首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Myocardial regeneration with bone-marrow-derived stem cells   总被引:5,自引:0,他引:5  
Despite significant therapeutic advances, heart failure remains the predominant cause of mortality in the Western world. Ischaemic cardiomyopathy and myocardial infarction are typified by the irreversible loss of cardiac muscle (cardiomyocytes) and vasculature composed of endothelial cells and smooth muscle cells, which are essential for maintaining cardiac integrity and function. The recent identification of adult and embryonic stem cells has triggered attempts to directly repopulate these tissues by stem cell transplantation as a novel therapeutic option. Reports describing provocative and hopeful examples of myocardial regeneration with adult bone-marrow-derived stem and progenitor cells have increased the enthusiasm for the use of these cells, yet many questions remain regarding their therapeutic potential and the mechanisms responsible for the observed therapeutic effects. In this review article we discuss the current preclinical and clinical advances in bone-marrow-derived stem or progenitor cell therapies for regeneration or repair of the ischaemic myocardium and their multiple related mechanisms involved in myocardial repair and regeneration.  相似文献   

2.
Left ventricular remodeling is a major cause of progressive heart failure and death after myocardial infarction. Although neoangiogenesis within the infarcted tissue is an integral component of the remodeling process, the capillary network is unable to support the greater demands of the hypertrophied myocardium, resulting in progressive loss of viable tissue, infarct extension and fibrous replacement. Here we show that bone marrow from adult humans contains endothelial precursors with phenotypic and functional characteristics of embryonic hemangioblasts, and that these can be used to directly induce new blood vessel formation in the infarct-bed (vasculogenesis) and proliferation of preexisting vasculature (angiogenesis) after experimental myocardial infarction. The neoangiogenesis resulted in decreased apoptosis of hypertrophied myocytes in the peri-infarct region, long-term salvage and survival of viable myocardium, reduction in collagen deposition and sustained improvement in cardiac function. The use of cytokine-mobilized autologous human bone-marrow-derived angioblasts for revascularization of infarcted myocardium (alone or in conjunction with currently used therapies) has the potential to significantly reduce morbidity and mortality associated with left ventricular remodeling.  相似文献   

3.
Massive loss of cardiac myocytes after myocardial infarction (MI) is a common cause of heart failure. The present study was designed to investigate the improvement of cardiac function in MI rats after embryonic stem (ES) cell transplantation. MI in rats was induced by ligation of the left anterior descending coronary artery. Cultured ES cells used for cell transplantation were transfected with the marker green fluorescent protein (GFP). Animals in the treated group received intramyocardial injection of ES cells in injured myocardium. Compared with the MI control group injected with an equivalent volume of the cell-free medium, cardiac function in ES cell-implanted MI animals was significantly improved 6 wk after cell transplantation. The characteristic phenotype of engrafted ES cells was identified in implanted myocardium by strong positive staining to sarcomeric alpha-actin, cardiac alpha-myosin heavy chain, and troponin I. GFP-positive cells in myocardium sectioned from MI hearts confirmed the survival and differentiation of engrafted cells. In addition, single cells isolated from cell-transplanted MI hearts showed rod-shaped GFP-positive myocytes with typical striations. The present data demonstrate that ES cell transplantation is a feasible and novel approach to improve ventricular function in infarcted failing hearts.  相似文献   

