首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
On the basis of our recent studies of the sliding distance of actin filaments during one ATP cycle on the surface of myosin-coated glass surface and ATP hydrolysis by rapidly shortening myofibrils, the molecular mechanism of chemomechanical coupling is considered. We conclude that the myosin head can repeat many active cyclic interactions with actins to drive the actin filaments over a long distance during one ATP cycle, and that the distance is variable depending on the load.  相似文献   

3.
It has long been known that binding of actin and binding of nucleotides to myosin are antagonistic, an observation that led to the biochemical basis for the crossbridge cycle of muscle contraction. Thus ATP binding to actomyosin causes actin dissociation, whereas actin binding to the myosin accelerates ADP and phosphate release. Structural studies have indicated that communication between the actin- and nucleotide-binding sites involves the opening and closing of the cleft between the upper and lower 50K domains of the myosin head. Here we test the proposal that the cleft responds to actin and nucleotide binding in a reciprocal manner and show that cleft movement is coupled to actin binding and dissociation. We monitored cleft movement using pyrene excimer fluorescence from probes engineered across the cleft.  相似文献   

4.
We have determined the relationship between microtubule length and translocation velocity from recordings of bovine brain microtubules translocating over a Paramecium 22S dynein substratum in an in vitro assay chamber. For comparison with untreated samples, the 22S dynein has been subjected to detergent and/or to pretreatments that induce phosphorylation of an associated 29 kDa light chain. Control and treated dyneins have been used at the same densities in the translocation assays. In any given condition, translocation velocity (v) shows an initial increase with microtubule length (L) and then reaches a plateau. This situation may be represented by a hyperbola of the general form v = aL/(L+b), which is formally analogous to the Briggs-Haldane relationship, which we have used to interpret our data. The results indicate that the maximum translocation velocity Vo(= a) is increased by pretreatment, whereas the length constant KL(= b), which corresponds to Km, does not change with pretreatment, implying that the mechanochemical properties of the pretreated dyneins differ from those of control dyneins. The conclusion that KL is constant for defined in vitro assays rules out the possibility that the velocity changes seen are caused by changes in geometry in the translocation assays or by the numbers of dyneins or dynein heads needed to produce maximal translocational velocity. From our analysis, we determine that f, the fraction of cycle time during which the dynein is in the force-generating state, is small--roughly 0.01, comparable to the f determined previously for heavy meromyosin. The practical limits of these mechanochemical changes imply that the maximum possible ciliary beat frequency is about 120 Hz, and that in the physiological range of 5-60 Hz, beat frequency could be controlled by varying the numbers of phosphorylated outer arm dyneins along an axonemal microtubule.  相似文献   

5.
6.
7.
8.
9.
Quantitative analyses of ATP hydrolysis coupled to movement of eukaryotic flagella is important for understanding the relationship between ATP hydrolysis and movement. The difference in ATPase activity between intact motile axonemes (that is the cytoskeletal core of flagella) and homogenized or immotile axonemes has been assumed to be coupled to movement. However, recent findings on rates of steps in the dynein ATPase cycle and the effect of interaction with microtubules on those steps call for reassessment of movement-coupled ATPase. From these studies, it is clear that dynein ATPase activity is not as tightly coupled to interaction with microtubules as myosin ATPase activity is coupled to interaction with actin. The method by which axonemal movement is inhibited will critically affect the interpretation of difference in ATPase activity. If the homogenization or similar methods uncouple dynein, the difference in ATPase activity is not a useful measurement. Greater understanding of the relationship between dynein kinetics and axonemal movement may be obtained by use of conditions and substrates with known effects at specific steps in the dynein mechanochemical cycle and quantitating their effects on movement.  相似文献   

10.
11.
12.
13.
For microorganisms to live under extreme physical conditions requires important adaptations of the cells. In many organisms the use of Na+ instead of protons as coupling ion in energy transduction is associated with such adaptation. This review focuses on the enzymes that are responsible for the generation and utilization of Na+ gradients in extremophilic microorganisms. Aspects that are dealt with include: bioenergetics and ion homeostasis in extremophilic Bacteria and Archaea; the molecular mechanism of Na+ translocation; and (dis)advantages of Na+ as coupling ion in energy transduction.G. Speelmans was and B. Poolman and W.N. Konings are with the Department of Microbiology, Biology Centre University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands; G. Speelmans is now with the Department of Biochemistry of Membranes, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.  相似文献   

14.
Mechanochemical coupling in spin-labeled, active, isometric muscle   总被引:3,自引:0,他引:3       下载免费PDF全文
Observed effects of inorganic phosphate (P(i)) on active isometric muscle may provide the answer to one of the fundamental questions in muscle biophysics: how are the free energies of the chemical species in the myosin-catalyzed ATP hydrolysis (ATPase) reaction coupled to muscle force?. Pflugers Arch. 414:73-81) showed that active, isometric muscle force varies logarithmically with [P(i)]. Here, by simultaneously measuring electron paramagnetic resonance and the force of spin-labeled muscle fibers, we show that, in active, isometric muscle, the fraction of myosin heads in any given biochemical state is independent of both [P(i)] and force. These direct observations of mechanochemical coupling in muscle are immediately described by a muscle equation of state containing muscle force as a state variable. These results challenge the conventional assumption mechanochemical coupling is localized to individual myosin heads in muscle.  相似文献   

