首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The ribonuclease MC1 (RNase MC1) from seeds of bitter gourd (Momordica charantia) consists of 190 amino acids and belongs to the RNase T2 family, including fungal RNases typified by RNase Rh from Rhizopus niveus. We expressed RNase MC1 in Escherichia coli cells and made use of site-directed mutagenesis to identify essential amino acid residues for catalytic activity. Mutations of His34 and His88 to Ala completely abolished the enzymatic activity, and considerable decreases in the enzymatic activity were observed in cases of mutations of His83, Glu84, and Lys87, when yeast RNA was used as a substrate. Kinetic parameters for the enzymatic activity of the mutants of His83, Glu84, and Lys87 were analyzed using a dinucleoside monophosphate CpU. Km values for the mutants were approximately like that for wild-type, while k(cat) values were decreased by about 6 to 25-fold. These results suggest that His34, His83, Glu84, Lys87, and His88 in RNase MC1 may be involved in the catalytic function. These observation suggests that RNase MC1 from a plant catalyzes RNA degradation in a similar manner to that of fungal RNases.  相似文献   

2.
In order to elucidate the structure-function relationship of RNases belonging to the RNase T2 family (base non-specific and adenylic acid-preferential RNase), an RNase of this family was purified from Trichoderma viride (RNase Trv) to give three closely adjacent bands with RNase activity on slab-gel electrophoresis in a yield of 20%. The three RNases gave single band with the same mobility on slab-gel electrophoresis after endoglycosidase F digestion. The enzymatic properties including base specificity of RNase Trv were very similar to those of typical T2-family RNases such as RNase T2 from Aspergillus oryzae and RNase M from A. saitoi. The specific activity of RNase Trv towards yeast RNA was about 13-fold higher than that of RNase M. The complete primary structure of RNase Trv was determined by analyses of the peptides generated by digestion of reduced and carboxymethylated RNase Trv with Staphylococcus aureus V8 protease, lysylendopeptidase and alpha-chymotrypsin. The molecular weight of the protein moiety deduced from the sequence was 25,883. The locations of 10 half-cystine residues were almost superimposable upon those of other RNases of this family. The homologies between RNase Trv and RNase T2, RNase M, and RNase Rh (Rhizopus niveus) were 124, 132, and 92 residues, respectively. The sequences around three histidine residues, His52, His109, and His114, were highly conserved in these 4 RNases.  相似文献   

3.
Cationic antimicrobial peptides/proteins (AMPs) are important components of the host innate defense mechanisms against invading microorganisms. Here we demonstrate that OprI (outer membrane protein I) of Pseudomonas aeruginosa is responsible for its susceptibility to human ribonuclease 7 (hRNase 7) and α-helical cationic AMPs, instead of surface lipopolysaccharide, which is the initial binding site of cationic AMPs. The antimicrobial activities of hRNase 7 and α-helical cationic AMPs against P. aeruginosa were inhibited by the addition of exogenous OprI or anti-OprI antibody. On modification and internalization of OprI by hRNase 7 into cytosol, the bacterial membrane became permeable to metabolites. The lipoprotein was predicted to consist of an extended loop at the N terminus for hRNase 7/lipopolysaccharide binding, a trimeric α-helix, and a lysine residue at the C terminus for cell wall anchoring. Our findings highlight a novel mechanism of antimicrobial activity and document a previously unexplored target of α-helical cationic AMPs, which may be used for screening drugs to treat antibiotic-resistant bacterial infection.  相似文献   

4.

Background

Human RNase6 is a small cationic antimicrobial protein that belongs to the vertebrate RNaseA superfamily. All members share a common catalytic mechanism, which involves a conserved catalytic triad, constituted by two histidines and a lysine (His15/His122/Lys38 in RNase6 corresponding to His12/His119/Lys41 in RNaseA). Recently, our first crystal structure of human RNase6 identified an additional His pair (His36/His39) and suggested the presence of a secondary active site.

Methods

In this work we have explored RNase6 and RNaseA subsite architecture by X-ray crystallography, site-directed mutagenesis and kinetic characterization.

Results

The analysis of two novel crystal structures of RNase6 in complex with phosphate anions at atomic resolution locates a total of nine binding sites and reveals the contribution of Lys87 to phosphate-binding at the secondary active center. Contribution of the second catalytic triad residues to the enzyme activity is confirmed by mutagenesis. RNase6 catalytic site architecture has been compared with an RNaseA engineered variant where a phosphate-binding subsite is converted into a secondary catalytic center (RNaseA-K7H/R10H).