4.
Despite considerable advances in medicine, the incidence of heart failure remains high in patients after myocardial infarction (MI). This study investigated the effects of engrafted early-differentiated cells (EDCs) from mouse embryonic stem cells, with or without transfection of vascular endothelial growth factor (VEGF) cDNA (phVEGF(165)), on cardiac function in postinfarcted mice. EDCs were transfected with green fluorescent protein (GFP) cDNA and transplanted into infarcted myocardium. Compared with the MI mice receiving cell-free medium, cardiac function was significantly improved in the MI mice 6 wk after transplantation of EDCs. Moreover, improvement of heart function was significantly greater in the mice implanted with EDCs overexpressing VEGF (EDCs-VEGF) than with EDCs alone. Frozen sections of infarcted myocardium with EDCs or EDCs-VEGF transplantation showed GFP-positive tissue. The area with positive immunostaining for cardiac troponin I and alpha-myosin heavy chain was larger in injured myocardium with EDCs or EDCs-VEGF transplantation than with medium injection. Transplantation of EDCs or EDCs-VEGF significantly increased the number of blood vessels in the MI area. However, the density of capillaries was significantly higher in the EDCs-VEGF animals than in the EDC mice. Double staining for GFP and connexin-43 was positive in injured myocardium with EDC transplantation. Our data demonstrate that engrafted EDCs or EDCs-VEGF regenerated cardiac tissue and significantly improved cardiac function in postinfarcted hearts. The novel EDCs-VEGF synergistic approach may have an important impact on future cell therapy for patients experiencing MI or heart failure.  相似文献   

5.
We aim to study the amelioration effect of adenovirus5-mediated human hepatocyte growth factor gene transfer on postinfarction heart failure in swine model. Twelve Suzhong young swine were randomly divided into 2 groups of 6 pigs each: Ad5-HGF group and mock-vector Ad5 group. Four weeks after ligation of the left anterior descending coronary artery, Ad5-HGF was intracoronarily transferred into the myocardium. Simultaneously, gate cardiac perfusion imaging was performed to evaluate the heart function. Three weeks later, gate cardiac perfusion imaging was performed again, then the hearts were removed and sectioned for immunohistochemical examination to illustrate the effects of Ad5-HGF on infarcted myocardium. The expression of HGF was examined by ELISA. The results were: (1) compared with the mock-vector Ad5 group, high expression of human HGF was observed in the myocardium of Ad5-HGF group; (2) in the Ad5-HGF group, the number of CD117+ cells co-expressing c-Met per mm2 was significantly larger; (3) the improvement in LVEF was greater in the Ad5-HGF group than in the mock-vector Ad5 group. We concluded that: (1) high expression of human HGF was observed in the myocardium through intracoronary gene transfection; (2) HGF can improve the mobilization of CD117+/c-Met+ stem cells into ischemic myocardium. The amelioration effect of HGF on postinfarction heart failure could not be limited to stimulating angiogenesis, anti-apoptosis, anti-fibrosis, but was also involved in the recruitment of stem cells into myocardium.  相似文献   

6.
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite continuous advancements in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. The emergence of stem cell transplantation approaches has recently represented promising alternatives to stimulate myocardial regeneration. Regarding their tissue‐specific properties, cardiac stem cells (CSCs) residing within the heart have advantages over other stem cell types to be the best cell source for cell transplantation. However, time‐consuming and costly procedures to expanse cells prior to cell transplantation and the reliability of cell culture and expansion may both be major obstacles in the clinical application of CSC‐based transplantation therapy after MI. The recognition that the adult heart possesses endogenous CSCs that can regenerate cardiomyocytes and vascular cells has raised the unique therapeutic strategy to reconstitute dead myocardium via activating these cells post‐MI. Several strategies, such as growth factors, mircoRNAs and drugs, may be implemented to potentiate endogenous CSCs to repair infarcted heart without cell transplantation. Most molecular and cellular mechanism involved in the process of CSC‐based endogenous regeneration after MI is far from understanding. This article reviews current knowledge opening up the possibilities of cardiac repair through CSCs activation in situ in the setting of MI.  相似文献   

