首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrP(Sc)). Disease is transmitted by the autocatalytic propagation of PrP(Sc) misfolding at the expense of the normal prion protein. The biggest challenge of the prion hypothesis has been to explain the molecular mechanism by which prions can exist as different strains, producing diseases with distinguishable characteristics. Here, we show that PrP(Sc) generated in vitro by protein misfolding cyclic amplification from five different mouse prion strains maintains the strain-specific properties. Inoculation of wild-type mice with in vitro-generated PrP(Sc) caused a disease with indistinguishable incubation times as well as neuropathological and biochemical characteristics as the parental strains. Biochemical features were also maintained upon replication of four human prion strains. These results provide additional support for the prion hypothesis and indicate that strain characteristics can be faithfully propagated in the absence of living cells, suggesting that strain variation is dependent on PrP(Sc) properties.  相似文献   

2.
Chen SG  Gambetti P 《Neuron》2002,34(6):854-856
The species barrier in prion infectivity is believed to reside in the degree of amino acid sequence heterology between the infectious prion protein, PrP(Sc), of the donor and the normal PrP of the host. bring new evidence that distinct PrP(Sc) species or prion strains may have different conformations even when they have identical amino acid sequence and that the conformation of the exogenous prion strain is a determinant of the species barrier in hosts that have identical PrP genotype.  相似文献   

3.
Prion replication is believed to consist of two components, a growth or elongation of infectious isoform of the prion protein (PrP(Sc)) particles and their fragmentation, a process that provides new replication centers. The current study introduced an experimental approach that employs Protein Misfolding Cyclic Amplification with beads (PMCAb) and relies on a series of kinetic experiments for assessing elongation rates of PrP(Sc) particles. Four prion strains including two strains with short incubation times to disease (263K and Hyper) and two strains with very long incubation times (SSLOW and LOTSS) were tested. The elongation rate of brain-derived PrP(Sc) was found to be strain-specific. Strains with short incubation times had higher rates than strains with long incubation times. Surprisingly, the strain-specific elongation rates increased substantially for all four strains after they were subjected to six rounds of serial PMCAb. In parallel to an increase in elongation rates, the percentages of diglycosylated PrP glycoforms increased in PMCAb-derived PrP(Sc) comparing to those of brain-derived PrP(Sc). These results suggest that PMCAb selects the same molecular features regardless of strain initial characteristics and that convergent evolution of PrP(Sc) properties occurred during in vitro amplification. These results are consistent with the hypothesis that each prion strain is comprised of a variety of conformers or 'quasi-species' and that change in the prion replication environment gives selective advantage to those conformers that replicate most effectively under specific environment.  相似文献   

4.
Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.  相似文献   

5.
Prions are unconventional infectious agents composed exclusively of misfolded prion protein (PrP(Sc)), which transmits the disease by propagating its abnormal conformation to the cellular prion protein (PrP(C)). A key characteristic of prions is their species barrier, by which prions from one species can only infect a limited number of other species. Here, we report the generation of infectious prions by interspecies transmission of PrP(Sc) misfolding by in vitro PMCA amplification. Hamster PrP(C) misfolded by mixing with mouse PrP(Sc) generated unique prions that were infectious to wild-type hamsters, and similar results were obtained in the opposite direction. Successive rounds of PMCA amplification result in adaptation of the in vitro-produced prions, in a process reminiscent of strain stabilization observed upon serial passage in vivo. Our results indicate that PMCA is a valuable tool for the investigation of cross-species transmission and suggest that species barrier and strain generation are determined by the propagation of PrP misfolding.  相似文献   

6.
Detection of infectious prions in urine   总被引:2,自引:0,他引:2  
Gonzalez-Romero D  Barria MA  Leon P  Morales R  Soto C 《FEBS letters》2008,582(21-22):3161-3166
Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrP(Sc)). The mechanism of prion transmission is unknown. In this study, we attempted to detect prions in urine of experimentally infected animals. PrP(Sc) was detected in approximately 80% of the animals studied, whereas no false positives were observed among the control animals. Semi-quantitative calculations suggest that PrP(Sc) concentration in urine is around 10-fold lower than in blood. Interestingly, PrP(Sc) present in urine maintains its infectious properties. Our data indicate that low quantities of infectious prions are excreted in the urine. These findings suggest that urine is a possible source of prion transmission.  相似文献   

