首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leukotrienes can be produced by cooperative interactions between cells in which, for example, arachidonate derived from one cell is oxidized to leukotriene A(4) (LTA(4)) by another and this can then be exported for conversion to LTB(4) or cysteinyl leukotrienes (cys-LTs) by yet another. Neutrophils do not contain LTC(4) synthase but are known to cooperate with endothelial cells or platelets (which do have this enzyme) to generate cys-LTs. Stimulation of human neutrophils perfusing isolated rabbit hearts resulted in production of cys-LTs, whereas these were not seen with perfused hearts alone or isolated neutrophils. In addition, the stimulated, neutrophil-perfused hearts generated much greater amounts of total LTA(4) products, suggesting that the hearts were supplying arachidonate to the neutrophils and, in addition, that this externally derived arachidonate was preferentially used for exported LTA(4) that could be metabolized to cys-LTs by the coronary endothelium. Stable isotope-labeled arachidonate and electrospray tandem mass spectrometry were used to differentially follow metabolism of exogenous and endogenous arachidonate. Isolated, adherent neutrophils at low concentrations (to minimize transcellular metabolism between them) were shown to generate higher proportions of nonenzymatic LTA(4) products from exogenous arachidonate (deuterium-labeled) than from endogenous (unlabeled) sources. The endogenous arachidonate, on the other hand, was preferentially used for conversion to LTB(4) by the LTA(4) hydrolase. This result was not because of saturation of the LTA(4) hydrolase, because it occurred at widely differing concentrations of exogenous arachidonate. Finally, in the presence of platelets (which contain LTC(4) synthase), the LTA(4) synthesized from exogenous deuterium-labeled arachidonate was converted to cys-LTs to a greater degree than that from endogenous sources. These experiments suggest that exogenous arachidonate is preferentially converted to LTA(4) for export (not intracellular conversion) and raises the likelihood that there are different intracellular pathways for arachidonate metabolism.  相似文献   

2.
Exogenous glycosphingolipids, especially gangliosides, are used to study transport and metabolism of their endogenous counterparts as well as their role in cell adhesion, cell recognition and signal transduction. Unlike monodispersed solutes, in aqueous media ganglioside molecules aggregate into micelles (or bilayer structures) with a very low critical micellar concentration. Upon addition to cells in culture, exogenous gangliosides bind to the cell surface in three operationally defined modes: loosely associated micelles removable by serum; tightly attached micelles removable by proteases such as trypsin; and ganglioside molecules inserted into the outer leaflet of the plasma membrane. As shown by a biotin-labeled derivative of the ganglioside GM1 these inserted molecules are endocytosed and transported to intralysosomal membranes for catabolism. The benefit from using (partially) nondegradable as well as semi-truncated glycosphingolipids in transport studies is discussed.  相似文献   

3.
汪作新 《动物学报》2003,49(2):151-162
哺乳动物成体神经元的再生现象是最近三十年才被科学家们所认识并逐渐接受的。随着科研方法与实验技术的发展,在成年哺乳动物的一些特定脑区,比如海马齿状回(Dentate gyrus of the hippocampus)、室下区(Subventricular zone)和杏仁核(Amygdala)中发现了新生细胞。研究表明,内外环境因子可影响成体神经元的再生。具体表现在环境多样性、自主活动、有益社会交往、短日光照、化学刺激以及诸如5—羟色胺和脑源性神经营养因子等神经递质水平的增加,都会促进新生细胞的增生或存活。而负面社会交往及应激激素皮质酮对成体神经元的再生有抑制和降低作用。研究还表明,根据种和性别的差异,类脂醇激素对成体神经元的再生起到促进或抑制作用。最新的实验证实新生细胞在成体中具有显著功能[动物学报49(2):151—162,2003]。  相似文献   

4.
The synthesis of glutamate and its conversion to glutamine and GABA were studied using labelled glucose in cerebral cortex, cerebellum and brainstem of rats intoxicated acutely with tetraethyl lead and chronically with lead acetate. To assess the interconversion and the synaptosomal accumulation of these amino acids, the labelling of glutamate, glutamine and GABA were measured in whole tissue and synaptosomes after giving labelled glutamate. The radioactive carbon dioxide production from labelled glutamate by brain slices was measured to evaluate the oxidation of glutamate. The tissue levels of glutamate, glutamine and GABA and the activity of glutamate decarboxylase were also measured in both conditions.In inorganic lead toxicity, even though the glutamate pool size was reduced, the glutamate-glutamine cycling between synaptosomes and astrocytes was increased. The oxidation of glutamate and the glutamate-GABA cycling were reduced. These findings suggest that brain tries to maintain the endogenous glutamate levels by decreasing the oxidation of glutamate and increasing the uptake systems and the cycling through glutamine in inorganic lead toxicity. In organic lead toxicity, the glutamate pool as well as glutamate turnover was reduced markedly resulting in complete distortion of glutamate metabolism.  相似文献   

