首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to allospecific cytotoxic lymphocytes, cytolytic effector cells capable of killing a broad range of targets are generated during mixed leukocyte culture (MLC). These cells, which have been previously called anomalous killer cells, are a distinct functional subset separate from natural killer cells or allospecific cytotoxic lymphocytes but display many characteristics of lymphokine-activated killers. In order to isolate anomalous killer cells for detailed analysis, we generated the cytolytic effectors from an allogeneic MLC using heat-inactivated stimulators. This treatment of the stimulator population abrogated the generation of classical allospecific cytotoxic lymphocytes but allowed the generation of anomalous killer cells which were subsequently cloned via limiting dilution. The clones derived by this method displayed the functional properties of anomalous killers seen in bulk MLCs. The clones demonstrated potent cytolytic activity against both NK-sensitive and NK-resistant tumor targets in vitro and also suppressed tumor growth in vivo. Ultrastructural studies revealed features similar to those of cloned antigen-specific cytolytic cells and clones with NK-like function. The cells expressed surface glycoproteins associated with both NK and T lymphocytes including Thy-1, Ly-2, T200, Qa-5, asialo GM1, and the antigens defined by the NK alloantisera NK-2.1 and NK-3.1. These cells may play an important role during early phases of the immune response, since cytolytic cells of broad specificity may protect the host until classical cytotoxic lymphocytes with restricted specificity are generated.  相似文献   

2.
Cells with cytolytic activity can be detected in mouse fetal thymic lobes cultured in the presence of interleukin 2 for 6 days. The lymphokine-activated killer cells from 14-day fetal thymic lobes are relatively resistant to treatment with anti-Ly-2 antibody and complement (CD8-) but sensitive to anti-Thy-1 and complement treatment (Thy-1+). They display major histocompatibility complex-unrestricted killing, lysing both syngeneic and allogeneic tumor cells, but will not lyse human xenogenic target cells. Low levels of cytotoxic activity can be detected in thymic lobes from Day 12-13 embryos and this activity increases with embryonic age. While the events which lead to the inhibition of normal maturation of fetal thymocytes by inclusion of IL-2 in fetal thymus organ cultures are unknown, the appearance of cytotoxic cells raises the question of whether they are involved in the normal intrathymic cell death process.  相似文献   

3.
Human peripheral blood lymphocytes cultured for 4 days in the interleukin 2 (IL-2)-containing cell-free supernatant of the MLA144 cell line (MLA144CM) are cytolytic to NK-susceptible and NK-resistant tumor target cells. This lymphokine-activated killer (LAK) activity is dependent on IL-2 as development of LAK activity is inhibited in the presence of a monoclonal antibody (MoAb) reacting with the IL-2 receptor (anti-Tac). Addition of cyclosporin A (CyA) to mixed lymphocyte cultures inhibits the development of allospecific cytotoxic activity and inhibits the development of IL-2 responsiveness. However, development of LAK activity is unaffected by the inclusion of CyA in the cultures, showing that the LAK precursor can be functionally distinguished from the allospecific cytotoxic precursor cell. Development of LAK activity does not require mature NK cells as shown by the generation of LAK activity from NK inactive human thymocytes and lymph node cells. In addition, depletion of NK activity from human PBL does not impair the development of LAK activity.  相似文献   