7.
Cell based therapy has been shown to attenuate myocardial dysfunction after myocardial infarction (MI) in different acute and chronic animal models. It has been further shown that stromal‐cell derived factor‐1α (SDF‐1α) facilitates proliferation and migration of endogenous progenitor cells into injured tissue. The aim of the present study was to investigate the role of exogenously applied and endogenously mobilized cells in a regenerative strategy for MI therapy. Lentivirally SDF‐1α‐infected endothelial progenitor cells (EPCs) were injected after 90 min. of ligation and reperfusion of the left anterior descending artery (LAD) intramyocardial and intracoronary using a new rodent catheter system. Eight weeks after transplantation, echocardiography and isolated heart studies revealed a significant improvement of LV function after intramyocardial application of lentiviral with SDF‐1 infected EPCs compared to medium control. Intracoronary application of cells did not lead to significant differences compared to medium injected control hearts. Histology showed a significantly elevated rate of apoptotic cells and augmented proliferation after transplantation of EPCs and EPCs + SDF‐1α in infarcted myocardium. In addition, a significant increased density of CD31+ vessel structures, a lower collagen content and higher numbers of inflammatory cells after transplantation of SDF‐1 transgenic cells were detectable. Intramyocardial application of lentiviral‐infected EPCs is associated with a significant improvement of myocardial function after infarction, in contrast to an intracoronary application. Histological results revealed a significant augmentation of neovascularization, lower collagen content, higher numbers of inflammatory cells and remarkable alterations of apoptotic/proliferative processes in infarcted areas after cell transplantation.  相似文献   

8.
Optimal timing of cell therapy for myocardial infarction (MI) appears during 5 to 14 days after the infarction. However, the potential mechanism requires further investigation. This work aimed to verify the hypothesis that myocardial stiffness within a propitious time frame might provide a most beneficial physical condition for cell lineage specification in favour of cardiac repair. Serum vascular endothelial growth factor (VEGF) levels and myocardial stiffness of MI mice were consecutively detected. Isolated bone marrow mononuclear cells (BMMNCs) were injected into infarction zone at distinct time-points and cardiac function were measured 2 months after infarction. Polyacrylamide gel substrates with varied stiffness were used to mechanically mimic the infarcted myocardium. BMMNCs were plated on the flexible culture substrates under different concentrations of VEGF. Endothelial progenitor lineage commitment of BMMNCs was verified by immunofluorescent technique and flow cytometry. Our results demonstrated that the optimal timing in terms of improvement of cardiac function occurred during 7 to 14 days after MI, which was consistent with maximized capillary density at this time domains, but not with peak VEGF concentration. Percentage of double-positive cells for DiI-labelled acetylated low-density lipoprotein uptake and fluorescein isothiocyanate (FITC)-UEA-1 (ulex europaeus agglutinin I lectin) binding had no significant differences among the tissue-like stiffness in high concentration VEGF. With the decrease of VEGF concentration, the benefit of 42 kPa stiffness, corresponding to infarcted myocardium at days 7 to 14, gradually occurred and peaked when it was removed from culture medium. Likewise, combined expressions of VEGFR2(+) , CD133(+) and CD45(-) remained the highest level on 42 kPa substrate in conditions of lower concentration VEGF. In conclusion, the optimal efficacy of BMMNCs therapy at 7 to 14 days after MI might result from non-VEGF dependent angiogenesis, and myocardial stiffness at this time domains was more suitable for endothelial progenitor lineage specification of BMMNCs. The results here highlight the need for greater attention to mechanical microenvironments in cell culture and cell therapy.  相似文献   

9.
The major problem in stem cell therapy includes viability and engraftment efficacy of stem cells after transplantation. Indeed, the vast majority of host-transfused cells do not survive beyond 24-72 hrs. To increase the survival and engraftment of implanted cardiac stem cells in the host, we developed a technique of treating these cells with resveratrol, and tested it in a rat model of left anterior descending (LAD) occlusion. Multi-potent clonogenic cardiac stem cells isolated from rat heart and stably transfected with EGFP were pre-treated with 2.5 μM resveratrol for 60 min. Rats were anaesthetized, hearts opened and the LAD occluded to induce heart attack. One week later, the cardiac reduced environment was confirmed in resveratrol treated rat hearts by the enhanced expression of nuclear factor-E2-related factor-2 (Nrf2) and redox effector factor-1 (Ref-1). M-mode echocardiography after stem cell therapy, showed improvement in cardiac function (left ventricular ejection fraction, fractional shortening and cardiac output) in both, the treated and control group after 7 days, but only resveratrol-modified stem cell group revealed improvement in cardiac function at the end of 1, 2 and 4 months time. The improvement of cardiac function was accompanied by enhanced stem cell survival and engraftment as demonstrated by the expression of cell proliferation marker Ki67 and differentiation of stem cells towards the regeneration of the myocardium as demonstrated by the expression of EGFP up to 4 months after LAD occlusion in the resveratrol-treated stem cell group. Expression of stromal cell-derived factor and myosin conclusively demonstrated homing of stem cells in the infarcted myocardium, its regeneration leading to improvement of cardiac function.  相似文献   