5.
Exogenous hypercholesterolemic (ExHC) rats, that develop hypercholesterolemia for exogenous cholesterol, are an established strain Isolated from Sprague-Dawley (SD) rats by Imai and Matsumura ((1973) Atherosclerosis, 18, 59-64). The present study was carried out to clarify the cause of hyperresponsivity in ExHC rats to dietary cholesterol. As early as one day after feeding a high cholesterol diet (1%) serum cholesterol level was doubled in ExHC rats, while the level of hepatic cholesterol was two-thirds of SD rats. The elevation of serum cholesterol was mainly attributed to the d less than 1.006 g/ml fractions. Cholesterol feeding increased fecal bile acid excretion in both strains, but to a more greater extent in SD rats. Absorption of dietary cholesterol and synthesis of cholesterol in vivo were similar between the strains. The uptake of beta-very-low-density-lipoproteins (beta-VLDL) in vivo and the primary cultured hepatocytes was lower in ExHC rats, when a high-cholesterol diet was fed. Even without feeding of a high-cholesterol diet, preincubation with cholesterol-rich lipoproteins caused a lower association and degradation of beta-VLDL by the hepatocytes from ExHC rats. Incubation of hepatocytes with cholesterol-rich lipoproteins did not affect the secretion of [14C]cholesterol into the density less than 1.006 g/ml fraction, but suppressed the secretion into the medium density greater than 1.006 g/ml fractions. These results suggest that ExHC rats, as compared to SD rats, are defective of hepatic uptake and processing cholesterol to bile acids.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Latency of endogenous and exogenous lysosomal glucosidases.   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

13.
14.
Time required for exhaustive swimming by young-mature rats weighted with lead weights (4% of body weight) was found to decline over a ten week experimental period. While a positive relationship existed between thyroid status and swimming time, a concomitant decrease in swimming time occurred in each of the respective five groups of rats: control (C) rats with intact thyroids, athyroid (A-Tdx), hypothyroid (Hypo-Tdx), euthyroid (Eu-Tdx), and hyperthyroid (Hyper-Tdx) rats between day 70–140. The latter three groups were thyroidectomized (Tdx) and given daily replacement therapy of L-thyroxine (L-T4) during the experimental period. Epididymal fat pads were found to be almost non-existent in the A-Tdx rats. Serum triglycerides of A-Tdx, Eu-Tdx, and Hypo-Tdx animals were significantly lower than in C. Daily food intakes were also lower in the A-Tdx and Hypo-Tdx groups than in C and Hyper-Tdx groups. Thyroxine insufficiency, the decreasing feed intake, and particularly the ability to carry the increasing absolute weight load during exercise are factors that may be important in explaining the observed decline in work capacity during the ten week experimental period.  相似文献   

15.
Calf brain membranes have been shown to enzymatically dephosphorylate endogenous and partially purified, exogenous dolichyl [32P]monophosphate. The properties and specificity of the dolichyl monophosphatase activity have been studied by following the release of [32P]phosphate from exogenous dolichyl [32P]monophosphate added in a dispersion with Triton X-100. The calf brain phosphatase (1) is inhibited by Mn2+, Mg2+, Ca2+, fluoride, and phosphate; (2) exhibits a neutral pH optimum; and (3) has an apparent Km of 200 μm for dolichyl monophosphate. Dolichyl monophosphatase activity can be distinguished from phosphatidate phosphatase on the basis of their responses to fluoride and phosphate. Based on differential thermolability and the effects of divalent cations and EDTA, the calf brain dolichyl monophosphatase can also be discriminated from the general phosphatase activity assayed with p-nitrophenyl phosphate. Dolichyl monophosphatase activity can be solubilized by treating microsomes with Triton X-100. The enzymatic dephosphorylation of exogenous dolichyl [32P]monophosphate catalyzed by particulate and detergent-solubilized preparations is negligibly affected by equimolar concentrations of ATP and an assortment of phosphomonoesters, including phosphatidic acid and hexadecyl phosphate. A reduction of approximately 40% in dolichyl monophosphatase activity is observed in the presence of equimolar amounts of retinyl monophosphate. Overall, these results represent good evidence for the presence of a neutral polyisoprenyl monophosphatase in central nervous tissue.  相似文献   

