首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two phosphoenolpyruvate carboxylase proteins (PC-I and PC-II) were extracted and purified close to homogeneity from corn leaves. PC-I contained about 85% and PC-II about 15% of the total phosphoenolpyruvate carboxylase activity. PC-I eluted from a DEAE-cellulose column with a buffer having lower ionic strength, had higher Km and V values with respect to phosphoenolpyruvate, Mg2+, and Mn2+, was more thermolabile and moved more slowly toward the anode during disc gel electrophoresis as compared to PC-II. The enzymes had sedimentation coefficient values (s20,W) of 9.7 and 11.6S and molecular weights, determined by equilibrium centrifugation on sucrose density gradients, of 225,650 and 270,800, respectively. The enzymes used HCO3? as the active “CO2” substrate, and the major protein (PC-I) had a temperature optimum for activity of 40 °C.  相似文献   

2.
Glycolipid transfer protein from bovine brain   总被引:2,自引:0,他引:2  
Glycolipid transfer protein from bovine brain has been purified partially by ammonium sulfate precipitation, CM-52 ion-exchange, and Sephadex G-75 column chromatography. Both pyrene-labeled and tritium-labeled glucocerebrosides have been used to study the kinetics of protein-mediated transfer between donor and acceptor vesicles. Protein accelerates glucocerebroside transfer but does not accelerate phospholipid transfer. In colyophilized small sonicated vesicles (10% glucocerebroside, 90% 1-palmitoyl-2-oleoyl-phosphatidylcholine) about two-thirds of the glycolipid is transferred in 2 h and the remaining one-third does not transfer (up to 5 h). For donor and acceptor vesicles made of dipalmitoylphosphatidylcholine or 1-palmitoyl-2-oleoyl-phosphatidylcholine, glucocerebroside (10% in donors) is transferred rapidly only when both the donor and acceptor matrix phospholipids are in the liquid-crystalline state. If either donor or acceptor vesicles are in the gel state, transfer protein mediated transfer is much reduced. The amount of transfer protein bound specifically to glucocerebroside-containing vesicles is nearly equal above and below the matrix phospholipid phase transition temperature. Bound protein transfers glucocerebroside upon addition of acceptor vesicles.  相似文献   

3.
In vivo oxidation of glycerophospholipid generates a variety of products including truncated oxidized phospholipids (tOx-PLs). The fatty acyl chains at the sn-2 position of tOx-PLs are shorter in length than the parent non-oxidized phospholipids and contain a polar functional group(s) at the end. The effect of oxidatively modified sn-2 fatty acyl chain on the physicochemical properties of tOx-PLs aggregates has not been addressed in detail, although there are few reports that modified fatty acyl chain primarily determines the biological activities of tOx-PLs. In this study we have compared the properties of four closely related tOx-PLs which differ only in the type of modified fatty acyl chain present at the sn-2 position: 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), and 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC). Aggregates of individual tOx-PL in aqueous solution were characterized by fluorescence spectroscopy, size exclusion chromatography, native polyacrylamide and agarose gel electrophoresis. The data suggest that aggregates of four closely related tOx-PLs form micelle-like particles of considerably different properties. Our result provides first direct evidence that because of the specific chemical composition of the sn-2 fatty acyl chain aggregates of particular tOx-PL possess a distinctive set of physicochemical properties.  相似文献   

4.
One of the earliest steps in the development of the atherosclerotic lesion is the accumulation of monocyte/macrophages within the vessel wall. Oxidized lipids present in minimally modified-low density lipoproteins (MM-LDL) contribute to this process by activating endothelial cells to express monocyte-specific adhesion molecules and chemoattractant factors. A major focus of our group has been the isolation and characterization of the biologically active oxidized lipids in MM-LDL. We have previously characterized three oxidized phospholipids present in MM-LDL, atherosclerotic lesions of fat fed rabbits, and autoxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (Ox-PAPC) that induced human aortic endothelial cells to adhere human monocytes in vitro. We have used sequential normal and reverse phase-high performance liquid chromatography to isolate various isomers of an oxidized phospholipid from autoxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine. The fatty acid in the sn-2 position of this biologically active isomer and its dehydration product was released by phospholipase A(2) and characterized. Hydrogenation with platinum(IV) oxide/hydrogen suggested a cyclic moiety, and reduction with sodium borohydride suggested two reducible oxygen-containing groups in the molecule. The fragmentation pattern produced by electrospray ionization-collision induced dissociation-tandem mass spectrometry was consistent with a molecule resembling an E-ring prostaglandin with an epoxide at the 5,6 position. The structure of this lipid was confirmed by proton nuclear magnetic resonance spectroscopy analysis of the free fatty acid isolated from the dehydration product of m/z 828.5. Based on these studies, we arrived at the structure of the biologically active oxidized phospholipids as 1-palmitoyl-2-(5, 6-epoxyisoprostane E(2))-sn-glycero-3-phosphocholine. The identification of this molecule adds epoxyisoprostanes to the growing list of biologically active isoprostanes.  相似文献   

