首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amine oxidase from Trichosporon cutaneum X4 grown on ethylamine as carbon, nitrogen and energy source was purified to near homogeneity. The purified enzyme showed the highest resistance to heat of any amine oxidase hitherto characterized from a yeast (half-life at 62°C, 14 min). Measurement of kinetic parameters as a function of carbon chain length showed results typical of a benzylamine oxidase. Both non-denaturing- and sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed multiple bands, and dimethyl suberimidate cross-linking studies revealed that the enzyme consisted of multimers of two polypeptide chains of Mr respectively 19,000 and 26,000. The smallest structure to show activity probably contained two of each kind of subunit.Abbreviation SDS sodium dodecyl sulphate  相似文献   

2.
Compartmentation of the metabolism of ethylamine in Trichosporon cutaneum X4 was studied in cells, grown on this compound as the sole source of energy, carbon, and nitrogen. Transfer experiments indicated that an amine oxidase is involved in the early metabolism of ethylamine. The synthesis of this enzyme was induced by primary amines and was subject to partial carbon catabolite repression. Repression by ammonium ions was not observed. Adaptation of glucose-grown cells to growth on ethylamine was associated with the development of many microbodies, which developed from already existing organelles present in the inoculum cells and multiplied by division. Cytochemical experiments indicated that the organelles contained amine oxidase and catalase. Therefore, they were considered to play a key role in the metabolism of ethylamine. The physiological significance of the microbodies was investigated by fractionation studies of homogenized protoplasts from ethylamine-grown cells by differential- and sucrose-gradient centrifugation of subcellular organelles. Intact microbodies were only obtained when the isolation procedure was performed at pH 5.8 in the absence of Mg2+-ions. Analysis of the different fractions indicated that the key enzymes of the glyoxylate cycle, namely isocitrate lyase and malate synthase, cosedimented together with catalase and amine oxidase. In addition, activities of malate dehydrogenase, glutamate:oxaloacetate aminotransferase (GOT) and (NAD-dependent) glutamate dehydrogenase were detected in these fractions. Electron microscopy revealed that they mainly contained microbodies. Cytochemical experiments indicated that the above enzymes were all present in the same organelle. These findings suggest that microbodies of ethylamine-grown T. cutaneum X4 produce aspartate, so allowing NADH generated in the oxidation of malate by malate dehydrogenase to be quantitatively reoxidized inside the organelles in a series of reactions involving GOT and glutamate dehydrogenase. Aspartase and fumarase were not detected in the microbodies; activities of these two enzymes were present in the cytoplasm.Abbreviations ABTS 2,2-Azino-di(3-ethylbenzthiazoline sulfonate [6]) - DTT dithiothreitol - GOT glutamate:oxaloacetate aminotransferase - DTNB 5,5-dithiobis-2-nitrobenzoate - DAB diaminobenzidine - BSPT 2-(2-benzothiazolyl)-3-(4-phthalhydrazidyl)-t-styryl-sH-tetrazolium chloride - PF convex fracture face - EF concave fracture face  相似文献   

3.
Growth of Candida famata and Trichosporon cutaneum on uric acid as the sole source of carbon and nitrogen was associated with the development of a number of microbodies in the cells. Cytochemical staining experiments showed that the organelles contained urate oxidase, a key enzyme of uric acid metabolism, and catalase. Transfer of cells, precultured on glucose or glycerol, into uric acid-containing media indicated that these microbodies originated from the organelles, originally present in the inoculum cells, by growth and division. In urate-grown C. famata the microbodies were frequently observed in large clusters; in both organisms they existed in close association with mitochondria and strands of ER. The organelles lacked crystalline inclusions. In freeze-fractured cells their surrounding membranes showed smooth fracture faces.Exposure of urate-grown cells to glucose-excess conditions led to a rapid inactivation of urate oxidase activity but catalase was only slightly inactivated. Glucose-induced enzyme inactivation was not associated with the degradation of the microbodies present in the cells. Similarly, repression of urate oxidase synthesis by ammonium ions also did not lead to the degradation of peroxisomes.  相似文献   