7.
Abnormal prion protein (PrP(Sc)) plays a central role in the transmission of prion diseases, but the molecular basis of prion strains with distinct biological characteristics remains to be elucidated. We analyzed the characteristics of prion disease by using mice inoculated with the Chandler and Fukuoka-1 strains propagated in a cultured mouse neuronal cell line, GT1-7, which is highly permissive to replication of the infectious agents. Strain-specific biological characteristics, including clinical manifestations, incubation period as related to the infectious unit, and pathological profiles, remained unchanged after passages in the cell cultures. We noted some differences in the biochemical aspects of PrP(Sc) between brain tissues and GT1-7 cells which were unlikely to affect the strain phenotypes. On the other hand, the proteinase K-resistant PrP core fragments derived from Fukuoka-1-infected tissues and cells were slightly larger than those from Chandler-infected versions. Moreover, Fukuoka-1 infection, but not Chandler infection, gave an extra fragment with a low molecular weight, approximately 13 kDa, in both brain tissues and GT1-7 cells. This cell culture model persistently infected with different strains will provide a new insight into the understanding of the molecular basis of prion diversity.  相似文献   

8.
Prion diseases such as Creutzfeldt-Jakob disease (CJD) in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals are associated with the accumulation in affected brains of a conformational isomer (PrP(Sc)) of host-derived prion protein (PrP(C)). According to the protein-only hypothesis, PrP(Sc) is the principal or sole component of transmissible prions. The conformational change known to be central to prion propagation, from a predominantly alpha-helical fold to one predominantly comprising beta structure, can now be reproduced in vitro, and the ability of beta-PrP to form fibrillar aggregates provides a plausible molecular mechanism for prion propagation. The existence of multiple prion strains has been difficult to explain in terms of a protein-only infectious agent but recent studies of human prion diseases suggest that strain-specific phenotypes can be encoded by different PrP conformations and glycosylation patterns. The experimental confirmation that a novel form of human prion disease, variant CJD, is caused by the same prion strain as cattle BSE, has highlighted the pressing need to understand the molecular basis of prion propagation and the transmission barriers that limit their passage between mammalian species. These and other advances in the fundamental biology of prion propagation are leading to strategies for the development of rational therapeutics.  相似文献   

9.
The normal cellular prion protein (PrP(C)) is a glycoprotein with two highly conserved potential N-linked glycosylation sites. All prion diseases, whether inherited, infectious or sporadic, are believed to share the same pathogenic mechanism that is based on the conversion of the normal cellular prion protein (PrP(C)) to the pathogenic scrapie prion protein (PrP(Sc)). However, the clinical and histopathological presentations of prion diseases are heterogeneous, depending not only on the strains of PrP(Sc) but also on the mechanism of diseases, such as age-related sporadic vs. infectious prion diseases. Accumulated evidence suggests that N-linked glycans on PrP(C) are important in disease phenotype. A better understanding of the nature of the N-linked glycans on PrP(C) during the normal aging process may provide new insights into the roles that N-linked glycans play in the pathogenesis of prion diseases. By using a panel of 19 lectins in an antibody-lectin enzyme-linked immunosorbent assay (ELISA), we found that the lectin binding profiles of PrP(C) alter significantly during aging. There is an increasing prevalence of complex oligosaccharides on the aging PrP(C), which are features of PrP(Sc). Taken together, this study suggests a link between the glycosylation patterns on PrP(C) during aging and PrP(Sc).  相似文献   

10.
The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease.  相似文献   

11.
Prion diseases are infectious neurodegenerative disorders that affect humans and animals and that result from the conversion of normal prion protein (PrP(C)) into the misfolded prion protein (PrP(Sc)). Chronic wasting disease (CWD) is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. Determining the risk of transmission of CWD to humans is of utmost importance, considering that people can be infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrP(C) can be converted into the misfolded form by CWD PrP(Sc), we performed experiments using the protein misfolding cyclic amplification technique, which mimics in vitro the process of prion replication. Our results show that cervid PrP(Sc) can induce the conversion of human PrP(C) but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, the newly generated human PrP(Sc) exhibits a distinct biochemical pattern that differs from that of any of the currently known forms of human PrP(Sc). Our results also have profound implications for understanding the mechanisms of the prion species barrier and indicate that the transmission barrier is a dynamic process that depends on the strain and moreover the degree of adaptation of the strain. If our findings are corroborated by infectivity assays, they will imply that CWD prions have the potential to infect humans and that this ability progressively increases with CWD spreading.  相似文献   

12.
Insights into prion strains and neurotoxicity   总被引:7,自引:0,他引:7  
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases that are caused by prions and affect humans and many animal species. It is now widely accepted that the infectious agent that causes TSEs is PrP(Sc), an aggregated moiety of the host-derived membrane glycolipoprotein PrP(C). Although PrP(C) is encoded by the host genome, prions themselves encipher many phenotypic TSE variants, known as prion strains. Prion strains are TSE isolates that, after inoculation into distinct hosts, cause disease with consistent characteristics, such as incubation period, distinct patterns of PrP(Sc) distribution and spongiosis and relative severity of the spongiform changes in the brain. The existence of such strains poses a fascinating challenge to prion research.  相似文献   