5.
Paraoxonase (PON-1) is a high-density lipoprotein (HDL)-bound enzyme with activity toward multiple substrates. It hydrolyzes organic phosphate and aromatic carboxylic acid esters. It also inhibits accumulation of oxidized phospholipids in plasma lipoproteins by a mechanism yet to be determined. Therefore, we subjected apolipoprotein A-I proteoliposomes containing either 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine or 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine to oxidation by a peroxynitrite generator, SIN-1, in the presence and absence of purified PON-1. PON-1 modified the proportion of oxidation products without affecting the overall extent of PC oxidation. However, in the presence of PON-1, phosphatidylcholine isoprostanes were hydrolyzed to lysophosphatidylcholine. In addition, PON-1 hydrolyzed the phosphatidylcholine core aldehydes 1-palmitoyl-2-(9-oxo)nonanoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-(5-oxo)valeroyl-sn-glycero-3-phosphocholine to lysophosphatidylcholine. This hydrolysis was not affected by pefabloc, a serine esterase inhibitor. There was no detectable release of linoleate, arachidonate, or their hydroperoxy or hydroxy derivatives in the presence of PON-1. We conclude that PON-1 minimizes the accumulation of phosphatidylcholine oxidation products by the hydrolysis of phosphatidylcholine isoprostanes and core aldehydes to lysophosphatidylcholine with a serine esterase-independent mechanism.  相似文献   

6.
Cytochrome b5 holoenzyme was bound asymmetrically in the tightly bound form to small unilamellar dimyristoylphosphatidylcholine vesicles. [3H]Taurine, a membrane-impermeant nucleophile, was added to the external medium and was then cross-linked to cytochrome carboxyl residues by the addition of a water-soluble carbodiimide. Nonpolar peptide was isolated after trypsin digestion of taurine-labeled apocytochrome b5 and contained 1.7-1.9 residues of taurine. The C-terminal tetrapeptide containing residues Thr130-Asn133 was generated by chymotryptic hydrolysis of radiolabeled nonpolar peptide and was purified by gel filtration and ion exchange chromatography. Amino acid analysis of the C-terminal tetrapeptide showed that about 1.6 mol of taurine was cross-linked per mol of peptide. When the experiment was performed with taurine trapped inside the vesicles, no cross-linking was observed. The results suggest that when cytochrome b5 holoenzyme is bound to vesicles in the tight binding form, the C terminus is located on the external surface of the vesicles.  相似文献   

7.
Sonication of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-sn-glycero-3-phosphocholine (lysoPC, up to approximately 30 mol %) produces small unilamellar vesicles (SUV, 250-265 A diameter). Phosphorus-31 NMR of the POPC/lysoPC vesicles gives rise to four distinct peaks for POPC and lysoPC in the outer and in the inner bilayer leaflet which can be used to localize and quantify the phospholipids in both vesicle shells. Addition of paramagnetic ions (3 mM Pr3+) enhances outside/inside chemical shift differences and allows monitoring of membrane integrity by the absence of Pr3+ in the vesicle interior. 31P NMR shows that lysoPC in these highly curved POPC/lysoPC vesicles prefers the outer bilayer leaflet. LysoPC incorporation into POPC SUV furthermore causes a substantial and concentration-dependent decrease in spin-spin relaxations (T*2) of the outside POPC phosphorus signals from 55 ms for pure POPC vesicles (v1/2, 5.8 Hz) to 29.5 ms (v1/2, 10.8 Hz) for POPC/lysoPC vesicles containing 25 mol % lysoPC. Our findings are consistent with the idea of a cone-shaped lysoPC molecule which, for geometric reasons, is preferentially accommodated in the outer bilayer leaflet. LysoPC incorporation into POPC SUV restricts POPC headgroup motion and tightens phospholipid packing, but only in the outer bilayer shell.  相似文献   

