首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
3-磷酸甘油醛脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)一直以来被认为是一种只分布在细胞质中、仅在糖酵解过程中起关键作用的酶。但是近年来,越来越多的研究表明GAPDH是一种多功能蛋白,且在细胞核、细胞质、生物膜上均有定位。如在细胞核内,GAPDH参与tRNA出核、mRNA稳定性调节、DNA损伤修复、组蛋白转录调控、凋亡及神经退行性疾病发生等。在细胞质中,GAPDH有磷酸激酶活性、催化微管聚合的功能及参与细胞保护。在生物膜上,GAP-DH可促进膜融合、参与膜转运等。  相似文献   

2.
糖酵解是动植物以及微生物细胞中葡萄糖分解产生能量的共同代谢途径,而甘油醛-3-磷酸脱氢酶(GAPDH)作为糖酵解途径中的一种关键酶,被认为是只存在于细胞质中的管家基因产物。但近年来的研究表明GAPDH mRNA和蛋白质水平会随着各种环境因素的影响而发生变化,并具有不同的亚细胞定位以及多元化的生理功能。本文综述逆境胁迫下GAPDH在不同生物体细胞中的不同功能的相关作用机制。  相似文献   

3.
3-磷酸甘油醛脱氢酶的分子遗传   总被引:1,自引:0,他引:1  
赫荣乔   《微生物学通报》1991,18(1):35-35,37
3-磷酸甘油醛脱氢酶(D-glyceraldehyde-3-pho-sphate dehydrogenase,GAPDH)是糖酵解、糖异生及光合作用碳固定循环过程中的关键酶,充当蛋白质结构与功能研究的重要材料,其基因也越来越多地应用于分子遗传学的研究领域中。由于糖酵解和光合作用是细胞古老的能量代谢形式,GAPDH的基因也在进化的早期出现。在漫长的  相似文献   

4.
朱伟峰  陈露  王芳  胡波  陈萌萌 《微生物学报》2021,61(10):3264-3275
巴氏杆菌(主要是多杀性巴氏杆菌)可以引起多种动物疫病(巴氏杆菌病),同时也引起人类感染发病。[目的] 研究巴氏杆菌糖酵解酶对宿主细胞(兔肾细胞)和两种常见分子[纤连蛋白(fibronectin,Fn)和血浆纤维蛋白溶解酶原(plasminogen,Plg)]的黏附作用。[方法] 采用原核表达系统对多杀性巴氏杆菌的糖酵解酶进行表达并纯化及制备多克隆抗体,通过菌体表面蛋白定位检测、黏附与黏附抑制等实验探究巴氏杆菌糖酵解酶的黏附作用。[结果] 菌体表面蛋白检测结果显示除烯醇化酶和丙酮酸激酶外的7个糖酵解酶在多杀性巴氏杆菌表面存在。这7个糖酵解酶均能黏附兔肾细胞,但仅有磷酸葡萄糖异构酶的多克隆抗体能对多杀性巴氏杆菌黏附宿主细胞产生抑制作用。Far Western blotting结果显示9个糖酵解酶均能结合宿主Fn和Plg。招募抑制实验结果显示磷酸葡萄糖异构酶、醛缩酶、磷酸甘油酸变位酶的抗体对多杀性巴氏杆菌结合Fn和Plg都有抑制作用,磷酸果糖激酶、丙糖磷酸异构酶、甘油醛-3-磷酸脱氢酶、磷酸甘油激酶抗体仅对多杀性巴氏杆菌结合Fn或Plg有抑制作用。[结论] 多杀性巴氏杆菌糖酵解酶成员葡萄糖异构酶、磷酸果糖激酶、醛缩酶、丙糖磷酸异构酶、甘油醛-3-磷酸脱氢酶、磷酸甘油激酶、磷酸甘油酸变位酶在多杀性巴氏杆菌黏附宿主细胞或分子过程中发挥作用。该研究的完成将加深巴氏杆菌病分子发病机制的认识,并为巴氏杆菌病的诊断标识筛选、新型疫苗创制和药物靶标筛选等提供基础数据。  相似文献   