10.

Rationale

Acute myocardial infarction (AMI) followed by ventricular remodeling is the major cause of congestive heart failure and death in western world countries.

Objective

Of relevance are reports showing that infusion of apoptotic leucocytes or anti-lymphocyte serum after AMI reduces myocardial necrosis and preserves cardiac function. In order to corroborate this therapeutic mechanism, the utilization of an immunosuppressive agent with a comparable mechanism, such as anti-thymocyte globulin (ATG) was evaluated in this study.

Methods and Results

AMI was induced in rats by ligation of the left anterior descending artery. Initially after the onset of ischemia, rabbit ATG (10 mg/rat) was injected intravenously. In vitro and in vivo experiments showed that ATG induced a pronounced release of pro-angiogenic and chemotactic factors. Moreover, paracrine factors released from ATG co-incubated cell cultures conferred a down-regulation of p53 in cardiac myocytes. Rats that were injected with ATG evidenced higher numbers of CD68+ macrophages in the ischemic myocardium. Animals injected with ATG evidenced less myocardial necrosis, showed a significant reduction of infarct dimension and an improvement of post-AMI remodeling after six weeks (infarct dimension 24.9% vs. 11.4%, p<0.01). Moreover, a higher vessel density in the peri-infarct region indicated a better collateralization in rats that were injected with ATG.

Conclusions

These data indicate that ATG, a therapeutic agent successfully applied in clinical transplant immunology, triggered cardioprotective effects after AMI that salvaged ischemic myocardium by down-regulation of p53. This might have raised the resistance against apoptotic cell death during ischemia. The combination of these mechanisms seems to be causative for improved cardiac function and less ventricular remodeling after experimental AMI.  相似文献   

11.
In order to develop a convenient small-animal model that can support the differentiation of human bone-marrow-derived CD34+ cells, we transplanted SCID mice with an immortalized human stromal cell line, Lof(11–10). The Lof(11–10) cell line has been characterized to produce human cytokines capable of supporting primitive human hematopoietic cell proliferation in vitro. Intraperitoneal injection of Lof(11–10) cells into irradiated SCID mice by itself resulted in a dose-dependent survival of the mice from lethal irradiation. The radioprotective survival was reflected by an increase in the growth and number of mouse bone-marrow-derived committed hematopoietic progenitors. The Lof(11–10) cells localized to the spleen, but not to the bone marrow of these animals and resulted in detectable levels of circulating human IL-6 in their plasma. Secondary intravenous injections of either human or simian CD34+ cells into the Lof(11–10)-transplanted SCID mice resulted in engraftment of injected cells within the bone marrow of these mice. The utility of this small-animal model that allows the growth and differentiation of human CD34+ cells and its potential use in clinical gene therapy protocols are discussed.  相似文献   