8.
Cytochrome b5 induced flip-flop of phosphatidylethanolamine (PE) in sonicated vesicles prepared from a 9:1 mixture of phosphatidylcholine (PC) to phosphatidylethanolamine was determined as follows. First, vesicles having a nonequilibrium distribution of PE across the bilayer were prepared by amidinating the external amino groups with isethionyl acetimidate. Amidinated cytochrome b5 was then added, and after the protein was completely bound, the rate of appearance of fresh PE on the outer surface was determined by removing aliquots at timed intervals and titrating the external amino groups with trinitrobenzenesulfonic acid. The results show an initial rapid phase of flip-flop (especially in the presence of salt) followed by a very slow phase, at 25 degrees C. Similar results were obtained when cytochrome b5 was introduced into the amidinated vesicles by spontaneous transfer from PC donor vesicles. These results indicate that the accumulation of the transferable ("loose") form of cytochrome b5 on the outer surface of a vesicle causes a transient, global destabilization of the bilayer that is relieved by lipid flip-flop. We speculate that this mechanism may be a significant driving force for the transfer of amphipathic molecules across membranes.  相似文献   

9.
Selection of excipients used is a critical step in the design of a pharmaceutical dosage form as it affects its behavior upon application, as during storage. The purpose of the present study is to evaluate and compare the behavior of six liposomal formulations intended for topical application composed of two widely used phospholipids 1,2-diacyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine with and without incorporation of cholesterol. Liposomal hydrogels made of hydroxyethylcellulose 3% and incorporating the anti-fungal agent terbinafine hydrochloride (E)-N-(6,6-dimethyl-2-hepten-4-inyl)-N-methyl-1-naphthalene-methanamine (-hydrochloride) were prepared, their viscosity was measured and in vitro drug release was studied. Moreover, physical stability and drug retention during storage at two different temperatures (2–8?°C and RT) were examined over time. The results showed differences in the behavior between the two phospholipids while incorporation of cholesterol at the studied concentrations was found to be of minor importance. Drug release was found to be favorable from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomal hydrogels and drug retention was found to be higher at lower storage temperature for all batches. Original physicochemical properties of all batches were found to be retained at least for a week.  相似文献   

10.
The lipidic beta-amino acid 2-(aminomethyl)-2-pentadecylheptadecanoic acid (1) was synthesized via the alkylation of the C(alpha)-atom of fully protected beta-alanine. Mixed large unilamellar vesicles with a diameter between 100 and 200 nm containing POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and 1 at a molar ratio of 9 : 1 were prepared and found to have a surface charge which is dependent on pH. At slightly acidic pH, the vesicles were positively charged, and at alkaline pH negatively charged. Dynamic light scattering, zeta potential, and cryo-transmission electron-microscopy measurements indicated that the mixed vesicles fused at pH 4-5 with negatively charged mixed vesicles composed of POPC and POPG (9.8 : 1, molar ratio), POPG being 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)].  相似文献   

11.
Upon incubation of detergent-solubilized NADPH-cytochrome P-450 reductase and either cytochrome b5 or cytochrome c in the presence of a water-soluble carbodiimide, a 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), covalently cross-linked complex was formed. The cross-linked derivative was a heterodimer consisting of one molecule each of flavoprotein and cytochrome, and it was purified to 90% or more homogeneity. The binary covalent complex between the flavoprotein and cytochrome b5 was exclusively observed following incubation of all three proteins including NADPH-cytochrome P-450 reductase, cytochrome b5, and cytochrome c in L-alpha-dimyristoylphosphatidylcholine vesicles, and no heterotrimer could be identified. The isolated reductase-cytochrome b5 complex was incapable of covalent binding with cytochrome c in the presence of EDC. No clear band for covalent complex formation between PB-1 and reductase was seen with the present EDC cross-linking technique. More than 90% of the cross-linked cytochrome c in the purified derivative was rapidly reduced upon addition of an NADPH-generating system, whereas approximately 80% of the cross-linked cytochrome b5 was rapidly reduced. These results showed that in the greater part of the complexes, the flavin-mediated pathway for reduction of cytochrome c or cytochrome b5 by pyridine nucleotide was intact. When reconstituted into phospholipid vesicles, the purified amphipathic derivative could hardly reduce exogenously added cytochrome c, cytochrome b5, or PB-1, indicating that the cross-linked cytochrome shields the single-electron-transferring interface of the flavoprotein. These results suggest that the covalent cross-linked derivative is a valid model of the noncovalent functional electron-transfer complex.  相似文献   