13.
Studies of prion biology and diseases have elucidated several new concepts, but none was more heretical than the proposal that the biological properties that distinguish different prion strains are enciphered in the disease-causing prion protein (PrP(Sc)). To explore this postulate, we examined the properties of PrP(Sc) from eight prion isolates that propagate in Syrian hamster (SHa). Using resistance to protease digestion as a marker for the undenatured protein, we examined the conformational stabilities of these PrP(Sc) molecules. All eight isolates showed sigmoidal patterns of transition from native to denatured PrP(Sc) as a function of increasing guanidine hydrochloride (GdnHCl) concentration. Half-maximal denaturation occurred at a mean value of 1.48 M GdnHCl for the Sc237, HY, SHa(Me7), and MT-C5 isolates, all of which have approximately 75-d incubation periods; a concentration of 1.08 M was found for the DY strain with a approximately 170-d incubation period and approximately 1.25 M for the SHa(RML) and 139H isolates with approximately 180-d incubation periods. A mean value of 1.39 M GdnHCl for the Me7-H strain with a approximately 320-d incubation period was found. Based on these results, the eight prion strains segregated into four distinct groups. Our results support the unorthodox proposal that distinct PrP(Sc) conformers encipher the biological properties of prion strains.  相似文献   

14.
The misfolded infectious isoform of the prion protein (PrP(Sc)) is thought to replicate in an autocatalytic manner by converting the cellular form (PrP(C)) into its pathogenic folding variant. The similarity in the amino acid sequence of PrP(C) and PrP(Sc) influences the conversion efficiency and is considered as the major determinant for the species barrier. We performed in vitro conversion reactions on wild-type and mutated PrP(C) to determine the role of the primary sequence for the high susceptibility of bank voles to scrapie. Different conversion efficiencies obtained with bank vole and mouse PrP(C) in reactions with several prion strains were due to differences at amino acid residues 155 and 170. However, the conversion efficiencies obtained with mouse and vole PrP(C) in reactions with sheep scrapie did not correlate with the susceptibility of the respective species to this prion strain. This discrepancy between in vitro and in vivo data may indicate that at least in the case of scrapie transmission to bank voles additional host factors can strongly modulate the species barrier. Furthermore, in vitro conversion reactions with different prion strains revealed that the degree of alteration of the conversion efficiency induced by amino acid exchanges was varying according to the prion strain. These results support the assumption that the repertoire of conformations adopted by a certain PrP(C) primary sequence is decisive for its convertibility to the strain-specific PrP(Sc) conformation.  相似文献   

15.
Prion strains are characterized by differences in the outcome of disease, most notably incubation period and neuropathological features. While it is established that the disease specific isoform of the prion protein, PrP(Sc), is an essential component of the infectious agent, the strain-specific relationship between PrP(Sc) properties and the biological features of the resulting disease is not clear. To investigate this relationship, we examined the amplification efficiency and conformational stability of PrP(Sc) from eight hamster-adapted prion strains and compared it to the resulting incubation period of disease and processing of PrP(Sc) in neurons and glia. We found that short incubation period strains were characterized by more efficient PrP(Sc) amplification and higher PrP(Sc) conformational stabilities compared to long incubation period strains. In the CNS, the short incubation period strains were characterized by the accumulation of N-terminally truncated PrP(Sc) in the soma of neurons, astrocytes and microglia in contrast to long incubation period strains where PrP(Sc) did not accumulate to detectable levels in the soma of neurons but was detected in glia similar to short incubation period strains. These results are inconsistent with the hypothesis that a decrease in conformational stability results in a corresponding increase in replication efficiency and suggest that glia mediated neurodegeneration results in longer survival times compared to direct replication of PrP(Sc) in neurons.  相似文献   

16.
Propagation of the agents responsible for transmissible spongiform encephalopathies (TSEs) in cultured cells has been achieved for only a few cell lines. To establish efficient and versatile models for transmission, we developed neuroblastoma cell lines overexpressing type A mouse prion protein, MoPrP(C)-A, and then tested the susceptibility of the cells to several different mouse-adapted scrapie strains. The transfected cell clones expressed up to sixfold-higher levels of PrP(C) than the untransfected cells. Even after 30 passages, we were able to detect an abnormal proteinase K-resistant form of prion protein, PrP(Sc), in the agent-inoculated PrP-overexpressing cells, while no PrP(Sc) was detectable in the untransfected cells after 3 passages. Production of PrP(Sc) in these cells was also higher and more stable than that seen in scrapie-infected neuroblastoma cells (ScN2a). The transfected cells were susceptible to PrP(Sc)-A strains Chandler, 139A, and 22L but not to PrP(Sc)-B strains 87V and 22A. We further demonstrate the successful transmission of PrP(Sc) from infected cells to other uninfected cells. Our results corroborate the hypothesis that the successful transmission of agents ex vivo depends on both expression levels of host PrP(C) and the sequence of PrP(Sc). This new ex vivo transmission model will facilitate research into the mechanism of host-agent interactions, such as the species barrier and strain diversity, and provides a basis for the development of highly susceptible cell lines that could be used in diagnostic and therapeutic approaches to the TSEs.  相似文献   