4.
Trametes versicolor 1 was shown to grow on phenol as its sole carbon and energy source. The culture growth and degradation ability dependence on culture medium pH value was observed. The optimal pH value of a liquid Czapek salt medium was 6.5. The investigated strain utilized completely 0.5 g/l phenol in 6 days. The dynamics of the phenol degradation process was investigated. The process was characterized by specific growth rate μmax 0.33 h−1, metabolic coefficient k = 4.4, yield coefficient Y x/s  = 0.23 and rate of degradation Q = 0.506 h−1. The intracellular activities of phenol hydroxylase (0.333 U/mg protein) and cis,cis-muconate lactonizing enzyme (0.41 U/mg protein) were demonstrated for the first time in this fungus. In an attempt to estimate the occurrence of gene sequences in T. versicolor 1 related to phenol degradation pathway a dot blot analysis with total DNA isolated from this strain was performed. Two synthetic oligonucleotides were used as hybridizing probes. One of the probes was homologous to the 5′end of phyA gene coding for phenol hydroxylase in Trichosporon cutaneum ATCC 46490. The other probe was created on the basis of cis,cis-muconate lactonizing enzyme coding gene in T. cutaneum ATCC 58094. The results of these investigations showed that T. versicolor 1 may carry genes similar to those of Trichosporon cutaneum capable to degrade phenol.  相似文献   

5.
Yeast strains capable of utilizing uric acid as the sole source of carbon and energy were isolated from soil by the enrichment culture method. The strains were identified as Candida famata (Harrison) Meyer et Yarrow and Trichosporon cutaneum (De Beurm., Gougerot et Vaucher) Ota. On the subcellular level growth of yeasts on uric acid was accompanied with the development of a number of large microbodies in the cells.  相似文献   

6.
Trichosporon cutaneum metabolizes glucose purely oxidatively and cytochrome P450 was not detected in the reduced CO-difference spectrum of whole cells. However, in the isolated microsomal fraction the corresponding monooxygenase was present as shown by the appearence of cytochrome P450, NADPH-cytochrome c (P450) reductase and cytochrome b5. The absorption maximum of the terminal oxidase in the reduced CO-difference spectrum shifted between 447 and 448 nm. Derepression of biosynthesis of all components was achieved by transition of the cells from carbon- to oxygen-limited growth in continuous culture. The monooxygenase exhibited aminopyrine demethylation activity but not -hydroxylation activity of lauric acid. With respect to the growth limiting nutrient (carbon and oxygen respectively), mitochondrial cytochrome content showed an analogous behavior as cytochrome P450 and cytochrome b5.  相似文献   

7.
1. Antiserum to purified methylamine oxidase of Candida boidinii formed precipitin lines (with spurs) in double-diffusion tests with crude extracts of methylamine-grown cells of the following yeast species: Candida nagoyaensis, Candida nemodendra, Hansenula minuta, Hansenula polymorpha and Pichia pinus. No cross-reaction was observed with extracts of Candida lipolytica, Candida steatolytica, Candida tropicalis, Candida utilis, Pichia pastoris, Sporobolomyces albo-rubescens, Sporopachydermia cereana or Trigonopsis variabilis. Quantitative enzyme assays enabled the relative titre of antiserum against the various methylamine oxidases to be determined. 2. The amine oxidases from two non-cross-reacting species, C. utilis and P. pastoris, were purified to near homogeneity. 3. The methylamine oxidases, despite their serological non-similarity, showed very similar catalytic properties to methylamine oxidase from C. boidinii. Their heat-stability, pH optima, molecular weights, substrate specificities and sensitivity to inhibitors are reported. 4. The benzylamine oxidases of C. utilis and P. pastoris both oxidized putrescine, and the latter enzyme failed to show any cross-reaction with antibody to C. boidinii methylamine oxidase. Benzylamine oxidase from C. boidinii itself also did not cross-react with antibody to methylamine oxidase. The heat-stability, molecular weights, substrate specificities and sensitivity to inhibitors of the benzylamine/putrescine oxidases are reported. 5. The benzylamine/putrescine oxidase of C. utilis differed only slightly from that of C. boidinii. 6. Benzylamine/putrescine oxidase from P. pastoris differed from the Candida enzymes in heat-stability, subunit molecular weight and substrate specificity. In particular it catalysed the oxidation of the primary amino groups of spermine, spermidine, lysine, ornithine and 1,2-diaminoethane, which are not substrates for either of the Candida benzylamine oxidases that have been purified. 7. Spermine and spermidine were oxidized at both primary amino groups; in the case of spermidine this is a different specificity from that of plasma amine oxidase. 8. Under appropriate conditions, P. pastoris benzylamine/putrescine oxidase (which is very easy to purify) can be a useful analytical tool in measuring polyamines.  相似文献   