12.
In this study we pursue a closer analysis of the photodamage promoted on giant unilamellar vesicles membranes made of dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), by irradiating methylene blue present in the giant unilamellar vesicles solution. By means of optical microscopy and electro-deformation experiments, the physical damage on the vesicle membrane was followed and the phospholipids oxidation was evaluated in terms of changes in the membrane surface area and permeability. As expected, oxidation modifies structural characteristics of the phospholipids that lead to remarkable membrane alterations. By comparing DOPC- with POPC-made membranes, we observed that the rate of pore formation and vesicle degradation as a function of methylene blue concentration follows a diffusion law in the case of DOPC and a linear variation in the case of POPC. We attributed this scenario to the nucleation process of oxidized species following a diffusion-limited growth regime for DOPC and in the case of POPC a homogeneous nucleation process. On the basis of these premises, we constructed models based on reaction-diffusion equations that fit well with the experimental data. This information shows that the outcome of the photosensitization reactions is critically dependent on the type of lipid present in the membrane.  相似文献   

13.
Cytochrome b5, a protein isolated from the endoplasmic reticulum by detergent extraction, interacts spontaneously with small unilamellar phosphatidylcholine vesicles. When the vesicles are made from 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), the tryptophan fluorescence of the cytochrome is enhanced, and when they are made from 1-palmitoyl-2-(dibromostearoyl) phosphatidylcholine (BRPC), the fluorescence is quenched. A series of BRPC were synthesized with bromine atoms at the 6,7, 9,10, 11,12 or 15,16 positions. The vesicles synthesized from each of these lipids were similar in size to those made from POPC. The relative fluorescence intensities of the cytochrome b5 in POPC and 6,7-, 9,10-, 11,12- and 15,16- BRPC were 100, 19.4, 29.4, 37.1, and 54.0, respectively. These data suggest that the exposed tryptophan(s) is (are) at a depth of 0.7 nm below the surface of the vesicle. Bromine is a collisional quencher; hence, these data may indicate the relative position of the lipid annulus around the protein rather than the depth of the protein below the average vesicle surface. Cytochrome b5 contains three potentially fluorescent tryptophans, and determinations of fluorescent quantum yield indicate all three potentially fluorescent tryptophans, and determinations of fluorescent quantum yield indicate all three are fluorescent with an average quantum yield, when in POPC vesicles, of 0.21. Fluorescence lifetime measurements by the demodulation technique indicated heterogeneity of fluorescence lifetimes in all vesicles. The lifetimes in the BRPC vesicles ranged from 2.0 to 2.4 ns compared to a value of 3.3 ns in POPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In this study we pursue a closer analysis of the photodamage promoted on giant unilamellar vesicles membranes made of dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), by irradiating methylene blue present in the giant unilamellar vesicles solution. By means of optical microscopy and electro-deformation experiments, the physical damage on the vesicle membrane was followed and the phospholipids oxidation was evaluated in terms of changes in the membrane surface area and permeability. As expected, oxidation modifies structural characteristics of the phospholipids that lead to remarkable membrane alterations. By comparing DOPC- with POPC-made membranes, we observed that the rate of pore formation and vesicle degradation as a function of methylene blue concentration follows a diffusion law in the case of DOPC and a linear variation in the case of POPC. We attributed this scenario to the nucleation process of oxidized species following a diffusion-limited growth regime for DOPC and in the case of POPC a homogeneous nucleation process. On the basis of these premises, we constructed models based on reaction-diffusion equations that fit well with the experimental data. This information shows that the outcome of the photosensitization reactions is critically dependent on the type of lipid present in the membrane.  相似文献   