4.
Peritoneal elicited macrophages (PEM) from mammary tumor-bearing mice have a decreased capacity to become cytotoxic against syngeneic, allogeneic, and xenogeneic target cells upon in vitro stimulation with LPS, as compared with PEM of normal mice. A regulatory mechanism other than PG release is suggested because the addition of both indomethacin and LPS to macrophage cultures from tumor-bearing mice caused no changes in their cytotoxic capability. Because tumor products have been implicated in the down-regulation of immune responses, we investigated whether pretreatment with supernatants from the tumor cell line DA-3, derived from the in vivo mammary adenocarcinoma D1-DMBA-3, affects the cytolytic capacity of macrophages. This treatment inhibits, in a dose-dependent fashion, the ability of stimulated normal PEM to kill target cells. Partial purification of DA-3 cell line supernatant showed that most of the inhibitory activity was exerted by factors with a molecular mass greater than 10 kDa and less than 30 kDa. However, slight inhibition could also be observed with fractions containing molecules less than 10 kDa. The data suggest that more than one factor released by the mammary tumor cells may be involved in the down-regulation of macrophage-mediated cytotoxicity. Because the DA-3 cells constitutively produce granulocyte-macrophage CSF (GM-CSF), which has a molecular mass of 27 kDa, we pretreated PEM from normal mice in vitro with rGM-CSF for 24 h. This resulted in a dose-dependent decrease in their capacity to kill tumor target cells upon LPS stimulation. Furthermore, PEM from normal mice injected with rGM-CSF for 25 days displayed a profound decrease in their cytolytic ability against DA-3 targets upon in vitro stimulation with increasing amounts of LPS. The pretreatment of PEM from normal mice with a combination of DA-3 cell supernatants and specific anti-GM-CSF partially neutralized the inhibitory effect of the DA-3 supernatant on macrophage tumoricidal capability. These results indicate that tumor-derived GM-CSF is an important factor involved in the decreased macrophage cytotoxicity during mammary adenocarcinoma progression.  相似文献   

5.
6.
Four out of six long-term murine cytotoxic T lymphocyte (CTL) clones specific for trinitrophenyl (TNP)-modified spleen cells could develop an anomalous cytotoxicity against syngeneic and allogeneic tumor cells upon stimulation with TNP-modified spleen cells and high doses of human recombinant interleukin 2 (rIL-2). On FACS analysis, hyperactivated CTLs were positive for Thy-1, Ly 2 and LFA-1, but negative for L3T4 and asialo GM1. The staining profile of the cells with each antibody indicated that the CTL clones consisted of just one cell type. Monoclonal anti-Ly 2.2 and anti-LAA (lymphokine-activated cell-associated antigen) antibodies inhibited cytolysis of CTL and hyperactivated CTL clones against TNP-modified spleen cells, but failed to inhibit the anomalous killing of the hyperactivated CTL. The cold target competition test suggested the degeneracy of antigen specificity. The present study demonstrated that the CTL clone acquired a new specificity for tumor target cells upon stimulation with a high dose of rIL-2.  相似文献   

7.
Osteosarcoma and Ewing’s sarcoma tumor cells are susceptible to IL15-induced or antibody-mediated cytolytic activity of NK cells in short-term cytotoxicity assays. When encountering the tumor environment in vivo, NK cells may be in contact with tumor cells for a prolonged time period. We explored whether a prolonged interaction with sarcoma cells can modulate the activation and cytotoxic activity of NK cells. The 40 h coculture of NK cells with sarcoma cells reversibly interfered with the IL15-induced expression of NKG2D, DNAM-1 and NKp30 and inhibited the cytolytic activity of NK cells. The inhibitory effects on receptor expression required physical contact between NK cells and sarcoma cells and were independent of TGF-β. Five days pre-incubation of NK cells with IL15 prevented the down-regulation of NKG2D and cytolytic activity in subsequent cocultures with sarcoma cells. NK cell FcγRIIIa/CD16 receptor expression and antibody-mediated cytotoxicity were not affected after the coculture. Inhibition of NK cell cytotoxicity was directly linked to the down-regulation of the respective NK cell-activating receptors. Our data demonstrate that the inhibitory effects of sarcoma cells on the cytolytic activity of NK cells do not affect the antibody-dependent cytotoxicity and can be prevented by pre-activation of NK cells with IL15. Thus, the combination of cytokine-activated NK cells and monoclonal antibody therapy may be required to improve tumor targeting and NK cell functionality in the tumor environment.  相似文献   