8.
9.
Three new anamorphic ascomycetous yeasts are described: Candida anglica (type strain NRRL Y-27079, CBS 4262), Candida cidri (type strain NRRL Y-27078, CBS 4241), and Candida pomicola (type strain NRRL Y-27083, CBS 4242). These three species were isolated from cider produced in the United Kingdom, and their identification was determined from unique nucleotide sequences in the species-specific D1/D2 domain of large subunit (26S) ribosomal DNA. Phylogenetic analysis of D1/D2 sequences placed C. anglica near Candida fragi, C. cidri near Pichia capsulata, and C. pomicola in the Pichia holstii clade.  相似文献   

10.
The internal pH of peroxisomes in the yeasts Hansenula polymorpha, Candida utilis and Trichosporon cutaneum X4 was estimated by 31P nuclear magnetic resonance (NMR) spectroscopy. 31P NMR spectra of suspensions of intact cells of these yeasts, grown under conditions of extensive peroxisomal proliferation, displayed two prominent Pi-peaks at different chemical shift positions. In control cells grown on glucose, which contain very few peroxisomes, only a single peak was observed. This latter peak, which was detected under all growth conditions, was assigned to cytosolic Pi at pH 7.1. The additional peak present in spectra of peroxisome-containing cells, reflected Pi at a considerably lower pH of approximately 5.8–6.0. Experiments with the protonophore carbonyl cyanide m-chlorophenylhydrazon (CCCP) and the ionophores valinomycin and nigericin revealed that separation of the two Pi-peaks was caused by a pH-gradient across a membrane separating the two pools. Experiments with chloroquine confirmed the acidic nature of one of these pools. In a number of transfer experiments with the yeast H. polymorpha it was shown that the relative intensity of the Pi-signal at the low pH-position was correlated to the peroxisomal volume fraction. These results strongly suggest that this peak has to be assigned to Pi in peroxisomes, which therefore are acidic in nature. The presence of peroxisome-associated Pi was confirmed cytochemically.Abbreviations CCCP Carbonyl cyanide m-chlorophenylhydrazon - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

11.
The yeast flora of whole-crop maize ensiled for two weeks was predominated by Candida holmii, C. lambica, C. milleri, Hansenula anomala and Saccharomyces dairensis. Inoculation with other yeast species reported in the literature to prevail in maize or wheat silages did not alter the yeast flora. At 25 or 30° C the ascomycetous fermentative species found at 20° C were accompanied with ascomycetous non-fermentative fungi, i.c. Exophiala jeanselmei and Verticillium psalliotae, by the non-fermentative imperfect basidiomycetous yeast Rhodotorula mucilaginosa and by the weakly fermentative imperfect ascomycetous yeast Trichosporon adeninovorans.The yeast flora of other vegetable crops, ensiled at 20° C for two weeks, was predominated by the same species that prevailed in ensiled maize, provided the crop did not contain mustard oils or menthol. If these compounds occurred in the crops, the yeast flora was predominated by nonfermentative species like Candida famata, Stephanoascus ciferrii, Rhodotorula minuta, Rh. rubra and Trichosporon cutaneum.  相似文献   

12.
Yeast strains utilizing uric acid, adenine, monoamines or diamines as sole source of carbon and energy were isolated from several soil samples by the enrichment culture method. The most common species wasTrichosporon cutaneum. Strains ofCandida catenulata, C. famata, C. parapsilosis, C. rugosa, Cryptococcus laurentii, Stephanoascus ciferrii andTr. adeninovorans were also isolated. All strains utilizing uric acid as sole carbon source utilized some primaryn-alkyl-l-amines hydroxyamines or diamines as well. The ascomycetous yeast strains showing these characteristics all belonged to species known to assimilate hydrocarbons. Type strains of hydrocarbon-positive yeast species which were not found in the enrichment cultures generally assimilated putrescine, some type strains also butylamine or pentylamine, but none assimilated uric acid. Methanol-positive species were not isolated. Type strains of methanol-positive and of hydrocarbon-negative species did not assimilate uric acid, butylamine or putrescine. Assimilation of putrescine as sole source of carbon and energy may be a valuable diagnostic criterion in yeast taxonomy.  相似文献   