16.
The fate of exogenous short-chain analogues of phosphatidylethanolamine and phosphatidylserine was studied in a deep-rough derivative of E. coli mutant strain AD93 that cannot synthesize phosphatidylethanolamine de novo. Using mass spectrometry, it was shown that dicaproyl(di 6:0)-phosphatidylethanolamine is extensively remodeled, eventually adopting the phosphatidylethanolamine species profile of the parental wild-type strain of AD93. Dicaproyl-phosphatidylserine was decarboxylated to form phosphatidylethanolamine, and yielded a species profile, which strongly resembled that of the introduced phosphatidylethanolamine. This demonstrates transport of phosphatidylserine to the cytosolic leaflet of the inner membrane. The changes of the species profile of phosphatidylethanolamine indicate that the short-chain phospholipids are most likely remodeled via two consecutive acyl chain substitutions, and at least part of this remodeling involves transport to the inner membrane.  相似文献   

17.
18.
19.
We examined the ability of erucic acid (22:1n-9) to cross the blood-brain barrier (BBB) by infusing [14-14C]22:1n-9 (170 microCi/kg, iv and icv) into awake, male rats. [1-14C]arachidonic acid (20:4n-6) [intravenous (i.v.)] was the positive control. After i.v. infusion, 0.011% of the plasma [14-14C]22:1n-9 was extracted by the brain, compared with 0.055% of the plasma [1-14C]20:4n-6. The [14-14C]22:1n-9 was extensively beta-oxidized (60%), compared with 30% for [1-14C]20:4n-6. Although 20:4n-6 was targeted primarily to phospholipid pools, 22:1n-9 was targeted to cholesteryl esters, triglycerides, and phospholipids. When [14-14C]22:1n-9 was infused directly into the fourth ventricle of the brain [intracerebroventricular (i.c.v.)] for 7 days, 60% of the tracer entered the phospholipid pools, similar to the distribution observed for [1-14C]20:4n-6. This demonstrates plasticity in the ability of the brain to esterify 22:1n-9 in an exposure-dependent manner. In i.v. and i.c.v. infused rats, a significant amount of tracer found in the phospholipid pools underwent sequential rounds of chain shortening and was found as [12-14C]20:1n-9 and [10-14C]oleic acid. These results demonstrate for the first time that intact 22:1n-9 crosses the BBB, is incorporated into specific lipid pools, and is chain-shortened.  相似文献   

20.
The aim of the present study was to determine whether exogenous radioactive GABA and glutamate previously taken up by rat brain synaptosomes are released preferentially with respect to the endogenous unlabeled amino acids. Preferential release was monitored by comparing the specific radioactivity of the amino acids released to that present in synaptosomes at the beginning and at the end of the release period. The GABA released spontaneously or by depolarizing the synaptosomes with high K+ in the presence of Ca2+ had the same specific radio-activity as that present in synaptosomes before or after superfusion. Depolarization with veratridine or superfusion with OH-GABA caused a moderate increase (15–20%) in the specific radioactivity of the GABA released and a corresponding slight decrease in that of superfused synaptosomes. In conditions causing a supraadditive release of exogenous and endogenous GABA (see ref. 13), the specific radioactivity of the GABA released was increased 20–30%. The GABA with higher-than-average specific radioactivity is probably representative of the cytoplasmic pool of this amino acid. The glutamate released spontaneously had a specific radioactivity lower than that present in synaptosomes at the start of superfusion, and also the specific radioactivity in superfused synaptosomes was lower than at the start of superfusion. The glutamate released by aspartate (by heteroexchange), by veratridine, or by high K+ had a specific radioactivity higher than that of the amino acid released spontaneously, similar to that present in synaptosomes at the start of superfusion, and higher than that found in superfused synaptosomes. These findings suggest that exogenous radioactive glutamate is released preferentially with respect to the endogenous amino acid and to the glutamate synthesized from glucose during the superfusion period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号