首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. A. Raleigh  R. Trimarchi    H. Revel 《Genetics》1989,122(2):279-296
We have genetically analyzed, cloned and physically mapped the modified cytosine-specific restriction determinants mcrA (rglA) and mcrB (rglB) of Escherichia coli K-12. The independently discovered Rgl and Mcr restriction systems are shown to be identical by three criteria: 1) mutants with the RglA- or RglB- phenotypes display the corresponding McrA- or McrB- phenotypes, and vice versa; 2) the gene(s) for RglA and McrA reside together at one locus, while gene(s) for RglB and McrB are coincident at a different locus; and 3) RglA+ and RglB+ recombinant clones complement for the corresponding Mcr-deficient lesions. The mcrA (rglA) gene(s) is on the excisable element e14, just clockwise of purB at 25 min. The mcrB (rglB) gene(s), at 99 min, is in a cluster of restriction functions that includes hsd and mrr, determinants of host-specific restriction (EcoK) and methyladenine-specific restriction respectively. Gene order is mcrB-hsdS-hsdM-hsdR-mrr-serB. Possible models for the acqusition of these restriction determinants by enteric bacteria are discussed.  相似文献   

2.
The McrA and McrB (modified cytosine restriction) systems of E. coli interfere with incoming DNA containing methylcytosine. DNA from many organisms, including all mammalian and plant DNA, is expected to be sensitive, and this could interfere with cloning experiments. The McrA and B phenotypes of a few strains have been reported previously (1-4). The Mcr phenotypes of 94 strains, primarily derived from E. coli K12, are tabulated here. We briefly review some evidence suggesting that McrB restriction of mouse-modified DNA does occur in vivo and does in fact interfere with cloning of specific mouse sequences.  相似文献   

3.
K Hiom  S M Thomas  S G Sedgwick 《Biochimie》1991,73(4):399-405
The alleviation of DNA restriction during the SOS response in Escherichia coli has been further investigated. With the EcoK DNA restriction system UV irradiated wild-type cells show a 10(4)-fold increase in ability to plate non-modified lambda phage and a 3-4 fold increase in transformation by non-modified plasmid DNA. A role for the umuDC genes of E coli in the process of SOS-induced restriction alleviation was identified by showing that a umuC122::Tn5 mutant could alleviate EcoK restriction to only 5% that of wild-type levels. Although umuDC are better characterized for their pivotal role in SOS induced mutagenesis, it is demonstrated here that umu-dependent alleviation of EcoK restriction is a transient process in which umu-dependent mutagenesis plays little part. A second form of SOS induced alleviation of DNA restriction is described in this paper involving the McrA restriction system. The mcrA gene is shown to be encoded within a defective prophage called e14 situated at the 25 min region on the Escherichia coli genetic map. e14 is known to abortively excise from the chromosome after SOS induction and it is demonstrated in this report that mcrA is lost from the genome after SOS induction as part of e14. This results in co-ordinate decrease in the level of McrA restriction within a population of cells.  相似文献   

4.
The restriction systems McrA and McrB of Escherichia coli K-12 are known to attack DNA containing modified cytosine. In strains lacking both activities, however, we observed that DNA methylated at CG dinucleotides (as is mammalian DNA) was still significantly restricted. We show that this substantial barrier to the acceptance of 5-methylcytosine-containing DNA is attributable to a hitherto unknown activity of the Mrr restriction system. Strikingly, the multiple systems used by this gut inhabitant to determine the fate of invading DNA will all limit genetic exchange with its mammalian host(s), reinforcing the idea that one role of DNA methylation is to serve as a "molecular passport" (E. A. Raleigh, R. Trimarchi, and H. Revel, Genetics 122:279-296, 1989).  相似文献   

5.
Liu G  Ou HY  Wang T  Li L  Tan H  Zhou X  Rajakumar K  Deng Z  He X 《PLoS genetics》2010,6(12):e1001253
Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation) were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(3)2 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631) leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16-28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.  相似文献   