8.
Calreticulin is an endoplasmic reticulum-resident chaperone that is stored in the cytotoxic granules of CTLs and NK cells and is released with granzymes and perforin upon recognition of target cells. To investigate the role of calreticulin in CTL-mediated killing, we generated CTL lines from crt(+/+) and crt(-/-) mice expressing a constitutively active form of calcineurin in the heart. Crt(-/-) CTLs showed reduced cytotoxic activity toward allogeneic target cells despite normal production, intracellular localization, and activity of granzymes and despite perforin overexpression. Comparable or higher amounts of granzymes were degranulated by crt(-/-) cells in response to immobilized anti-CD3 Abs, indicating that calreticulin is dispensable for the signal transduction that leads to granule exocytosis. The ability to form conjugates with target cells was affected in the crt(-/-) CTLs, explaining the observed reduction in cytotoxicity. Conjugate formation and cytotoxicity were completely restored by treatments that facilitate recognition and contact with target cells, a prerequisite for degranulation and killing. Therefore, we conclude that calreticulin is dispensable for the cytolytic activity of granzymes and perforin, but it is required for efficient CTL-target cell interaction and for the formation of the death synapse.  相似文献   

9.
Mice infected with herpes simplex virus develop little or no cytotoxic T lymphocyte (CTL) response. However, in lymph nodes (LN's) draining a local site infected with HSV, antigen-specific CTL precursors are sensitized, which upon transfer to in vitro culture conditions develop within 72 hr into effective CTL. The in vivo blockade of CTL differentiation can be overcome by cyclophosphamide, suggesting that a cyclophosphamide-sensitive mechanism blocks the in vivo generation of HSV-immune CTL. The cytolytic activity of HSV-immune CTL is H-2 restricted and antigen specific. Thus CTL sensitized toward HSV type 1 discriminate between syngeneic targets infected with either the immunologic HSV variant type 1 or type 2 (and vice versa). H-2-matched target cells exposed for 30 min to infectious HSV are lysed within 60 min of contact with CTL. Since HSV replication is believed to require more than 4 to 5 hr, the data suggest that either the expression of HSV-dependent "early proteins" takes place within 30 to 90 min or cell membrane-integrated HSV virion represents the target antigen of CTL.  相似文献   

10.
Recent evidence has shown that cloned, murine CTL cell lines are resistant to the cytotoxic components of the toxic granules they release upon specific interaction with their target cells. Inasmuch as the resistance might be due to selection in culture over many months by repeated exposure to these cytolytic components (which are released repeatedly as a result of the cultured CTL being periodically stimulated by target cells), we asked whether primary CTL are also resistant. The primary CTL were elicited in vivo by i.p. injection of allogeneic tumor cells or in vitro by 5- to 6-day MLC or by 48-h exposure to the lectin Con A. The responding cells were separated into purified CD8+ (i.e., CD4-, CD8+) and purified CD4+ (i.e., CD4+, CD8-) T cell populations that were analyzed for cytolytic activity and for resistance to lysis by toxic secretory granules derived from cloned CTL cell lines. The CD8+ T cells were highly cytolytic and relatively resistant; they retained their cytolytic activity and were lysed to a minimal extent (0 to 10%) by quantities of isolated granules that lysed 80 to 90% of the P815 tumor cell line (tested as a representative standard cell line). The CD4+ T cells, in contrast, had only minimal cytolytic activity and were far more susceptible to granule-mediated lysis. Although the resistance of primary CD8+ T cells is impressive, it is not as pronounced as the resistance of the cloned CTL cell lines, indicating that during long-term culture there is some selection for increased resistance to granule-mediated lysis. In contrast to T cells (especially CD8+ T cells), Ia+ macrophages, isolated from primary immune peritoneal exudates, were highly susceptible to granule-mediated lysis.  相似文献   

