteinizing hormone (LH), and preventing premature luteolysis during the ensuing luteal phase. Progesterone may also enhance ovarian follicular responsiveness to circulating gonadotropins through a local mechanism.  相似文献   

8.
The responsiveness of the hypothalamo-pituitary axis to steroid treatments for ovarian synchronization and the ovarian superstimulatory response to exogenous FSH was compared in 13-14 year old cows and their 1-4 year old young daughters. We tested the hypotheses that aging in cattle is associated with: (1) decreased follicular wave synchrony after estradiol and progesterone treatment; (2) delayed LH surge and ovulation in response to exogenous preovulatory estradiol treatment; (3) reduced superstimulatory response to exogenous FSH. Higher plasma FSH concentrations (P<0.01), and a tendency (P=0.07) for fewer 4-5 mm follicles at wave emergence were observed in old cows (n=10) than in young cows (n=9). The suppressive effect of estradiol/progesterone treatment on FSH was similar between old and young cows. Although the preovulatory LH surge in response to estradiol treatment was delayed in old than young cows (P=0.01), detected ovulation times were not different. No difference in ovarian superstimulatory response was detected between age groups, but old cows (n=8) tended (P=0.10) to have fewer large follicles (>or=9 mm) 12 h after last FSH treatment than in young cows (n=7). We concluded that pituitary and ovarian responsiveness to estradiol/progesterone synchronization treatment was similar between old and young cows, but aging was associated with a delayed preovulatory LH surge subsequent to estradiol treatment. Old cows tended to have fewer large follicles after superstimulatory treatment than young cows.  相似文献   

9.
The steroidogenic potential of various physiological compartments within the ovary of the hen were examined using in vitro systems. Three-hour incubations of individual whole small follicles (less than 1 mm-1 cm) or 100,000 collagenase-dispersed theca cells of the five largest ovarian follicles (F1-F5) were conducted in 1 ml of Medium 199 at 37 degrees C in the presence and absence of luteinizing hormone (LH) (0.39, 0.78, 1.56, 3.13 and 6.25 ng), progesterone (5 ng), and dehydroepiandrosterone (DHEA, 5 ng). Steroid output was measured by radioimmunoassay of incubation media. Progesterone was not produced by small follicles although they are a major source of DHEA and estradiol and a significant source of androstenedione. Output of DHEA, androstenedione and estradiol was highly stimulated by LH. The substrate for androstenedione and estradiol in small follicles is probably DHEA. Output of DHEA and androstenedione in theca cells of F2-F5 was stimulated by LH in a dose-related manner. A dose-response relationship between estradiol output and the concentration of LH in media was not apparent in theca cells from F2-F5. Steroidogenesis in theca tissue of large follicles occurs predominantly via the delta 4 pathway. The ability of these theca cells to metabolize progesterone to androstenedione is lost between 36 and 12 h before ovulation. Their ability to metabolize DHEA to androstenedione is still present 12 h before ovulation. Aromatase activity is significantly reduced between 36 and 12 h before ovulation. These data indicate that both large and small follicles can be stimulated by LH. The small follicles are the major source of estrogen. As the large yolky follicles mature, steroidogenesis shifts from the delta 5 to the delta 4 pathway. By 12 h before ovulation, the F1 follicle has lost the ability to convert progesterone to androstenedione. The inability of the largest ovarian follicle to convert progesterone to androstenedione contributes at least in part to the preovulatory increase in the plasma concentration of progesterone that generates the preovulatory LH surge by positive feedback.  相似文献   

10.
The extent of dissolution of tissues within the apical wall of the preovulatory ovine follicle (formative site of rupture) is greater than that of the counterpart basal hemisphere. It has been hypothesized that proteolytic enzymes released from contiguous ovarian surface epithelial cells contribute to apical follicular weakening and ovulation. Ovulation occurs from the dominant ovarian follicle of proestrous ewes at approximately 24 h after administration of luteinizing hormone-releasing hormone (LHRH). Follicular rupture was inhibited in sheep in which the ovarian surface epithelium was surgically removed at 8 (but not at 16) h following LHRH. Plasminogen activator bioactivity was greater within the follicular apex compared to basal wall at 12 h; this difference was negated by prior removal of epithelium at 8 h after LHRH. A low Mr plasminogen activator of the urokinase-type (uPA) was secreted by epithelial cells recovered from the surface of preovulatory follicles (Western blot analysis). Ovarian epithelium, not associated with a preovulatory follicle, produced very little uPA. Finally, ovulation was suppressed by intrafollicular injection (8 h post-LHRH) of uPA antibodies. It is suggested that secretion of uPA by ovarian surface epithelium and consequent plasmin up-regulation within neighboring tunica albuginea and follicular theca is a contributing factor in the mechanism of ovulation.  相似文献   