15.
The properties of two oxidatively modified phospholipids viz. 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), were investigated using a Langmuir balance, recording force-area (pi-A) isotherms and surface potential psi. In mixed monolayers with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) a progressive disappearance of the liquid expanded-liquid condensed transition and film expansion was observed with increasing content of the oxidized phospholipids. The above is in agreement with fluorescence microscopy of the monolayers, which revealed an increase in the liquid expanded region of DPPC monolayers. At a critical pressure pi(s) approximately 42 mN/m both Poxo- and PazePC induced a deflection in the pi-A isotherms, which could be rationalized in terms of reorientation of the oxidatively modified acyl chains into aqueous phase (adaptation of the so-called extended conformation), followed upon further film compression by solubilization of the oxidized phospholipids into the aqueous phase. Surface potential displayed a discontinuity at the same value of area/molecule, corresponding to the loss of the oxidized phospholipids from the monolayers. Our data support the view that lipid oxidation modifies both the small-scale structural dynamics of biological membranes as well as their more macroscopic lateral organization. Accordingly, oxidatively modified lipids can be expected to influence the organization and functions of membrane associated proteins.  相似文献   

16.
Synapsin I, a major neuron-specific phosphoprotein, is localized on the cytoplasmic surface of small synaptic vesicles to which it binds with high affinity. It contains a collagenase-resistant head domain and a collagenase-sensitive elongated tail domain. In the present study, the interaction between synapsin I and phospholipid vesicles has been characterized, and the protein domains involved in these interactions have been identified. When lipid vesicles were prepared from cholesterol and phospholipids using a lipid composition similar to that found in native synaptic vesicle membranes (40% phosphatidylcholine, 32% phosphatidylethanolamine, 12% phosphatidylserine, 5% phosphatidylinositol, 10% cholesterol, wt/wt), synapsin I bound with a dissociation constant of 14 nM and a maximal binding capacity of about 160 fmol of synapsin I/microgram of phospholipid. Increasing the ionic strength decreased the affinity without greatly affecting the maximal amount of synapsin I bound. When vesicles containing cholesterol and either phosphatidylcholine or phosphatidylcholine/phosphatidylethanolamine were tested, no significant binding was detected under any conditions examined. On the other hand, phosphatidylcholine vesicles containing either phosphatidylserine or phosphatidylinositol strongly interacted with synapsin I. The amount of synapsin I maximally bound was directly proportional to the percentage of acidic phospholipids present in the lipid bilayer, whereas the Kd value was not affected by varying the phospholipid composition. A study of synapsin I fragments obtained by cysteine-specific cleavage showed that the collagenase-resistant head domain actively bound to phospholipid vesicles; in contrast, the collagenase-sensitive tail domain, though strongly basic, did not significantly interact. Photolabeling of synapsin I was performed with the phosphatidylcholine analogue 1-palmitoyl-2-[11-[4-[3-(trifluoromethyl)diazirinyl]phenyl] [2-3H]undecanoyl]-sn-glycero-3-phosphocholine; this compound generates a highly reactive carbene that selectively interacts with membrane-embedded domains of membrane proteins. Synapsin I was significantly labeled upon photolysis when incubated with lipid vesicles containing acidic phospholipids and trace amounts of the photoactivatable phospholipid. Proteolytic cleavage of photolabeled synapsin I localized the label to the head domain of the molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Cytochrome b5 is an amphipathic integral membrane protein that spontaneously inserts, post-translationally, into intracellular membranes. When added to preformed phospholipid vesicles, it binds in a so-called "loose" or transferable configuration, characterized by the ability of the protein to rapidly equilibrate between vesicles. In a preliminary report we showed that the distribution of cytochrome b5 among a heterogeneous population of small sonicated phosphatidylcholine vesicles (212 to about 350 A in diameter) lies in favor of the smallest vesicles by a factor of at least 20 (Greenhut, S.F. and Roseman, M.A. (1985) J. Biol. Chem. 260, 5883-5886). In the present studies we have attempted to determine the maximal extent to which bilayer curvature can influence the intervesicle distribution of cytochrome b5, by measuring the distribution of the protein between a population of limit-size vesicles 212 A in diameter and a population of large unilamellar vesicles approximately 1000 A in diameter. (The effect of bilayer curvature on the physical properties of the lipids in the large vesicles is considered to be negligible.) The results show that cytochrome b5 favors the small vesicle population by a factor of about 200. This observation suggests that the formation of highly curved regions in biological membranes (or the formation of regions in which the physical state of the lipids is similar to that in small vesicles) may cause the accumulation of certain membrane proteins at those sites. We also observed that a significant fraction (11-20%) of the cytochrome b5, when added directly to the large vesicles, spontaneously inserts into the "tight," physiologically proper configuration. A possible mechanism is discussed.  相似文献   