6.
Cloning and characterization of the HpaII methylase gene.   总被引:10,自引:9,他引:1       下载免费PDF全文
The HpaII restriction-modification system from Haemophilus parainfluenzae recognizes the DNA sequence CCGG. The gene for the HpaII methylase has been cloned into E. coli and its nucleotide sequence has been determined. The DNA of the clones is fully protected against cleavage by the HpaII restriction enzyme in vitro, indicating that the methylase gene is active in E. coli. The clones were isolated in an McrA-strain of E. coli; attempts to isolate them in an McrA+ strain were unsuccessful. The clones do not express detectable HpaII restriction endonuclease activity, suggesting that either the endonuclease gene is not expressed well in E. coli, or that it is not present in its entirety in any of the clones that we have isolated. The derived amino acid sequence of the HpaII methylase shows overall similarity to other cytosine methylases. It bears a particularly close resemblance to the sequences of the HhaI, BsuFI and MspI methylases. When compared with three other methylases that recognize CCGG, the variable region of the HpaII methylase, which is believed to be responsible for sequence specific recognition, shows some similarity to the corresponding regions of the BsuFI and MspI methylases, but is rather dissimilar to that of the SPR methylase.  相似文献   

7.
The Mcr systems (previously known as Rgl systems) ofEscherichia coli recognize and cleave specific sequences carrying methylated or hydroxymethylated cytosines. We have cloned the mcrA gene and determined its nucleotide sequence. An 831 base pair sequence encodes the McrA protein. Analysis of the sequence data reveals that there arc additional ORFs internal to the above. A phage T7 expression system was used to determine the protein products encoded by the cloned mcrA gene. The results clearly show that a 31 kDa polypeptide is responsible for McrA activity. This is in agreement with the molecular weight deduced from sequence data. McrA protein was found to be localized in the outer membrane ofEscherichia coli. To our knowledge this is the first restriction enzyme localized in the outer membraneof Escherichia coli. Presented in part at the Second New England Biolabs Workshop on Biological DNA Modification, September, 1990, Berlin  相似文献   

8.
Mycoplasma bacteriophage L51 single-stranded DNA and L2 double-stranded DNA are host cell modified and restricted when they transfect Acholeplasma laidlawii JA1 and K2 cells. The L51 genome has a single restriction endonuclease MboI site (recognition sequence GATC), which contains 5-methylcytosine when the DNA is isolated from L51 phage grown in K2 cells but is unmethylated when the DNA is from phage grown in JA1 cells. This GATC sequence is nonessential, since an L51 mutant in which the MboI site was deleted was still viable. DNA from this deletion mutant phage was not restricted during transfection of either strain K2 or JA1. Therefore, strain K2 restricts DNA containing the sequence GATC, and strain JA1 restricts DNA containing the sequence GAT 5-methylcytosine. We conclude that K2 cells have a restriction system specific for DNA containing the sequence GATC and protect their DNA by methylating cytosine in this sequence. In contrast, JA1 cells (which contain no methylated DNA bases) have a newly discovered type of restriction-modification system. From results of studies of the restriction of specifically methylated DNAs, we conclude that JA1 cells restrict DNA containing 5-methylcytosine, regardless of the nucleotide sequence containing 5-methylcytosine. This is the first report of a DNA restriction activity specific for a single (methylated) base. Modification in this system is the absence of cytosine methylating activity. A restriction-deficient variant of strain JA1, which retains the JA1 modification phenotype, was isolated, indicating that JA1 cells have a gene product with restriction specificity for DNA containing 5-methylcytosine.  相似文献   

9.
The EcoRII endonuclease cleaves DNA containing the sequence CC(A/T)GG before the first cytosine. The methylation of the second cytosine in the sequence by either the EcoRII methylase or Dcm, a chromosomally coded protein in Escherichia coli, inhibits the cleavage. The gene for the EcoRII endonuclease was mapped by analysis of derivatives containing linker insertions, transposon insertions, and restriction fragment deletions. Surprisingly, plasmids carrying the wild-type endonuclease gene and the EcoRII methylase gene interrupted by transposon insertions appeared to be lethal to dcm+ strains of E. coli. We conclude that not all the EcoRII/Dcm recognition sites in the cellular DNA are methylated in dcm+ strains. The DNA sequence of a 1650-base pair fragment containing the endonuclease gene was determined. It revealed an open reading frame that could code for a 45.6-kDa protein. This predicted size is consistent with the known size of the endonuclease monomer (44 kDa). The endonuclease and methylase genes appear to be transcribed convergently from separate promoters. The reading frame of the endonuclease gene was confirmed at three points by generating random protein fusions between the endonuclease and beta-galactosidase, followed by an analysis of the sequence at the junctions. One of these fusions is missing 18 COOH-terminal amino acids of the endonuclease but still displays significant ability to restrict incoming phage in addition to beta-galactosidase activity. No striking similarity between the sequence of the endonuclease and any other protein in the PIR data base was found. The knowledge of the primary sequence of the endonuclease and the availability of the various constructs involving its gene should be helpful in the study of the interaction of the enzyme with its substrate DNA.  相似文献   