11.
12.
Ovaries were collected from naturally cycling gilts during the preovulatory period and the stage relative to the LH surge estimated by measurement of oestradiol and progesterone concentrations in follicular fluid. Many of the follicles recovered had become flaccid with an associated increase in follicular fluid viscosity. Marked infolding of both the granulosa and theca tissue in some follicles suggested early luteinization. However, these morphological changes did not necessarily occur simultaneously in the same follicle, or in all follicles within an ovary. Moreover, they were not consistently related to characteristic differences in the concentration of follicular fluid steroids, suggesting either that the morphological and biochemical aspects of the luteinization of follicles may be independently controlled, or may respond at different rates to the same signal.  相似文献   

13.
The concentrations of six steroids and of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in follicular fluid from preovulatory and large atretic follicles of normal Holstein heifers and from preovulatory follicles of heifers treated with a hormonal regimen that induces superovulation. Follicular fluid from preovulatory follicles of normal animals obtained prior to the LH surge contained extremely high concentrations of estradiol (1.1 +/- 0.06 micrograms/ml), with estrone concentrations about 20-fold less. Androstenedione was the predominant aromatizable androgen (278 +/- 44 ng/ml; testosterone = 150 +/- 39 ng/ml). Pregnenolone (40 +/- 3 ng/ml) was consistently higher than progesterone (25 +/- 3 ng/ml). In fluid obtained at 15 and 24 h after the onset of estrus, estradiol concentrations had declined 6- and 12-fold, respectively; androgen concentrations had decreased 10- to 20-fold; and progesterone concentrations were increased, whereas pregnenolone concentrations had declined. Concentrations of LH and FSH in these follicles were similar to plasma levels of these hormones before and after the gonadotropin surges. The most striking difference between mean steroid levels in large atretic follicles (greater than 1 cm in diameter) and preovulatory follicles obtained before the LH surge was that estradiol concentrations were about 150 times lower in atretic follicles. Atretic follicles also had much lower concentrations of LH and slightly lower concentrations of FSH than preovulatory follicles. Hormone concentrations in follicles obtained at 12 h after the onset of estrus from heifers primed for superovulation were similar to those observed in normal preovulatory follicles at estrus + 15 h, except that estrogen concentrations were about 6-40 times lower and there was more variability among animals for both steroid and gonadotropin concentrations. Variability in the concentrations of reproductive hormones in fluid from heifers primed for superovulation suggests that the variations in numbers of normal embryos obtained with this treatment may be due, at least in part, to abnormal follicular steroidogenesis.  相似文献   

14.
Insertion of osmotic minipumps containing 1 mg ovine LH on Day 1 (oestrus) elevated circulating serum concentrations of LH, progesterone and androstenedione when compared with values at pro-oestrus. Ovulation was blocked for at least 2 days at which time there were twice the normal numbers of preovulatory follicles. Follicular and thecal progesterone production in vitro was elevated when compared with that in pro-oestrous controls. Follicular and thecal androstenedione production in vitro was lower than in controls even though serum concentrations of androstenedione were elevated; the higher androstenedione values may be due to the increase in number of preovulatory follicles when compared with pro-oestrous controls. Follicles from LH-treated hamsters aromatized androstenedione to oestradiol and follicular production of oestradiol was similar to that in pro-oestrous follicles despite low follicular androstenedione production in the LH-treated group. Treatment with 20 i.u. hCG on Days 4 or 6 after insertion of an LH osmotic minipump on Day 1 induced ovulation of approximately 30 ova, indicating that the blockade of ovulation was not due to atresia of the preovulatory follicles. Serum progesterone concentrations on Days 2, 4 and 6 in LH-treated hamsters were greater than 17 nmol/l, suggesting that the blockade of ovulation might have been due to prevention of the LH surge by high serum progesterone concentrations.  相似文献   