Conclusions

We have identified the residues that participate in RNase6 second catalytic triad (His36/His39/Lys87) and secondary phosphate-binding sites. To note, residues His39 and Lys87 are unique within higher primates. The RNaseA/RNase6 side-by-side comparison correlates the presence of a dual active site in RNase6 with a favored endonuclease-type cleavage pattern.

General significance

An RNase dual catalytic and extended binding site arrangement facilitates the cleavage of polymeric substrates. This is the first report of the presence of two catalytic centers in a single monomer within the RNaseA superfamily.  相似文献   

5.
To develop novel Pro-rich model AMPs with shorter length and higher bacterial selectivity/therapeutic index (TI) than natural AMP, indolicidin, we synthesized a series of undodecapeptides derived from the sequence XXPXXPWXPXX-NH2 (X indicates Leu or Lys) with different ratios of Lys and Leu residues. Several Pro-rich model peptides (K7 WP3, K6 WL1 P3, K5 WL2 P3-1, K5 WL2 P3-2, and K4 WL3 P3) had approximate 8- to 11-fold higher bacterial selectivity/TI compared to indolicidin. These peptides selectively bind to negatively charged liposomes (EYPG/EYPG; 7:3, w/w) mimicking bacterial membranes. Their high selectivity to negatively charged phospholipids corresponds well with their high bacterial selectivity. Indolicidin showed almost complete depolarization of the cytoplasmic membrane of Staphylococcus aureus and dye-leakage from negatively charged liposomes at 10 microM, whereas all of Pro-rich model peptides had very little activity in these assays even at 80 microM, as observed in buforin 2. These results suggest that the ultimate target of our designed Pro-rich model peptides is probably the intracellular components (e.g. protein, DNA or RNA) rather than the cytoplasmic membranes. Collectively, our designed Pro-rich short model peptides appear to be excellent candidates for future development as a novel antimicrobial agent.  相似文献   

6.
Zhu WL  Lan H  Park Y  Yang ST  Kim JI  Park IS  You HJ  Lee JS  Park YS  Kim Y  Hahm KS  Shin SY 《Biochemistry》2006,45(43):13007-13017
To investigate the effect of Pro --> peptoid residue substitution on cell selectivity and the mechanism of antibacterial action of Pro-containing beta-turn antimicrobial peptides, we synthesized tritrpticin-amide (TP, VRRFPWWWPFLRR-NH(2)) and its peptoid residue-substituted peptides in which two Pro residues at positions 5 and 9 are replaced with Nleu (Leu peptoid residue), Nphe (Phe peptoid residue), or Nlys (Lys peptoid residue). Peptides with Pro --> Nphe (TPf) or Pro --> Nleu substitution (TPl) retained antibacterial activity but had significantly higher toxicity to mammalian cells. In contrast, Pro --> Nlys substitution (TPk) increased the antibacterial activity but decreased the toxicity to mammalian cells. Tryptophan fluorescence studies indicated that the bacterial cell selectivity of TPk is closely correlated with a preferential interaction with negatively charged phospholipids. Interestingly, TPk was much less effective at depolarizing of the membrane potential of Staphylococus aureus and Escherichia coli spheroplasts and causing the leakage of a fluorescent dye entrapped within negatively charged vesicles. Furthermore, confocal laser-scanning microscopy showed that TPk effectively penetrated the membrane of both E. coli and S. aureus and accumulated in the cytoplasm, whereas TP and TPf did not penetrate the cell membrane but remained outside or on the cell membrane. These results suggest that the bactericidal action of TPk is due to inhibition of the intracellular components after penetration of the bacterial cell membrane. In addition, TPK with Lys substitution effectively depolarized the membrane potential of S. aureus and E. coli spheroplasts. TPK induced rapid and effective dye leakage from bacterial membrane-mimicking liposomes and did not penetrate the bacterial cell membranes. These results suggested that the ability of TPk to penetrate the bacterial cell membranes appears to involve the dual effects that are related to the increase in the positive charge and the peptide's backbone change by peptoid residue substitution. Collectively, our results showed that Pro --> Nlys substitution in Pro-containing beta-turn antimicrobial peptides is a promising strategy for the design of new short bacterial cell-selective antimicrobial peptides with intracellular mechanisms of action.  相似文献   