5.
甘油醛-3-磷酸脱氢酶(glyceraldehyde 3-phosphate dehydrogenase,GAPDH)是糖酵解过程中的一个酶,编码该酶的基因为管家基因,几乎在所有组织中呈高水平、恒定表达,常用作蛋白质、RNA、DNA等分子生物学相关实验的标准化内参。但近年来,GAPDH作为内参受到质疑,特别是在肿瘤组织、衰老组织。大量研究证实,GAPDH在多种肿瘤中表达上调,衰老的骨骼肌中下调。其中GAPDH在肿瘤中的高表达可能与肿瘤的侵袭性转移和细胞增殖相关。本文就GAPDH在肿瘤、衰老组织或细胞中的表达情况以及可能机制作一综述,旨在更全面地了解管家基因GAPDH在肿瘤与衰老组织、细胞中是否恒定表达,以便在研究中可以选择最优的内参做参照。  相似文献   

6.
甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH/G3PDH)是经典的糖酵解酶,由于广泛存在于众多生物体中,几乎在所有组织中都高水平表达。长期以来认为,该酶在同种细胞或者组织中的蛋白质表达量一般是恒定的,被作为看家基因广泛用于RT-PCR、Western blot等实验操作的标准化的内参。然而,近年有文献从mRNA水平对GAPDH作为内参提出异议;也有比较同种组织在不同状态下的蛋白质表达差异时,GAPDH作为差异性蛋白质被鉴定。有研究认为在肿瘤组织或肿瘤细胞中GAPDH表达上调。本文就GAPDH作为内参的质疑以及在肿瘤中的表达和可能的机制作以阐述。  相似文献   

7.
迟缓爱德华氏菌中甘油醛-3-磷酸脱氢酶的胞外分泌调控   总被引:1,自引:0,他引:1  
邓佳  吴海珍 《微生物学通报》2017,44(10):2398-2406
【目的】迟缓爱德华氏菌甘油醛-3-磷酸脱氢酶(GAPDH)是糖酵解途径中关键酶之一,前期研究证实是一种广谱性抗原,可作为水产养殖细菌病免疫防治中疫苗的开发靶点。本文探究迟缓爱德华氏菌甘油醛-3-磷酸脱氢酶的胞外分泌机制。【方法】通过Western blot和ELISA方法考察迟缓爱德华氏菌经典分泌系统缺失株GAPDH胞外分泌情况;使用ELISA方法对迟缓爱德华氏菌突变体文库的GAPDH胞外分泌进行了大规模筛查,并结合q RT-PCR对筛查得到的插入失活株进行了表达分析。【结果】经典分泌系统与GAPDH的胞外分泌存在一定相关性。突变体文库的大规模筛查得到两株GAPDH分泌量明显增加的插入失活株Δesr A和Δesr C,这两个基因的失活会导致GAPDH的胞外分泌量显著上调。【结论】迟缓爱德华氏菌GAPDH的胞外分泌受Esr A和Esr C负调控。  相似文献   

8.
痫性发作时大量神经元异常同步放电而导致脑内生物能量大量消耗,在此应激状态下,无氧酵解供能系统启动以缓解有氧代谢(三羧酸循环)供能系统的能量供应短缺。研究表明,糖酵解过程作为生物体内重要的旁路供能途径,参与了痫性发作过程,为痫性发作提供能量,而其代谢产物乳酸可能参与痫性发作的终止。现就糖酵解过程参与痫性发作的可能作用机制,从下述两个方面进行综述(1)糖酵解过程在痫性发作能量代谢中的作用;(2)糖酵解过程代谢产物可能影响痫性发作的终止。  相似文献   

9.
植物3-磷酸甘油醛脱氢酶的多维本质   总被引:4,自引:1,他引:3  
3-磷酸甘油醛脱氢酶(GAPDH)作为一种糖酵解蛋白在糖酵解的能量产生中发挥着重要作用。它通常作为一种模式蛋白用于蛋白和酶的分析,也可以用作研究基因表达量的内在对照。然而,最近的相关研究表明,真核及原核生物的3-磷酸甘油醛脱氢酶实际上存在着一种多维本质,研究证明它在DNA修复、细胞凋亡、核RNA输出、及其在细胞周期中都发挥着重要的作用。尽管该酶在植物中的研究不如在哺乳动物中的深入,但研究已经陆续证明,3-磷酸甘油醛脱氢酶在植物中同样具有许多未被发现的功能,目前已经报道该酶在厌氧、热激、伤害以及能量供应中可能发挥着重要作用。本文旨在就国内外对于该酶在植物中的研究作一总结论述,以期推进科学界对它的更深入认识和研究。  相似文献   