11.
By immunofluorescence observations with cell couples of cloned murine cytotoxic T lymphocytes (CTL) and target cells, evidence is presented for a rapid reorientation of the microtubule-organizing center (MTOC) and the Golgi apparatus (GA) in the effector cell (but not in the target cell) toward the contact area with the target. The reorientation of the MTOC/GA and the cytotoxic activity of the CTL were inhibited reversibly by nocodazole, a microtubule-disrupting agent. In lectin-formed cell couples of CTL and neuraminidase-treated target cells, the MTOC in essentially all of the CTL was oriented toward the effector-target contact area of a lysable target cell, but was left randomly oriented with a nonlysable target cell. A similar random orientation of the effector-MTOC was also observed in cell couples of cloned natural killer cells and nonlysable targets. These findings indicate that the repositioning of the MTOC and the GA, which is shared by CTL and natural killer cells, is an essential and early event in the onset of the cytolytic mechanism. It is suggested that this reorientation serves the purpose of directing to the bound target cell secretory vesicles derived from the GA that contain cytotoxic substances.  相似文献   

12.
Summary Binding of CD3-specific antibodies to the TcR-CD3 complex results in T cell activation without the need for occupation of the T cell receptor (TcR) by its ligand. Murine T cells activated in this manner will kill a broad range of tumor targets but not normal lymphoblasts. We report here that non-specific cytolytic activity can be induced in vivo by a single i.p. injection of nonlytic 145-2C11 anti-CD3 monoclonal antibody. At least three populations of effector cells are activated in these mice. These are non-MHC(major histocompatibility complex) restricted cytotoxic T lymphocytes, activated natural killer cells, and lymphokine-activated killer cells. Anti-CD3 treatment is effective in significantly reducing the number of lung tumor nodules which form in mice inoculated with oncogenic ras-transfected syngeneic 10T1/2 fibroblasts. Anti-CD3-activated killer cells may, therefore, find a future role in cancer immunotherapy.  相似文献   

13.
Immune elimination of tumor cells requires the close cooperation between CD8+ CTL and CD4+ Th cells. We circumvent MHC class II-restriction of CD4+ T cells by expression of a recombinant immunoreceptor with an Ab-derived binding domain redirecting specificity. Human CD4+ T cells grafted with an immunoreceptor specific for carcinoembryonic Ag (CEA) are activated to proliferate and secrete cytokines upon binding to CEA+ target cells. Notably, redirected CD4+ T cells mediate cytolysis of CEA+ tumor cells with high efficiencies. Lysis by redirected CD4+ T cells is independent of death receptor signaling via TNF-alpha or Fas, but mediated by perforin and granzyme because cytolysis is inhibited by blocking the release of cytotoxic granules, but not by blocking of Fas ligand or TNF-alpha. CD4+ T cells redirected by Ab-derived immunoreceptors in a MHC class II-independent fashion substantially extend the power of an adoptive, Ag-triggered immunotherapy not only by CD4+ T cell help, but also by cytolytic effector functions. Because cytolysis is predominantly mediated via granzyme/perforin, target cells that are resistant to death receptor signaling become sensitive to a cytolytic attack by engineered CD4+ T cells.  相似文献   

14.
Significant inhibition of allogeneic cytotoxicity of the target cell MPC-11 by the murine cytotoxic T-lymphocyte line CTLL-1 was observed when the 4-h cytotoxicity assay was conducted in the presence of a 450-MHz field sinusoidally amplitude-modulated at 60 Hz. Exposure of the effector cells to the field prior to adding them to the target cells in the cytolytic assay resulted in a similar inhibition, suggesting a direct interaction of the field with the cytolytic T lymphocyte. The inhibition was preferentially expressed during the early allogeneic recognition phase. Field-exposed cytolytic cells recovered their full cytolytic capacity in 12.5 h. A differential susceptibility was observed with modulation frequencies from 0 to 100 Hz. Peak suppression occurred at 60 Hz modulation, with progressively smaller effects at 40, 16, and 3 Hz. The unmodulated carrier wave did not affect the cytotoxicity. Effects with 80- and 100-Hz modulation were smaller than at 60 Hz. These results demonstrate an inhibitory but recoverable effect by certain amplitude modulations of weak nonionizing radiation upon the cell-mediated cytolytic immune response.  相似文献   