18.
Unlike most transmembrane proteins, phospholipids can migrate from one leaflet of the membrane to the other. Because this spontaneous lipid translocation (flip-flop) tends to be very slow, cells facilitate the process with enzymes that catalyze the transmembrane movement and thereby regulate the transbilayer lipid distribution. Nonenzymatic membrane-spanning proteins with unrelated primary functions have also been found to accelerate lipid flip-flop in a nonspecific manner and by various hypothesized mechanisms. Using deuterated phospholipids, we examined the acceleration of flip-flop by gramicidin channels, which have well-defined structures and known functions, features that make them ideal candidates for probing the protein-membrane interactions underlying lipid flip-flop. To study compositionally and isotopically asymmetric proteoliposomes containing gramicidin, we expanded a recently developed protocol for the preparation and characterization of lipid-only asymmetric vesicles. Channel incorporation, conformation, and function were examined with small angle x-ray scattering, circular dichroism, and a stopped-flow spectrofluorometric assay, respectively. As a measure of lipid scrambling, we used differential scanning calorimetry to monitor the effect of gramicidin on the melting transition temperatures of the two bilayer leaflets. The two calorimetric peaks of the individual leaflets merged into a single peak over time, suggestive of scrambling, and the effect of the channel on the transbilayer lipid distribution in both symmetric 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and asymmetric 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles was quantified from proton NMR measurements. Our results show that gramicidin increases lipid flip-flop in a complex, concentration-dependent manner. To determine the molecular mechanism of the process, we used molecular dynamics simulations and further computational analysis of the trajectories to estimate the extent of membrane deformation. Together, the experimental and computational approaches were found to constitute an effective means for studying the effects of transmembrane proteins on lipid distribution in both symmetric and asymmetric model membranes.  相似文献   

19.
Rough microsomes from rat liver of both control and methylcholanthrene-treated animals were subfractionated on a discontinuous sucrose gradient into three fractions according the their sedimentation velocity. The slowly sedimenting vesicles were enriched in electron transport enzymes, while those in the pellet showed higher phosphatase and ATPase activities. Methylcholanthrene treatment introduced typical changes in enzyme composition, mainly an increase of the cytochrome P-448. The individual phospholipids exhibited an identical distribution pattern in the three subfractions and no change occurred after induction with methylcholanthrene treatment. Nearest neighbour analysis of phosphatidylethanolamine with dinitrodifluorobenzene revealed a similar pattern in the enzymatically different subfraction, that is, no cross-linking with phosphatidylserine occurred. One-third of the phosphatidylethanolamine was in monomer and dimer form and about two-thirds was protein linked. When membrane and enzyme synthesis was induced, cross-linking to proteins were substantially decreased. The experiments indicate that the phospholipids are distributed in a homogenous fashion in the lateral plane of the rough microsomal membrane and do not support the possibility that phosphatidylethanolamine is specifically associated with cytochrome P-450.  相似文献   

20.
Computer simulations of three unsaturated phospholipids in a membrane environment have been carried out using Langevin dynamics and a mean-field based on the Marcelja model. The applicability of the mean-field to model unsaturated lipids was judged by comparison to available experimental NMR data. The results show that the mean-field methodology and the parameters developed for saturated lipids are applicable in simulations of unsaturated molecules, indicating that these simulations have good predictive capabilities. Single molecule simulations, each 100 ns in length, of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-elaidoyl-sn-glycero-3-phosphocholine (PEPC), and 1-palmitoyl-2-isolinoleoyl-sn-glycero-3-phosphocholine (PiLPC) reveal similarities between PEPC and DPPC. The presence of the trans double bond in PEPC has a minimum impact on the structural and dynamic properties of the molecule, which is probably the reason that isolated trans double bonds are rare in biological lipids. POPC exhibits different behavior, especially in the calculated average interchain distances, because of the cis double bond. The position of the two double bonds in PiLPC imparts special properties to the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号