12.
Basic and clinical studies have shown that bone marrow cell therapy can improve cardiac function following infarction. In experimental animals, reported stem cell-mediated changes range from no measurable improvement to the complete restoration of function. In the clinic, however, the average improvement in left ventricular ejection fraction is around 2% to 3%. A possible explanation for the discrepancy between basic and clinical results is that few basic studies have used the magnetic resonance (MR) imaging (MRI) methods that were used in clinical trials for measuring cardiac function. Consequently, we employed cine-MR to determine the effect of bone marrow stromal cells (BMSCs) on cardiac function in rats. Cultured rat BMSCs were characterized using flow cytometry and labeled with iron oxide particles and a fluorescent marker to allow in vivo cell tracking and ex vivo cell identification, respectively. Neither label affected in vitro cell proliferation or differentiation. Rat hearts were infarcted, and BMSCs or control media were injected into the infarct periphery (n = 34) or infused systemically (n = 30). MRI was used to measure cardiac morphology and function and to determine cell distribution for 10 wk after infarction and cell therapy. In vivo MRI, histology, and cell reisolation confirmed successful BMSC delivery and retention within the myocardium throughout the experiment. However, no significant improvement in any measure of cardiac function was observed at any time. We conclude that cultured BMSCs are not the optimal cell population to treat the infarcted heart.  相似文献   

13.
The primary cardiac response to ischemic insult is cardiomyocyte hypertrophy, which initiates a genetic program culminating in apoptotic myocyte loss, progressive collagen replacement, and heart failure, a process termed cardiac remodeling. Although a few cardiomyocytes at the peri-infarct region can proliferate and regenerate after injury, no approaches are known to effectively induce endogenous cardiomyocytes to enter the cell cycle. We recently isolated, in human adult bone marrow, endothelial progenitor cells, or angioblasts, that migrate to ischemic myocardium, where they induce neovascularization and prevent myocardial remodeling. Here we show that increasing the number of angioblasts trafficking to the infarct zone results in dose-dependent neovascularization with development of progressively larger-sized capillaries. This results in sustained improvement in cardiac function by mechanisms involving protection against apoptosis and, strikingly, induction of proliferation/regeneration of endogenous cardiomyocytes. Our results suggest that agents that increase myocardial homing of bone marrow angioblasts could effectively induce endogenous cardiomyocytes to enter the cell cycle and improve functional cardiac recovery.  相似文献   

14.
Regenerative therapies, including cell injection and bioengineered tissue transplantation, have the potential to treat severe heart failure. Direct implantation of isolated skeletal myoblasts and bone-marrow-derived cells has already been clinically performed and research on fabricating three-dimensional (3-D) cardiac grafts using tissue engineering technologies has also now been initiated. In contrast to conventional scaffold-based methods, we have proposed cell sheet-based tissue engineering, which involves stacking confluently cultured cell sheets to construct 3-D cell-dense tissues. Upon layering, individual cardiac cell sheets integrate to form a single, continuous, cell-dense tissue that resembles native cardiac tissue. The transplantation of layered cardiac cell sheets is able to repair damaged hearts. As the next step, we have attempted to promote neovascularization within bioengineered myocardial tissues to overcome the longstanding limitations of engineered tissue thickness. Finally, as a possible advanced therapy, we are now trying to fabricate functional myocardial tubes that may have a potential for circulatory support. Cell sheet-based tissue engineering technologies therefore show an enormous promise as a novel approach in the field of myocardial tissue engineering.  相似文献   

15.
胚胎干细胞的心脏应用   总被引:2,自引:0,他引:2  
Xiao YF 《生理学报》2003,55(5):493-504
心肌梗死期间死亡的心肌细胞将由没有收缩功能的疤痕组织替代,因而极可能引起心力衰竭。对治疗心衰来说,修复死亡或损伤的心肌以及改善心功能仍面临着极大挑战。干细胞移植已在近年来的实验中用于修复损失的心肌。本文总结了近期在心肌损伤动物中实施胚胎干细胞移植的实验结果,并着重介绍对这类特定细胞的研究进展。胚胎干细胞取源于早期哺乳类胚胎的胚芽细胞,属于多功能干细胞。这类细胞具有长期增殖而不分化的能力,或台色够在培养过程中分化成包括心肌细胞在内的所有特殊体细胞。由于胚胎干细胞具有极大的增殖和分化为成熟组织的能力,它们可能成为一种潜在的很有实用价值的细胞来源,可用于对病态心脏的功能心肌再生的细胞治疗。新近的研究表明,在心肌梗死动物模型中,心肌内移植胚胎干细胞或由其分化成的心肌样细胞,能导致已损伤心肌的再生,并改善心脏功能。另外,在病毒性心肌炎小鼠中,静脉输入胚胎干细胞可明显提高生存率和减轻心肌损伤。有关人类胚胎干细胞在体外分化成心肌细胞以及这些细胞的特性,近来已有报道。然而,要在临床能应用人类胚胎干细胞或由其分化成的心肌细胞来治疗晚期心脏疾病,还必须越过大量的伦理、法律和科学上的障碍。  相似文献   