13.
A comparative study of 9 yeasts namely, Candida blankii,C.humicola,C.ishiwadae,C.rhagii,C.tropicalis,Hensenula subpelliculosa,Saccharomyces cerevisiae,Trichosporon cutaneum and Tr.pullulans was carried out for the production of extracellular and cell bound β-glucosidase using cellobiose as the substrate. Trichosporon cutaneum was found to be the best extracellular as well as cell bound β-clucosidase producer and the former activity was more than the latter. In the rest of the yeasts most of them showed more cell bound β-glucosidase as compared to the extracellular.  相似文献   

14.
A covalent binding to cellulose granules of two yeast strains Candida tropicalis and Trichosporon cutaneum was achieved. The maximum activity for destroying furfural by the immobilized cells was obtained when the procedure conditions were: reaction medium at pH 5.0, 20°C and cell suspension concentration of 80 mg/ml. The continuous furfural transformation was studied using a growth medium in a fermenter with immobilized Trichosporon cutaneum in which a 84% bioconversion was achieved. The reduced values of furfural remained constant even after 10-fold transformation.  相似文献   

15.
Elephant grass (Pennisetum purpureum) dilute acid hydrolysate contains 34.6?g/L total sugars. The potential of lipid production by oleaginous yeast Trichosporon cutaneum grown on elephant grass acid hydrolysate was investigated for the first time. During the fermentation process on the elephant grass acid hydrolysate, glucose, xylose, and arabinose could be well utilized as carbon sources by T. cutaneum. Interestingly, xylose was almost no use before glucose was consumed completely. This illustrated that simultaneous saccharification of xylose and glucose by T. cutaneum did not occur on elephant grass acid hydrolysate. The highest biomass, lipid content, lipid yield, and lipid coefficient of T. cutaneum were measured after the sixth day of fermentation and were 22.76?g/L, 24.0%, 5.46?g/L, and 16.1%, respectively. Therefore, elephant grass is a promising raw material for microbial oil production by T. cutaneum.  相似文献   

16.
During heterotrophic growth on acetate, in batch culture, the autotrophic growth potential of Thiobacillus A2, i.e. the capacity to oxidize thiosulfate and to fix carbon dioxide via the Calvin cycle, was completely repressed. The presence of thiosulfate in a batch culture with acetate as the organic substrate partly released the repression of the thiosulfate oxidizing system. Cultivation of the organism in continuous culture at a dilution rate of 0.05 h-1 with different concentration ratios of thiosulfate and acetate in the reservoir medium led to mixotrophic growth under dual substrate limitation. Growth on the different mixtures of acetate and thiosulfate yielded upto 30% more cell dry weight than predicted from the growth yields on comparable amounts of these substrates separately. The extent to which the carbon dioxide fixation capacity and the maximum thiosulfate and acetate oxidation capacity are repressed appeared to be a function of the thiosulfate to acetate concentration ratio in the reservoir medium. The results of 14C-acetate assimilation experiments and of gas-analysis demonstrated that the extent to which acetate was assimilated depended also on the substrate ratio in the inflowing medium. Under the different growth conditions surprisingly little variation was found in some tri-carboxylic acid cycle enzyme activities. Cultivation of T. A2 at different growth rates with a fixed mixture of thiosulfate (18 mM) and acetate (11 mM) in the medium, showed that dual substrate limitation occured at dilution rates ranging from 0.03–0.20 h-1.Abbreviations PPO 2,5-diphenoloxazol - RubPCase Ribulose-1,5-bisphophate carboxylase - Tris tris (hydroxymethyl) aminomethane - EDTA ethylenediaminetetra-acetic acid  相似文献   