15.
A method is described for the consistent in vitro generation cytotoxic cells by incubating Fischer 344 rat spleen cells on monolayers of a syngeneic mammary adenocarcinoma. Significant cytotoxicity by in vitro culture is generated as early as 3 days after initiation and effector cells are cytolytic only toward target cells of the sensitizing monolayer. Reciprocal sensitization with allogeneic fibroblasts as the immunizing monolayer yielded effector cells cytolytic for the fibroblasts but without effect on the mammary tumor. The consistency in the generation of cytotoxic cells by in vitro culture should permit its standardized use in following other related immune phenomena such as blocking by serologic factors and suppression, recritment of memory for cytotoxic function.  相似文献   

16.
Human monocytes (M phi) show high cytolytic activity towards antibody-coated tumor cells (AbK562). In this report, the relationship between the cytoskeleton in the M phi and the M phi cytolytic activity has been investigated. The actin filament inhibitors cytochalasin B and dihydrocytochalasin B (H2CB) both reduced M phi-mediated lysis of AbK562 cells by approximately 50% at a concentration of 1 microM. This concentration of H2CB did not inhibit the number of target cells bound to M phi. Dihydrocytochalasin B did not inhibit the M phi ability to release cytotoxic protein factors, suggesting that H2CB does not inhibit lysis by inhibiting release of cytotoxic protein factors. Immunofluorescence microscopy showed a rapid accumulation of actin filaments towards the contact area in more than 80% of the examined M phi-AbK562 conjugates. Exposure to H2CB did not prevent this accumulation, but caused aggregation of the accumulated actin filaments in the contact area with the target cell. Accumulation of actin filaments did not occur toward tumor cells not coated with antibodies. Scanning and thin section electron microscopy demonstrated large M phi pseudopodia directed toward the AbK562 cells, with close apposition of the effector and target cell membranes with interdigitations. The formation of the M phi pseudopodia was inhibited by exposure to H2CB. These observations indicate that M phi membrane motility toward AbK562 cells is closely related to M phi-mediated lysis of AbK562 cells. Immunofluorescence microscopy of the microtubule-organizing center (MTOC) and the Golgi apparatus revealed that both the MTOC and the Golgi apparatus in M phi reoriented towards the bound AbK562 cells in approximately 45% of the examined M phi-AbK562 conjugates. The microtubule-depolymerizing drugs colchicine and vinblastine did not inhibit M phi-mediated lysis of AbK562 cells at concentrations which disrupted the microtubule arrays in the M phi. The carboxylic ionophore monensin, which blocks Golgi-derived secretion, inhibited M phi-mediated lysis of AbK562 to a lesser extent as compared to H2CB. These results suggest that microtubule functions are of less importance in M phi-mediated lysis of AbK562 cells as compared to actin filament functions. However, the MTOC and the Golgi apparatus could participate in M phi-mediated lysis of AbK562 cells by mechanisms related to secretion of cytotoxic molecules.  相似文献   