7.
A general acid-base catalytic mechanism is responsible for the cleavage of the phosphodiester bonds of the RNA by ribonuclease A (RNase A). The main active site is formed by the amino acid residues His12, His119, and Lys41, and the process follows an endonucleolytic pattern that depends on the existence of a noncatalytic phosphate-binding subsite adjacent, on the 3'-side, to the active site; in this region the phosphate group of the substrate establishes electrostatic interactions through the side chains of Lys7 and Arg10. We have obtained, by means of site-directed mutagenesis, RNase A variants with His residues both at positions 7 and 10. These mutations have been introduced with the aim of transforming a noncatalytic binding subsite into a putative new catalytic active site. The RNase activity of these variants was determined by the zymogram technique and steady-state kinetic parameters were obtained by spectrophotometric methods. The variants showed a catalytic efficiency in the same order of magnitude as the wild-type enzyme. However, we have demonstrated in these variants important effects on the substrate's cleavage pattern. The quadruple mutant K7H/R10H/H12K/H119Q shows a clear increase of the exonucleolytic activity; in this case the original native active site has been suppressed, and, as consequence, its activity can only be associated to the new active site. In addition, the mutant K7H/R10H, with two putative active sites, also shows an increase in the exonucleolytic preference with respect to the wild type, a fact that may be correlated with the contribution of the new active site.  相似文献   

8.
Eosinophil cationic protein (ECP/RNase 3) and the skin derived ribonuclease 7 (RNase 7) are members of the RNase A superfamily. RNase 3 is mainly expressed in eosinophils whereas RNase 7 is primarily secreted by keratinocytes. Both proteins present a broad-spectrum antimicrobial activity and their bactericidal mechanism is dependent on their membrane destabilizing capacities. Using phospholipid vesicles as membrane models, we have characterized the protein membrane association process. Confocal microscopy experiments using giant unilamellar vesicles illustrate the morphological changes of the liposome population. By labelling both lipid bilayers and proteins we have monitored the kinetic of the process. The differential protein ability to release the liposome aqueous content was evaluated together with the micellation and aggregation processes. A distinct morphology of the protein/lipid aggregates was visualized by transmission electron microscopy and the proteins overall secondary structure in a lipid microenvironment was assessed by FTIR. Interestingly, for both RNases the membrane interaction events take place in a different behaviour and timing: RNase 3 triggers first the vesicle aggregation, while RNase 7 induces leakage well before the aggregation step. Their distinct mechanism of action at the membrane level may reflect different in vivo antipathogen functions.  相似文献   

9.
Several nonmammalian members of the RNase A superfamily exhibit anticancer activity that appears to correlate with resistance to the cytosolic ribonuclease inhibitor (RI). We mutated two human ribonucleases-pancreatic RNase (hRNAse) and eosinophil-derived neurotoxin (EDN)-to incorporate cysteine residues at putative sites of close contact to RI, but distant from the catalytic sites. Coupling of Cys89 of RNase and Cys87 of EDN to proteins at these sites via a thioether bond produced enzymatically active conjugates that were resistant to RI. To elicit cellular targeting as well as to block RI binding, transferrin was conjugated to a mutant human RNase, rhRNase(Gly89)-->Cys) and a mutant EDN (Thr87-->Cys). The transferrin-rhRNase(Gly89-->Cys) thioether conjugate was 5000-fold more toxic to U251 cells than recombinant wild-type hRNase. In addition, transferrin-targeted EDN exhibited tumor cell toxicities similar to those of hRNase. Thus, we endowed two human RI-sensitive RNases with greater cytotoxicity by increasing their resistance to RI. This strategy has the potential to generate a novel set of recombinant human proteins useful for targeted therapy of cancer.  相似文献   

10.
An induction of apoptosis by RNase from Bacillus intermedius (binase) and its mutants characterized with low catalytic activity (Lys26Ala and His101Glu) in human myelogenic erythroleukemia K562 cells, human lung carcinoma A549 cells and human peripheral blood mononuclear cells was studied. For the first time selective apoptogenic effects of binase toward leukemic blood cells was determined. Neither antiproliferative nor apoptotic effects of binase were detected in normal human peripheral blood mononuclear cells. Formation of low molecular weight oligonucleosomal DNA fragments (less than 50 Kb) which are an early marks of apoptosis was registered in solid tumor cells treated by binase. Using mutant RNases it was shown that decrease of catalytic activity to 2.5% of wild type enzyme activity leads to the loss of apoptogenic properties of enzyme. Selective apoptogenicity of binase found towards malignant cells confirmed that antitumor agents based on bacterial RNases could be considered as an alternative to standard chemotherapeutic drugs.  相似文献   