10.
At least three restriction systems that attack DNA containing naturally modified bases have been found in common Escherichia coli K-12 strains. These systems are McrA, McrBC, and Mrr. A brief summary of the genetic and phenotypic properties so far observed in laboratory strains is set forth, together with a proposed nomenclature for describing these properties.  相似文献   

11.
Organization and function of the mcrBC genes of Escherichia coli K-12   总被引:10,自引:0,他引:10  
Many natural DNA sequences are restricted in Escherichia coli K-12, not only by the classic Type I restriction system EcoK, but also by one of three modification-specific restriction systems found in K-12. The McrBC system is the best studied of these. We infer from the base composition of the mcrBC genes that they were imported from an evolutionarily distant source. The genes are located in a hypervariable cluster of restriction genes that may play a significant role in generation of species identity in enteric bacteria. Restriction activity requires the products of two genes for activity both in vivo and in vitro. The mcrB gene elaborates two protein products, only one of which is required for activity in vitro, but both of which contain a conserved amino acid sequence motif identified as a possible GTP-binding site. The mcrC gene product contains a leucine heptad repeat that could play a role in protein-protein interactions. McrBC activity in vivo and in vitro depends on the presence of modified cytosine in a specific sequence context; three different modifications are recognized. The in vitro activity of this novel multi-subunit restriction enzyme displays an absolute requirement for GTP as a cofactor.  相似文献   

12.
McrA is one of three functions that restrict modified foreign DNA in Escherichia coli K-12, affecting both methylated and hydroxymethylated substrates. We present here the first systematic analysis of the functional organization of McrA by using the GPS-LS insertion scanning system. We collected in-frame insertions of five amino acids at 46 independent locations and C-terminal truncations at 20 independent locations in the McrA protein. Each mutant was assayed for in vivo restriction of both methylated and hydroxymethylated bacteriophage (M.HpaII-modified lambda and T4gt, respectively) and for induction of the E. coli SOS response in the presence of M.HpaII methylation, indicative of DNA damage. Our findings suggest the presence of an N-terminal DNA-binding domain and a C-terminal catalytic nuclease domain connected by a linker region largely tolerant of amino acid insertions. DNA damage inflicted by a functional C-terminal domain is required for restriction of phage T4gt. Disruption of the N-terminal domain abolishes restriction of both substrates. Surprisingly, truncation mutations that spare the N-terminal domain do not mediate DNA damage, as measured by SOS induction, but nevertheless partially restrict M.HpaII-modified lambda in vivo. We suggest a common explanation for this "restriction without damage" and a similar observation seen in vivo with McrB, a component of another of the modified-DNA restriction functions. Briefly, we propose that unproductive site-specific binding of the protein to a vulnerable position in the lambda genome disrupts the phage development program at an early stage. We also identified a single mutant, carrying an insertion in the N-terminal domain, which could fully restrict lambda but did not restrict T4gt at all. This mutant may have a selective impairment in substrate recognition, distinguishing methylated from hydroxymethylated substrates. The study shows that the technically easy insertion scanning method can provide a rich source of functional information when coupled with effective phenotype tests.  相似文献   

13.
A DNA fragment of about 3.4 kilobase pairs that expressed the HgaI modification activity was cloned from the chromosomal DNA of Haemophilus gallinarum, and its nucleotide sequence was determined. Two open reading frames (ORF) which could code for structurally similar proteins were identified in the upstream and middle regions and a truncated ORF in the downstream region in the same orientation. When the respective ORFs were separately cloned, the clones carrying the upstream and middle ORFs both expressed the modification activity, indicating that the two genes are involved in modification of the HgaI restriction-modification system. In order to determine the sites of modification precisely, the respective genes were recloned into an expression vector, from which gene products were purified. A short DNA fragment carrying the HgaI recognition site was treated with each of these enzymes, and, after separation of the two strands by duplex formation with M13 viral DNAs carrying the respective strands, the presence or absence of modification was judged from susceptibility to HgaI endonuclease. The results of analysis showed that different strands were modified in an asymmetric way by each gene product. Analysis of the species and positions of modified bases by the Maxam-Gilbert method further demonstrated that the gene products from the upstream and middle ORFs participated in methylation of the internal cytosine residues of the strands carrying 3'-CTGCG-5' and 5'-GACGC-3', respectively. We concluded that the HgaI modification system consisted of two cytosine methylase genes responsible for modification of different strands in the target DNA.  相似文献   