17.
A cytotoxic T-lymphocyte (CTL) clone Tc1.8 was derived in a limiting dilution culture from a single cell that was derived from melanoma-involved lymph node lymphocytes activated in in vitro coculture against the autologous melanoma cells (VIP). The clone Tc1.8 (T3+, T8+, T4-, and Leu7-) expressed restricted cytolytic activity against only the autologous target VIP. As it aged in continuous culture containing interleukin 2, Tc1.8 lost cytolytic activity. The cytolytic function could be restored, however, with monoclonal antibody (MoAb) against T3 (OKT3) or with F(ab')2 fractions of OKT3, and upon restimulation with irradiated accessory cells. OKT3-mediated reinduction of cytotoxicity by the aged Tc1.8 could not be achieved if the T3 molecules were modulated from the effector cell surface following overnight incubation of Tc1.8 with saturating concentrations of OKT3 MoAb. Following reactivation with OKT3 Tc1.8 gained cytolytic function against NK targets in addition to VIP. Reactivation with F(ab')2 fractions of OKT3 and with autologous accessory cells, however, maintained its restricted antigen fidelity. The NK-like activity of Tc1.8 upon reactivation with OKT3 resulted from conjugate formation between the activated Tc1.8 and NK targets via the activating ligand itself. Thus, upon stimulation with anti-T3 MoAb and with autologous accessory cells, independently, the autoreactivity could be restored in an aged and inactive CTL clone.  相似文献   

18.
The selective inhibition of murine cytotoxic T lymphocyte (CTL) differentiation in C57B1/6 (B6) anti-DBA/2 mixed leukocyte cultures (MLC) by the amino acid L-ornithine (Orn) could not be reversed by addition of up to 1000 U/ml IL-2. Analysis of the effects of Orn on induction of lymphokine-activated killer (LAK cells), using dosages of IL-2 from 10-1000 U/ml and measuring cytolytic activity against two tumor targets (P815 and YAC-1) over the course of 5 days, indicated that LAK cells were not suppressed by Orn. LAK precursors and effector cells were CD8- and ASGM1+, indicating that they were derived from natural killer (NK) cells. We also found that the growth and maintenance of cloned CTL lines were not sensitive to inhibition by Orn; nor was their acquisition of nonspecific cytolytic activity in the presence of high lymphokine concentrations. Thus, induction of naive CTL shows differential susceptibility to Orn inhibition relative to LAK and LAK-like activities by NK and cloned CTL lines in response to IL-2.  相似文献   

19.
We have investigated a proteinase inhibitor, designed according to the preferred amino acid sequence that is cleaved by the murine T-cell specific serine proteinase 1 (TSP-1) for its effect on the cytolytic potential of cloned cytotoxic T-cell lines (CTLL) and of cytoplasmic granules, derived from these cells. Pretreatment of effector cells with H-D-Pro-Phe-Arg-chloromethyl-ketone (PFR-CK) prior to the cytotoxicity assay did not result in inhibition of cytolytic activity of three independent CTLL and did not effect their granule-associated TSP-1 activity after extraction with Triton X-100. Furthermore, PFR-CK did not interfere with cytolysis of target cells by CTLL when present for the entire incubation period. In contrast, PFR-CK inhibited in a dose-dependent manner both TSP-1 activity and the hemolytic/cytolytic potential of isolated cytoplasmic granules after their pretreatment with high-salt concentration. We interpret these results to mean that cytolysis of target cells by CTLL involves the granule-associated proteinase TSP-1, which probably becomes active upon exocytosis following effector-target cell interactions.  相似文献   

20.
Granzymes (gzm) are major components of the granules of cytolytic lymphocytes, natural killer and cytotoxic T cells. Their generally accepted mode of action consists of their directed secretion towards a virus-infected or neoplastic target cell and perforin-dependent delivery to the target cell cytosol, where they engage in various actions resulting in target cell apoptosis. Here, based on observations of infection of gzmAxB(-/-) mice with ectromelia virus, mousepox, we propose an additional--and distinct--function for gzmA and B. In this model, gzm constitute one of the first lines of defence of immune cells against virus infection of immune cells themselves. Accordingly, endogenous gzm interfere with viral replication in cytolytic lymphocytes either directly, as a result of their proteolytic activity, leading to destruction of viral proteins, or indirectly, via: (i) processes akin to the caspase cascade when acting as effector molecules in the induction of target cell apoptosis; or (ii) their capacity to induce early inflammatory mediators. We discuss the predictions of the model in the light of available data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号