11.
In this study, we explore the evolution and function of two closely related RNase A ribonucleases from the chicken, Gallus gallus. Separated by approximately 10 kb on chromosome 6, the coding sequences of RNases A-1 and A-2 are diverging under positive selection pressure (dN > dS) but remain similar to one another (81% amino acid identity) and to the mammalian angiogenins. Immunoreactive RNases A-1 and A-2 (both approximately 16 kDa) were detected in peripheral blood granulocytes and bone marrow. Recombinant proteins are ribonucleolytically active (kcat = 2.6 and 0.056 s(-1), respectively), and surprisingly, both interact with human placental ribonuclease inhibitor. RNase A-2, the more cationic (pI 11.0), is both angiogenic and bactericidal; RNase A-1 (pI 10.2) has neither activity. We demonstrated via point mutation of the catalytic His110 that ablation of ribonuclease activity has no impact on the bactericidal activity of RNase A-2. We determined that the divergent domains II (amino acids 71-76) and III (amino acids 89-104) of RNase A-2 are both important for bactericidal activity. Furthermore, we demonstrated that these cationic domains can function as independent bactericidal peptides without the tertiary structure imposed by the RNase A backbone. These results suggest that ribonucleolytic activity may not be a crucial constraint limiting the ongoing evolution of this gene family and that the ribonuclease backbone may be merely serving as a scaffold to support the evolution of novel, nonribonucleolytic proteins.  相似文献   

12.
The eosinophil cationic protein (ECP) is a human antimicrobial protein involved in the host immune defense that belongs to the pancreatic RNase A family. ECP displays a wide range of antipathogen activities. The protein is highly cationic and its bactericidal activity is dependant on both cationic and hydrophobic surface exposed residues. Previous studies on ECP by site-directed mutagenesis indicated that the RNase activity is not essential for its bactericidal activity. To further understand the ECP bactericidal mechanism, we have applied enzymatic and chemical limited cleavage to search for active sequence determinants.Following a search for potential peptidases we selected the Lys-endoproteinase, which cleaves the ECP polypeptide at the carboxyl side of its unique Lys residue, releasing the N-terminal fragment (0-38).Chemical digestion using cyanogen bromide released several complementary peptides at the protein N-terminus. Interestingly, ECP treatment with cyanogen bromide represents a new example of selective chemical cleavage at the carboxyl side of not only Met but also Trp residues. Recombinant ECP was denatured and carboxyamidomethylated prior to enzymatic and chemical cleavage. Irreversible denaturation abolishes the protein bactericidal activity.The characterization of the digestion products by both enzymatic and chemical approaches identifies a region at the protein N-terminus, from residues 11 to 35, that retains the bactericidal activity. The most active fragment, ECP(0-38), is further compared to ECP derived synthetic peptides. The region includes previously identified stretches related to lipopolysaccharide binding and bacteria agglutination. The results contribute to define the shortest ECP minimized version that would retain its antimicrobial properties. The data suggest that the antimicrobial RNase can provide a scaffold for the selective release of cytotoxic peptides.  相似文献   

13.
Paneth cells secrete microbicidal enteric alpha-defensins into the small intestinal lumen, and cryptdin-4 (Crp4) is the most bactericidal of the mouse alpha-defensin peptides in vitro. Here, site-directed Arg to Asp mutations in Crp4 have been shown to attenuate or eliminate microbicidal activity against all of the bacterial species tested regardless of the Arg residue position. R31D/R32D charge-reversal mutagenesis at the C terminus and mutations at R16D/R18D, R16D/R24D, and R18D/R24D in the Crp4 polypeptide chain eliminated in vitro bactericidal activity, blocked peptide-membrane interactions, as well as Crp4-mediated membrane vesicle disruption. Lys for Arg charge-neutral substitutions in (R16K/R18K)-Crp4 did not alter the bactericidal activity relative to Crp4, showing that bactericidal activity appears not to require the guanidinium side chain of Arg at those two positions. Partial restoration of (R31D/R32D)-Crp4 bactericidal activity occurred when an electropositive Arg for Gly substitution was introduced at the peptide N terminus and the (G1R/R31D/R32D)-Crp4 peptide exhibited intermediate membrane binding capability. Also, the loss of peptide bactericidal activity in (G1D/R31D/R32D)-Crp4 and (R16D/R24D)-Crp4 mutants corresponded with diminished phospholipid vesicle disruptive activity. Fluorophore leakage from anionic phospholipid vesicles induced by the charge-reversal variants was negligible relative to Crp4 and lower than that induced by pro-Crp4, the inactive Crp4 precursor. Thus, Arg residues function as determinants of Crp4 bactericidal activity by facilitating or enabling target cell membrane disruption. The role of the Arg residues, however, was surprisingly independent of their position in the polypeptide chain.  相似文献   