16.
CD8+ T cells are involved in autoimmune and infectious myocarditis and cardiac allograft rejection. The role of selectins in cardiac recruitment of CD8+ T cells is not understood. In this study, the contribution of T cell selectin ligands to effector CD8+ T cell recruitment into the heart was examined using a model of myocarditis, which depends on transfer of OVA peptide-specific CD8+ T cells (OT-I) into mice (CMy-mOva) that express OVA in the heart. alpha-(1,3)-Fucosyltransferase (FucT)-VII-deficient OT-I cells displayed over a 95% reduction in their ability to interact with P-selectin under flow conditions in vitro, compared with wild-type OT-I cells. Interaction of FucT-VII-deficient OT-I cells with E-selectin was reduced approximately 50%. FucT-VII-deficient OT-I cells were also less efficiently recruited into a dermal site of Ag and adjuvant injection. Significantly, FucT-VII-deficient OT-I cells were also impaired in their ability to migrate into CMy-mOva hearts, compared with wild-type OT-I cells. Transfer of FucT-VII-deficient T cells caused less severe early myocarditis and myocyte damage than transfer of wild-type T cells. Combined FucT-IV/VII-deficient OT-I cells displayed a more profound reduction in E-selectin interactions in vitro compared with FucT-VII-deficient T cells, and the FucT-IV/VII-deficient T cells also showed less early recruitment and pathogenicity in the CMy-mOva myocarditis model. These results identify a prominent role for selectin ligands in contributing to effector CD8+ T cell recruitment into the myocardium and indicate that selectin-dependent T cell recruitment is relevant to other tissues besides the skin.  相似文献   

17.
Human endometrial stem cells (EnSCs) have the potential to be ‘off the shelf’ clinical reagents for the treatment of heart failure. Here, using an immunocompetent rat model of myocardial infarction (MI), we provide evidence that the functional benefits of EnSC transplantation are principally and possibly exclusively through a paracrine effect. Human EnSCs were delivered by intramyocardial injection into rats 30 min. after coronary ligation. EnSC therapy significantly preserved viable myocardium in the infarct zone and improved cardiac function at 28 days. Despite increased viable myocardium and vascular density, there was scant evidence of differentiation of EnSCs into any cardiovascular cell type. Cultured human EnSCs expressed a distinctive profile of cytokines that enhanced the survival, proliferation and function of endothelial cells in vitro. When injected into the peri‐infarct zone, human EnSCs activated AKT, ERK1/2 and STAT3 and inhibited the p38 signalling pathway. EnSC therapy decreased apoptosis and promoted cell proliferation and c‐kit+ cell recruitment in vivo. Myocardial protection and enhanced post‐infarction regeneration by EnSCs is mediated primarily by paracrine effects conferred by secreted cytokines that activate survival pathways and recruit endogenous progenitor stem cells. Menstrual blood provides a potentially limitless source of biologically competent ‘off the shelf’ EnSCs for allogeneic myocardial regenerative medicine.  相似文献   