14.
15.
Expression strains of Escherichia coli BL21(DE3) overproducing the E. coli m(5)C McrA restriction protein were produced by cloning the mcrA coding sequence behind a T7 promoter. The recombinant mcrA minus BL21(DE3) host produces active McrA as evidenced by its acquired ability to selectively restrict the growth of T7 phage containing DNA methylated in vitro by HpaII methylase. The mcrA coding region contains several non-optimal E. coli triplets. Addition of the pACYC-RIL tRNA encoding plasmid to the BL21(DE3) host increased the yield of recombinant McrA (rMcrA) upon induction about 5- to 10-fold. McrA protein expressed at 37 degrees C is insoluble but a significant fraction is recovered as soluble protein after autoinduction at 20 degrees C. rMcrA protein, which is predicted to contain a Cys(4)-Zn(2+) finger and a catalytically important histidine triad in its putative nuclease domain, binds to several metal chelate resins without addition of a poly-histidine affinity tag. This feature was used to develop an efficient protocol for the rapid purification of nearly homogeneous rMcrA. The native protein is a dimer with a high alpha-helical content as measured by circular dichroism analysis. Under all conditions tested purified rMcrA does not have measurable nuclease activity on HpaII methylated (Cm(5)CGG) DNA, although the purified protein does specifically bind HpaII methylated DNA. These results have implications for understanding the in vivo activity of McrA in "restricting" m(5)C-containing DNA and suggest that rMcrA may have utility as a reagent for affinity purification of DNA fragments containing m(5)C residues.  相似文献   

16.
We isolated temperature-sensitive mcrA and mcrBC mutants of Escherichia coli. At 42 degrees C, they were unable to restrict the T-even bacteriophages T6gt and T4gt or plasmids encoding cloned DNA methylase genes whose specificities confer sensitivity to the McrA and McrBC nucleases. Complementation analysis of the McrBC region (mcrB251) with the complete cloned McrBC system or a derivative with mcrB alone indicated that the mutation shows an absolute defect for the restriction of DNA containing hydroxymethylcytosine and a thermosensitive defect for the restriction of DNA containing methylcytosine. The properties of the McrA temperature-sensitive mutants suggest that some of these mutations can also influence the restriction of DNA containing hydroxymethylcytosine or methylcytosine residues.  相似文献   

17.
18.
We have carried out an analysis of the Escherichia coli K-12 mcrBC locus in order to (1) elucidate its genetic organization, (2) to identify the proteins encoded by this region, and (3) to characterize their involvement in the restriction of DNA containing methylated cytosine residues. In vitro expression of recombinant plasmids carrying all or portions of the mcrBC region revealed that the mcrB and mcrC genes are organized as an operon. The mcrBC operon specifies five proteins, as evident from parallel in vitro and in in vivo expression studies. Three proteins of 53, 35 and 34 kDa originate from mcrB expression, while two proteins of 37 and 16 kDa arise from mcrC expression. Products of both the mcrB and mcrC genes are required to restrict the methylated substrate DNA used in this study. We also determined the nature of mutant mcrBC loci in comparison to the E. coli K-12 wild-type mcrBC locus. A major goal of these studies was to clarify the nature of the mcrB-1 mutation, which is carried by some strains employed in previous analyses of the E. coli K-12 McrBC system. Based on our analyses the mutant strains investigated could be divided into different complementation groups. The mcrB-1 mutation is a nonsense or frameshift mutation located within mcrB. It causes premature termination of mcrB gene product synthesis and reduces the level of mcrC gene expression. This finding helps to understand an existing conflict in the literature. We also describe temperature-sensitive McrA activity in some of the strains analysed and its relationship to the previously defined differences in the tolerance levels of E. coli K-12 mcrBC mutants to cytosine methylation.  相似文献   

19.
20.
A homogeneous preparation of human papillomavirus type 1a (HPV-1a) DNA resisted complete cleavage by the methylation-sensitive restriction endonuclease HhaI. Ten fragments additional to those predicted from the known HPV-1a DNA sequence were resolved by agarose gel electrophoresis of the HhaI-cleaved viral DNA. By determining the composite structures of the additional HhaI viral fragments, evidence was found for part-methylation of six of the thirteen HhaI sites. Two of the modified HhaI sites were localized to the 3'-end of the putative early gene region. The other four modified Hha-I sites were situated within the L1 open reading frame of the putative late gene region. Ten successive restriction endonuclease sites occurring close to and within an area of high CG density which surrounds the 5' end of the putative early gene region, were not modified detectably. The possible relevance of DNA methylation to the control of HPV-1a gene expression in epidermal cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号