14.
15.
In most tissues, ribonucleases (RNases) are found in a latent form complexed with ribonuclease inhibitor (RI). To examine whether these so-called cytoplasmic RNases belong to the same superfamily as pancreatic RNases, we have purified from porcine liver two such RNases (PL1 and PL3) and examined their primary structures. It was found that RNase PL1 belonged to the same family as human RNase Us [Beintema et al. (1988) Biochemistry 27, 4530-4538] and bovine RNase K2 [Irie et al. (1988) J. Biochem. (Tokyo) 104, 289-296]. RNase PL3 was found to be a hitherto structurally uncharacterized type of RNase. Its polypeptide chain of 119 amino acid residues was N-terminally blocked with pyroglutamic acid, and its sequence differed at 63 positions with that of the pancreatic enzyme. All residues important for catalysis and substrate binding have been conserved. Comparison of the primary structure of RNase PL3 with that of its bovine counterpart (RNase BL4; M. Irie, personal communication) revealed an unusual conservation for this class of enzymes; the 2 enzymes were identical at 112 positions. Moreover, comparison of the amino acid compositions of these RNases with that of a human colon carcinoma-derived RNase, RNase HT-29 [Shapiro et al. (1986) Biochemistry 25, 7255-7264], suggested that these three proteins are orthologous gene products. The structural characteristics of RNases PL1 and PL3 were typical of secreted RNases, and this observation questions the proposed cytoplasmic origin of these RI-associated enzymes.  相似文献   

16.
Abstract Antimicrobial RNases are small cationic proteins belonging to the vertebrate RNase A superfamily and endowed with a wide range of antipathogen activities. Vertebrate RNases, while sharing the active site architecture, are found to display a variety of noncatalytical biological properties, providing an excellent example of multitask proteins. The antibacterial activity of distant related RNases suggested that the family evolved from an ancestral host-defence function. The review provides a structural insight into antimicrobial RNases, taking as a reference the human RNase 3, also named eosinophil cationic protein (ECP). A particular high binding affinity against bacterial wall structures mediates the protein action. In particular, the interaction with the lipopolysaccharides at the Gram-negative outer membrane correlates with the protein antimicrobial and specific cell agglutinating activity. Although a direct mechanical action at the bacteria wall seems to be sufficient to trigger bacterial death, a potential intracellular target cannot be discarded. Indeed, the cationic clusters at the protein surface may serve both to interact with nucleic acids and cell surface heterosaccharides. Sequence determinants for ECP activity were screened by prediction tools, proteolysis and peptide synthesis. Docking results are complementing the structural analysis to delineate the protein anchoring sites for anionic targets of biological significance.  相似文献   

17.
We analyzed healthy human skin for the presence of endogenous antimicrobial proteins that might explain the unusually high resistance of human skin against infections. A novel 14.5-kDa antimicrobial ribonuclease, termed RNase 7, was isolated from skin-derived stratum corneum. RNase 7 exhibited potent ribonuclease activity and thus may contribute to the well known ribonuclease activity of human skin. RNase 7 revealed broad spectrum antimicrobial activity against many pathogenic microorganisms and remarkably potent activity (lethal dose of 90% < 30 nm) against a vancomycin-resistant Enterococcus faecium. Molecular cloning from skin-derived primary keratinocytes and purification of RNase 7 from supernatants of cultured primary keratinocytes indicate that keratinocytes represent the major cellular source in skin and that RNase 7 is secreted. RNase 7 mRNA expression was detected in various epithelial tissues including skin, respiratory tract, genitourinary tract, and at a low level, in the gut. In addition to a constitutive expression, RNase 7 mRNA was induced in cultured primary keratinocytes by interleukin-1beta, interferon-gamma, and bacterial challenge. This is the first report demonstrating RNases as a novel class of epithelial inducible antimicrobial proteins, which may play an important role in the innate immune defense system of human epithelia.  相似文献   