18.
We aim to study the amelioration effect of adenovirus5-mediated human hepatocyte growth factor gene transfer on postinfarction heart failure in swine model. Twelve Suzhong young swine were randomly divided into 2 groups of 6 pigs each: Ad5-HGF group and mock-vector Ad5 group. Four weeks after ligation of the left anterior descending coronary artery, Ad5-HGF was intracoronarily transferred into the myocardium. Simultaneously, gate cardiac perfusion imaging was performed to evaluate the heart function. Three weeks later, gate cardiac perfusion imaging was performed again, then the hearts were removed and sectioned for immunohistochemical examination to illustrate the effects of Ad5-HGF on infarcted myocardium. The expression of HGF was examined by ELISA. The results were: (1) compared with the mock-vector Ad5 group, high expression of human HGF was observed in the myocardium of Ad5-HGF group; (2) in the Ad5-HGF group, the number of CD117 cells co-expressing c-Met per mm2 was significantly larger; (3) the improvement in LVEF was greater in the Ad5-HGF group than in the mock-vector Ad5 group. We concluded that: (1) high expression of human HGF was observed in the myocardium through intracoronary gene transfection; (2) HGF can improve the mobilization of CD117 /c-Met stem cells into ischemic myocardium. The amelioration effect of HGF on postinfarction heart failure could not be limited to stimulating angiogenesis, anti-apoptosis, anti-fibrosis, but was also involved in the recruitment of stem cells into myocardium.  相似文献   

19.
After a myocardial infarction, thinning and expansion of the fibrotic scar contribute to progressive heart failure. The loss of elastin is a major contributor to adverse extracellular matrix remodelling of the infarcted heart, and restoration of the elastic properties of the infarct region can prevent ventricular dysfunction. We implanted cells genetically modified to overexpress elastin to re‐establish the elastic properties of the infarcted myocardium and prevent cardiac failure. A full‐length human elastin cDNA was cloned, subcloned into an adenoviral vector and then transduced into rat bone marrow stromal cells (BMSCs). In vitro studies showed that BMSCs expressed the elastin protein, which was deposited into the extracellular matrix. Transduced BMSCs were injected into the infarcted myocardium of adult rats. Control groups received either BMSCs transduced with the green fluorescent protein gene or medium alone. Elastin deposition in the infarcted myocardium was associated with preservation of myocardial tissue structural integrity (by birefringence of polarized light; P < 0.05 versus controls). As a result, infarct scar thickness and diastolic compliance were maintained and infarct expansion was prevented (P < 0.05 versus controls). Over a 9‐week period, rats implanted with BMSCs demonstrated better cardiac function than medium controls; however, rats receiving BMSCs overexpressing elastin showed the greatest functional improvement (P < 0.01). Overexpression of elastin in the infarcted heart preserved the elastic structure of the extracellular matrix, which, in turn, preserved diastolic function, prevented ventricular dilation and preserved cardiac function. This cell‐based gene therapy provides a new approach to cardiac regeneration.  相似文献   

20.
Although myoblast transplantation in patients with ischemic heart failure results in a significant improvement of cardiac function, subsequent studies have consistently shown the myotubes formation in the absence of electromechanical coupling with the neighboring host myocardium, accompanied with the short-term release of paracrine effectors from implanted cells. One major pitfall of using myoblasts is that transplanted cells do not differentiate into cardiomyocytes, which may cause the inherent proarrhythmogenic events. Therefore, whether a discrete subpopulation in heterogeneous muscle-cell cultures is responsible for substantial cardiovascular regeneration has yet to be investigated. We describe here the isolation of progenitor cells from human skeletal muscle. These cells proliferated as non-adherent myospheres in suspension and displayed early embryonic factors and mesenchymal cell-like characteristics. Flow cytometric analyses demonstrated that CD56/N-CAM/Leu-19, a neural cell adhesion molecule abundantly present in myoblasts, was absent in myospheres but was expressed in an adherent cell population containing myogenic precursors. Myosphere-derived progenitor cells (MDPCs) differentiated in culture to produce cardiac, smooth muscle, and endothelial cells. Transplantation of MDPCs into ischemic hearts in NOD/scid mice promoted angiogenesis with substantial cardiovascular regeneration. Our results provide a foundation to further study the cell and biological function of human MDPCs which may have potential therapeutic implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号