17.
To investigate the role of the pathogenic prion protein (PrP(Sc)) in controlling susceptibility to foreign prions, two Syrian hamster (SHa) prion strains, Sc237 and DY, were transmitted to transgenic mice expressing chimeric SHa/mouse PrP genes, Tg(MH2M). First passage of SHa(Sc237) prions exhibited prolonged incubation times, diagnostic of a species barrier. PrP(Sc) of the new MH2M(Sc237) strain possessed different structural properties from those of SHa(Sc237), as demonstrated by relative conformational stability measurements. This change was accompanied by a disease phenotype different from the SHa(Sc237) strain. Conversely, transmission of SHa(DY) prions to Tg(MH2M) mice showed no species barrier, and the MH2M(DY) strain retained the conformational and disease-specific properties of SHa(DY). These results suggest a causal relationship between species barriers, changes in PrP(Sc) conformation, and the emergence of new prion strains.  相似文献   

18.
Intriguing nucleic-acid-binding features of mammalian prion protein   总被引:3,自引:0,他引:3  
In transmissible spongiform encephalopathies, the infectious material consists chiefly of a protein, the scrapie prion protein PrP(Sc), that carries no genetic coding material; however, prions are likely to have accomplices that chaperone their activity and promote the conversion of the cellular prion protein PrP(C) into the disease-causing isoform (PrP(Sc)). Recent studies from several laboratories indicate that PrP(C) recognizes many nucleic acids (NAs) with high affinities, and we correlate these findings with a possible pathophysiological role for this interaction. Thus, of the chaperones, NA is the most likely candidate for prions. The participation of NAs in prion propagation opens new avenues for developing new diagnostic tools and therapeutics to target prion diseases, as well as for understanding the function of PrP(C), probably as a NA chaperone.  相似文献   

19.
The infectious form of prion protein, PrP(Sc), self-propagates by its conversion of the normal, cellular prion protein molecule PrP(C) to another PrP(Sc) molecule. It has not yet been demonstrated that recombinant prion protein can convert prion protein molecules from PrP(C) to PrP(Sc). Here we show that recombinant hamster prion protein is converted to a second form, PrP(RDX), by a redox process in vitro and that this PrP(RDX) form seeds the conversion of other PrP(C) molecules to the PrP(RDX) form. The converted form shows properties of oligomerization and seeded conversion that are characteristic of PrP(Sc). We also find that the oligomerization can be reversed in vitro. X-ray fiber diffraction suggests an amyloid-like structure for the oligomerized prion protein. A domain-swapping model involving intermolecular disulfide bonds can account for the stability and coexistence of two molecular forms of prion protein and the capacity of the second form for self-propagation.  相似文献   

20.
Prion diseases are associated with the accumulation of an abnormal isoform of host-encoded prion protein (PrP(Sc)). A number of prion strains can be distinguished by "glycotyping" analysis of the respective deposited PrP(Sc) compound. In this study, the long-term proteinase K resistance, the molecular mass, and the localization of PrP(Sc) deposits derived from conventional and transgenic mice inoculated with 11 different BSE and scrapie strains or isolates were examined. Differences were found in the long-term proteinase K resistance (50 microg/ml at 37 degrees C) of PrP(Sc). For example, scrapie strain Chandler or PrP(Sc) derived from field BSE isolates were destroyed after 6 hr of exposure, whereas PrP(Sc) of strains 87V and ME7 and of the Hessen1 isolate were extremely resistant to proteolytic cleavage. Nonglycosylated, proteinase K-treated PrP(Sc) of BSE isolates and of scrapie strain 87V exhibited a 1-2 kD lower molecular mass than PrP(Sc) derived from all other scrapie strains and isolates. With the exception of strain 87V, PrP(Sc) was generally deposited in the cerebrum, cerebellum, and brain stem of different mouse lines at comparable levels. Long-term proteinase resistance, molecular mass, and the analysis of PrP(Sc) deposition therefore provide useful criteria in discriminating prion strains and isolates (e.g., BSE and 87V) that are otherwise indistinguishable by the PrP(Sc) "glycotyping" technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号