18.
Nukacin ISK-1, a type-A(II) lantibiotic, comprises 27 amino acids with a distinct linear N-terminal and a globular C-terminal region. To identify the positional importance or redundancy of individual residues responsible for nukacin ISK-1 antimicrobial activity, we replaced the native codons of the parent peptide with NNK triplet oligonucleotides in order to generate a bank of nukacin ISK-1 variants. The bioactivity of each peptide variant was evaluated by colony overlay assay, and hence we identified three Lys residues (Lys1, Lys2 and Lys3) that provided electrostatic interactions with the target membrane and were significantly variable. The ring structure of nukacin ISK-1 was found to be crucially important as replacing the ring-forming residues caused a complete loss of bioactivity. In addition to the ring-forming residues, Gly5, His12, Asp13, Met16, Asn17 and Gln20 residues were found to be essential for antimicrobial activity; Val6, Ile7, Val10, Phe19, Phe21, Val22, Phe23 and Thr24 were relatively variable; and Ser4, Pro8, His15 and Ser27 were extensively variable relative to their positions. We obtained two variants, Asp13Glu and Val22Ile, which exhibited a twofold higher specific activity compared with the wild-type and are the first reported type-A(II) lantibiotic mutant peptides with increased potency.  相似文献   

19.
Site-directed mutagenesis of the ecoRII gene has been used to search for the active site of the EcoRII restriction endonuclease. Plasmids with point mutations in ecoRII gene resulting in substitutions of amino acid residues in the Asp110-Glu112 region of the EcoRII endonuclease (Asp110 --> Lys, Asn, Thr, Val, or Ile; Pro111 --> Arg, His, Ala, or Leu; Glu112 --> Lys, Gln, or Asp) have been constructed. When expressed in E. coli, all these plasmids displayed EcoRII endonuclease activity. We also constructed a plasmid containing a mutant ecoRII gene with deletion of the sequence coding the Gln109-Pro111 region of the protein. This mutant protein had no EcoRII endonuclease activity. The data suggest that Asp110, Pro111, and Glu112 residues do not participate in the formation of the EcoRII active site. However, this region seems to be relevant for the formation of the tertiary structure of the EcoRII endonuclease.  相似文献   

20.
Purification and properties of bovine kidney ribonucleases   总被引:3,自引:0,他引:3  
Two RNases (RNases K1 and K2) were purified from bovine kidney by means of column chromatography on phospho-cellulose, Sephadex G-50, CM-cellulose, heparin-Sepharose, nd agarose-APUP. They were named RNase K1 and RNase K2 in order of elution from the heparin-Sepharose column. The purity of RNase K1 thus obtained was about 90% by SDS-disc electrophoresis. RNase K2 was purified to homogeneity by SDS- and pH 4.3 disc electrophoresis. The yield of RNase K2 was 3.4 mg from 11 kg of kidneys. The antigenic properties of the two bovine renal RNases were studied by Ouchterlony's double diffusion analysis. RNase K1 and RNase A were serologically indistinguishable. RNase K2 did not cross-react immunologically with RNase K1 or RNase A. The molecular weights of these RNases determined by gel-filtration on Sephadex G-50 were 13,400 and 14,600 for RNase K1 and RNase K2, respectively. The pH optima for RNase K1 and RNase K2 were 8.5 and 6.5, respectively. Both RNase K1 and RNase K2 were as acid stable as RNase A. RNase K2 was less heat-stable than RNase K1 and RNase A. Although both renal RNases were pyrimidine nucleotide-specific enzymes, RNase K1 and RNase A were more preferential or cytidylic acid than RNase K2. The chemical composition of RNase K2 was determined. RNase K2, like human urinary RNase Us, contained one tryptophan residue. The N-terminal sequences of RNase K2 and RNase Us were determined by Edman degradation. Rnase K2 had a homologous sequence of about 10 amino acid residues with the sequence of RNase Us, a typical non-secretory RNase, within the N-terminal 30 residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号