17.
Flower-visiting beetles belonging to three species of Cetoniidae were collected on three mountains near Beijing, China, and yeasts were isolated from the gut of the insects collected. Based on the 26S rDNA D1/D2 domain and internal transcribed spacer (ITS) region sequence analysis and phenotypic characterization, four novel anamorphic yeast species located in the Candida albicans/Lodderomyces elongisporus clade were identified from 18 of the strains isolated. The new species and type strains are designated as Candida blackwellae AS 2.3639T (=CBS 10843T), Candida jiufengensis AS 2.3688T (=CBS 10846T), Candida oxycetoniae AS 2.3656T (=CBS 10844T), and Candida pseudojiufengensis AS 2.3693T (=CBS 10847T). C. blackwellae sp. nov. was basal to the branch formed by C. albicans and C. dubliniensis with moderately strong bootstrap support. The closest relative of C. oxycetoniae was L. elongisporus. C. jiufengensis sp. nov. and C. pseudojiufengensis sp. nov. were closely related with each other and formed a branch in a subclade represented by C. parapsilosis and L. elongisporus.  相似文献   

18.
Incubations of Arthrobacter P1 in batch culture in media with mixtures of acetate and methylamine resulted in sequential utilization of the two carbon substrates, but not in diauxic growth. Irrespective of the way cells were pregrown, acetate was the preferred substrate and subsequent studies showed that this is due to the fact that acetate is a strong inhibitor of the methylamine transport system and amine oxidase in Arthrobacter P1. An analysis of enzyme activities in cell-free extracts showed that synthesis of amine oxidase occurred already in the first growth phase with acetate, whereas rapid synthesis of hexulose phosphate synthase was only observed once methylamine utilization started. It is therefore concluded that in Arthrobacter P1 the synthesis of the enzymes specific for methylamine oxidation is not regulated co-ordinately with those involved in formaldehyde fixation, but induced sequentially by methylamine and formaldehyde, respectively.During growth of Arthrobacter P1 on the same mixture in carbon- and energy source-limited continuous cultures both substrates were used simultaneously and completely at dilution rates below the max on either of these substrates. Addition of methylamine, in concentrations as low as 0.5 mM, to the medium reservoir of an acetate-limited continuous culture (D=0.10 h-1) already resulted in synthesis of both amine oxidase and hexulose phosphate synthase. In the reverse experiment, addition of acetate to the medium reservoir of a methylamine-limited continuous culture (D=0.10 h-1), acetate was initially only used as an energy source. Synthesis of the glyoxylate cycle enzymes, however, did occur at acetate concentration in the feed above 7.5–10 mM. This indicates that at acetate concentrations below 10 mM the metabolism of the C1 substrate methylamine is able to cause a complete repression of the synthesis of the enzymes involved in carbon assimilation from the C2 substrate acetate.Abbreviations HPS Hexulose phosphate synthase - MS mineral salts - RuMP ribulose monophosphate  相似文献   

19.
Les levures dans les eaux de la Moselle   总被引:1,自引:1,他引:0  
We have identified 95 yeast species, in the river Moselle. Trichosporon cutaneum is a very good indicator for pollution caused by men and disappears rapidly in the zone of recovery. In not polluted water, the white yeasts are absent or nearly so, and only red pigmented yeasts are present. Sporobolomyces odorus is always present in these fractions. From the source till the border (Thionville) an increasing percentage of red yeasts present in the water is an indicator for a recovery of the river after heavy pollution.
  相似文献   

20.
Three new species of Candida and a new species of Trigonopsis are described based on their recognition from phylogenetic analysis of gene sequences from large subunit ribosomal RNA, ITS1/ITS2 rRNA, mitochondrial small subunit rRNA and cytochrome oxidase II. Candida infanticola sp. nov. (type strain NRRL Y-17858, CBS 7922) was isolated from the ear of an infant in Germany and is closely related to Candida sorbophila. Candida polysorbophila sp. nov. (type strain NRRL Y-27161, CBS 7317) is a member of the Zygoascus clade and was isolated in South Africa as a contaminant from an emulsion of white oil and polysorbate. Candida transvaalensis sp. nov. (type strain NRRL Y-27140, CBS 6663) was obtained from forest litter, the Transvaal, South Africa, and forms an isolated clade with Candida santjacobensis. Trigonopsis californica sp. nov. (type strain NRRL Y-27307, CBS 10351) represents a contaminant from wine in California, and forms a well-supported clade with Trigonopsis cantarellii, Trigonopsis variabilis and Trigonopsis vinaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号