15.
Sheetz and Spudich (1983, Nature (Lond.), 303:31-35) showed that ATP- dependent movement of myosin along actin filaments can be measured in vitro using myosin-coated beads and oriented actin cables from Nitella. To establish this in vitro movement as a quantitative assay and to understand better the basis for the movement, we have defined the factors that affect the myosin-bead velocity. Beads coated with skeletal muscle myosin move at a rate of 2-6 micron/s, depending on the myosin preparation. This velocity is independent of myosin concentration on the bead surface for concentrations above a critical value (approximately 20 micrograms myosin/2.5 X 10(9) beads of 1 micron in diameter). Movement is optimal between pH 6.8 and 7.5, at KCl concentrations less than 70 mM, at ATP concentrations greater than 0.1 mM, and at Mg2+ concentrations between 2 and 6 mM. From the temperature dependence of bead velocity, we calculate activation energies of 90 kJ/mol below 22 degrees C and 40 kJ/mol above 22 degrees C. Different myosin species move at their own characteristic velocities, and these velocities are proportional to their actin-activated ATPase activities. Further, the velocities of beads coated with smooth or skeletal muscle myosin correlate well with the known in vivo rates of myosin movement along actin filaments in these muscles. This in vitro assay, therefore, provides a rapid, reproducible method for quantitating the ATP- dependent movement of myosin molecules on actin.  相似文献   

16.
This paper extends our recent report on specific iron-catalyzed oxidative cleavages of renal Na,K-ATPase and effects of E1 left arrow over right arrow E2 conformational transitions (Goldshleger, R. , and Karlish, S. J. D. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9596-9601). The experiments indicate that only peptide bonds close to a bound Fe2+ ion are cleaved, and provide evidence on proximity of the different cleavage positions in the native enzyme. A sequence HFIH near trans-membrane segment M3 appears to be involved in Fe2+ binding. Previously we hypothesized that E2 and E1 conformations are characterized by formation or relaxation of interactions within the alpha subunit at or near highly conserved sequences, TGES in the minor cytoplasmic loop and CSDK, MVTGD, and VNDSPALKK in the major cytoplasmic loop. This concept has been tested by examining iron-catalyzed cleavage in both non-phosphorylated and phosphorylated conformations and effects of phosphate, vanadate, and ouabain. The results imply that both E1 left arrow over right arrow E2 and E1P left arrow over right arrow E2P transitions are indeed associated with formation and relaxation of interactions between cytoplasmic domains, comprising the minor loop plus N-terminal tail leading into M1 and major loop, respectively. Furthermore, it appears that either non-covalently or covalently bound phosphate bind near CSDK and MVTGD, and Mg2+ ions may bind to residues within TGES and VNDSPALKK and to bound phosphate. Thus cytoplasmic domain interactions seem to occur within or near the active site. We discuss the relationship between structural changes in the cytoplasmic domain and movements of trans-membrane segments that lead to cation transport. Presumably conformation-dependent formation and relaxation of domain interactions underlie energy transduction in all P-type pumps.  相似文献   

17.
18.
19.
We observed a three-dimensional up-and-down movement of an actin filament sliding on heavy mero-myosin (HMM) molecules in an in vitro motility assay. The up-and-down movement occurred along the direction perpendicular to the planar glass plane on which the filament demonstrated a sliding movement. The height length of the up-and-down movement was measured by monitoring the extent of diminishing fluorescent emission from the marker attached to the filament in the evanescent field of attenuation. The height lengths whose distribution exhibits a local maximum were found around the two values, 150 nm and 90 nm, separately. This undulating three-dimensional movement of an actin filament suggests that the interactions between myosin (HMM) molecules and the actin filament may temporally be modulated during its sliding movement.  相似文献   

20.
The ability of calcium to regulate thin filament sliding velocity was studied in an in vitro motility assay system using cardiac troponin and tropomyosin and rhodamine-phalloidin-labeled skeletal actin and skeletal heavy meromyosin to propel the filaments. Measurements showed that both the number of thin filaments sliding and their sliding speed (Sf) were dependent on the calcium concentration in the range of pCa 5 to 9. Thin filament motility was completely inhibited only if troponin and tropomyosin were added at a concentration of 100 nM to the motility assay solution and the pCa was more than 8. The filament sliding speed was dependent on the pCa in a noncooperative fashion (Hill coefficient = 1) and reached maximum at 5 microns/s at a pCa of 5. The number of filaments moving uniformly decreased from > 90% at pCa 5-6 to near zero in less than 1 pCa unit. This behavior may be explained by a hypothesis in which the regulatory proteins control the number of cross-bridge heads interacting with the thin filaments rather than the rate at which they individually hydrolyze ATP or translocate the thin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号