15.
The preovulatory increase in follicular prostaglandins (PG) stimulated by luteinizing hormone (LH) is dependent upon 3'-5'-cyclic adenosine monophosphate (cAMP) and is essential for ovulation. It has been proposed that follicular PG stimulate a second rise in cAMP, independent of LH. This study examined the temporal relationships among PGE2, PGF2 alpha 6-keto-PGF1 alpha, estradiol-17 beta, progesterone, testosterone, androstenedione and the biphasic increases of cAMP in follicles of rabbits. Does received indomethacin (IN, 20 mg/kg, i.v.; n = 30) or phosphate buffer (C; n = 30), 0.5 h before 50 ug of LH. At laparotomy at 0, 0.5, 1, 2, 4 or 8 h after LH, blood was collected from each ovarian vein and two follicles per ovary were aspirated of fluid and excised. Plasma and follicular tissue and fluid were assayed for PG and steroids. Tissue and fluid were assayed for cAMP. In C does, cAMP (pmol/follicle) in tissue increased from 11.3 at 0 h to 14.2 at 0.5 h, decreased at 1 h (5.4) and increased linearly through 8 h to 14.5. In IN-treated does, cAMP remained high from 0.5 (13.2) to 2 h (16.3), decreased at 4 h (7.9) then increased again by 8 h (15.5). Indomethacin decreased all PG in follicular tissue but 6-keto-PGF1 alpha rose after 2 h, whereas PGE2 and PGF2 alpha did not. Estradiol-17 beta, progesterone, and androstenedione did not vary with treatment; testosterone was increased (P less than .05) by IN. PGE2 or PGF2 alpha may terminate the first phase of cAMP production, rather than initiate the second phase.  相似文献   

16.
Serum and ovarian progesterone levels and in vitro production of progesterone by preovulatory follicles were measured on proestrus in pregnant mare's serum gonadotropin (PMSG) primed immature rats in which the luteinizing hormone (LH) surge and ovulation were blocked by administration of the antiandrogen hydroxyflutamide. Serum progesterone levels observed at 12:00 on proestrus were significantly elevated, twofold above those observed in vehicle-treated controls, by in vivo administration of 5 mg hydroxyflutamide 4 h earlier. In control rats, proestrous progesterone did not increase until 16:00, in parallel with rising LH levels of the LH surge. No LH surge occurred in the hydroxyflutamide-treated rats, ovulation was blocked, and serum progesterone declined throughout the afternoon of proestrus, from the elevated levels present at 12:00. Administration of human chorionic gonadotropin (hCG) at 11:00 advanced the elevation of serum progesterone by 2 h in vehicle-treated controls and prevented the decline in progesterone levels in hydroxyflutamide-treated rats. The patterns of change in ovarian tissue concentrations with time and treatment were essentially similar to those observed for serum progesterone. In in vitro experiments, progesterone secretion during 24 h culture of preovulatory follicles obtained on PMSG-induced proestrus was significantly increased, sixfold, by addition to the culture media of 370 microM but not of 37 microM hydroxyflutamide. Testosterone (50 nM) and hCG (20 mIU/mL) caused 26- and 14-fold increases, respectively, in progesterone secretion by cultured follicles. Hydroxyflutamide significantly reduced the stimulatory effect of testosterone but not of hCG on progesterone secretion in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
This study was designed to describe the follicular population present on the canine ovary (Canis familiaris) during the preovulatory period and essentially the changes in oocyte size, mucification, and chromatin configuration occurring from before the luteinizing hormone (LH) surge up to postovulation. In a first experiment, ovaries of beagle bitches were collected before (n = 21) or after LH surge but before ovulation (post-LH surge/preovulation stage, n = 24) as determined using hormone (LH, estradiol, progesterone) assays and ultrasonography. All large (>2 mm) follicles were measured and punctured. The numbers of oocytes collected per follicle and the degree of cumulus mucification were recorded. In a second experiment, ovaries were similarly collected before (n = 13) and after the LH surge but before ovulation (n = 11) as well as after ovulation as determined by ultrasonography (n = 9). Chromatin configuration of the oocytes was observed by DNA staining and confocal microscopy. In Experiment 1, before the LH peak, an average of 13.5 ± 0.7 follicles per bitch (total 284 follicles) were detected, and the maximal follicle diameter reached 6.5 mm. Large follicles were observed already in this period of the cycle and as early as when progesterone was still below 0.5 ng/mL. After the LH peak but before ovulation, 11.0 ± 0.7 follicles were present (total 264 follicles). Fully mucified cumulus cells were observed only in follicles larger than 4 mm. Multi-oocytic follicles represented 7% (before LH peak) and 4% (after LH peak) of the follicular population. In Experiment 2, all the oocytes were at the germinal vesicle (GV) stage, but three chromatin configurations could be distinguished: diffuse, partly grouped, and fully grouped chromatin. The proportion of oocytes with fully grouped chromatin increased with the follicular diameter and the time in estrus, the maximum being observed after the LH peak. These results suggest that (1) before LH peak, follicles are already of large diameter, similar to the ones at ovulation; (2) the ability for cumulus mucification is acquired during the late steps of follicular growth; (3) three GV patterns may be observed during the periovulatory period.  相似文献   

18.
This study examined the effect of the preovulatory gonadotropin surge on the temporal and spatial regulation of tissue plasminogen activator (tPA), urokinase plasminogen activator (uPA), and uPA receptor (uPAR) mRNA expression and tPA, uPA, and plasmin activity in bovine preovulatory follicles and new corpora lutea collected at approximately 0, 6, 12, 18, 24, and 48 h after a GnRH-induced gonadotropin surge. Messenger RNAs for tPA, uPA, and uPAR were increased in a temporally specific fashion within 24 h of the gonadotropin surge. Localization of tPA mRNA was primarily to the granulosal layer, whereas both uPA and uPAR mRNAs were detected in both the granulosal and thecal layers and adjacent ovarian stroma. Activity for tPA was increased in follicular fluid and the preovulatory follicle apex and base within 12 h after the gonadotropin surge. The increase in tPA activity in the follicle base was transient, whereas the increased activity in the apex was maintained through the 24 h time point. Activity for uPA increased in the follicle apex and base within 12 h of the gonadotropin surge and remained elevated. Plasmin activity in follicular fluid also increased within 12 h after the preovulatory gonadotropin surge and was greatest at 24 h. Our results indicate that mRNA expression and enzyme activity for both tPA and uPA are increased in a temporally and spatially specific manner in bovine preovulatory follicles after exposure to a gonadotropin surge. Increased plasminogen activator and plasmin activity may be a contributing factor in the mechanisms of follicular rupture in cattle.  相似文献   

19.
Deeply acyclic (seasonally anovulatory) mares were treated with GnRH or a GnRH analogue to induce follicular development and ovulation. Courses of GnRH (3--4) were administered at approximately 10-day intervals to reproduce the gonadotrophin surges which precede ovulation in the normal cycle. Exogenous progesterone was administered in an attempt to reproduce the luteal phase pattern. Induced serum FSH concentrations were comparable to those causing follicular development in the normal cycle, but induced LH levels were lower and of shorter duration than those of the periovulatory surge. Three of 4 mares treated with GnRH appeared to ovulate, but did not establish CL. Nine of 10 mares given GnRH analogue also developed follicles during the final treatment course, as did mares treated with progesterone only, while only 1 of 5 untreated control mares showed any ovarian development. Failure to induce final follicular maturation and CL development by this treatment regimen may be due to an inadequate LH surge at the time of the expected ovulation associated with the low preovulatory oestradiol-17 beta surge, possibly caused by the preceding FSH stimulation being inadequate or inappropriate. Progesterone treatment increased baseline FSH concentrations in GnRH-treated mares, and also stimulated follicular development in mares not treated with GnRH, indicating a possible role for progesterone in folliculogenesis and, indirectly, ovulation.  相似文献   

20.
The effects of ZK 191703 (ZK), a pure antiestrogen, on ovulation, follicle development and peripheral hormone levels were investigated in rats with 4-day estrus cycle and gonadotropin-primed immature rats in comparison to tamoxifen (TAM)-treatment. In adult rats, a single s.c. injection of ZK (5 mg/kg) or TAM (5 mg/kg) at an early stage of the estrus cycle (diestrus 9:00) inhibited ovulation, and was associated with suppression of the surge of preovulatory LH, FSH and progesterone. In rats treated with ZK or TAM at a late stage of the estrus cycle (proestrus 9:00), no inhibitory effects on ovulation, the gonadotropin and progesterone surge were detected. ZK treatment at diestrus 9:00, in contrast to TAM, increased the baseline LH level. When immature rats were treated with antiestrogens in the earlier stage of follicular development, 6 and 30 h but not 48 h or later after injection of gonadotropin (PMSG), ovulation was attenuated, associated with a lowered progesterone level. Unruptured preovulatory follicles were found in most of the ovaries from anovulatory animals treated with ZK or TAM. Antiestrogens, ZK and TAM administered at an early phase of the estrus cycle delay the follicular development functionally and inhibit ovulation in rats and suppression of the preovulatory progesterone surge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号