10.
【目的】在分子层面上研究家蚕微孢子虫Nosema bombycis与家蚕Bombyx mori蛋白的相互作用,初步探讨家蚕微孢子虫向家蚕细胞能量中心靠近的原因。【方法】采用Far-western blot分析与家蚕微孢子虫具有相互作用的家蚕中肠蛋白,质谱鉴定筛选出候选蛋白。PCR扩增候选蛋白的基因,连接到p ET30a载体并转入大肠杆菌Escherichia coli DH5α感受态细胞培养,测序选取正确的3个重组质粒,转化到大肠杆菌E.coli BL21感受态细胞中诱导表达候选蛋白,亲和层析柱纯化候选蛋白,制备多克隆抗体。用免疫共沉淀和间接免疫荧光技术验证候选蛋白与家蚕微孢子虫的相互作用。【结果】Far-western blot筛选到的anti-SWP9和anti-SWP5抗体与感染家蚕微孢子虫的家蚕中肠总蛋白的PVDF膜孵育,分别在26 k D和34 k D处检测到一条特异条带,说明家蚕微孢子虫与26 k D和34 k D的家蚕中肠蛋白发生了相互作用。对质谱鉴定结果进行蛋白质的分子量、肽段数以及功能的分析,筛选出与家蚕微孢子虫相互作用的候选家蚕蛋白烯酰辅酶A水合酶(ECH1)、甘油醛-3-磷酸脱氢酶(GAPDH)和3-羟酰辅酶A脱氢酶(HCDH)。利用制备的能够特异识别ECH1,GAPDH和HCDH 3种蛋白的多克隆抗体anti-ECH1,anti-GAPDH和anti-HCDH进行免疫共沉淀,证实了家蚕微孢子虫与家蚕中肠蛋白ECH1和GAPDH具有相互作用;间接免疫荧光分析结果进一步说明GAPDH能与家蚕微孢子虫特异性结合。【结论】家蚕微孢子虫可以和家蚕蛋白ECH1和GAPDH特异性结合。由于ECH1是定位于线粒体膜上的脂肪酸β-氧化的关键酶,GAPDH是糖酵解途径的关键酶,推测家蚕微孢子虫可能通过和家蚕ECH1和GAPDH的相互作用,在空间上靠近宿主细胞的线粒体和糖酵解途径,便于摄取宿主细胞脂肪酸β-氧化和糖酵解途径产生的中间产物和ATP,满足家蚕微孢子虫的物质和能量需求。  相似文献   

11.
Abstract: Abundant senile plaques are a histological hallmark in the brain of Alzheimer's disease patients. Such plaques consist of, among many other constituents, aggregated βA4 amyloid peptide. This peptide is derived from an amyloid precursor protein (APP) by irregular proteolytic processing and is considered to be involved in the development of Alzheimer's disease. To study possible interactions of brain proteins with 0A4 amyloid or other fragments of APP, βA4 amyloid and βA4 amyloid extended to the C-terminus of APP were recombinantly produced as fusion proteins termed "Amy" and "AmyC," respectively. Using Amy and AmyC affinity chromatography, a 35-kDa protein from rat brain was isolated that bound tightly to AmyC but not to Amy, thus indicating an interaction of the protein with the C-terminus of APP. This 35-kDa protein was identified as the glycolytic enzyme gIyceraldehyde-3-phosphate dehydrogenase (GAPDH). Binding of GAPDH to AmyC but not to Amy was confirmed by gel filtration. Although AmyC slightly reduced the Vmax of GAPDH, the same reduction was observed in the presence of Amy. These findings suggest that the interaction of the cytoplasmic domain of APP with GAPDH is unlikely to influence directly the rate of glycolysis but may serve another function.  相似文献   

12.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase are enzymes essential for glycolysis and gluconeogenesis. Dinoflagellates possess several types of both GAPDH and enolase genes. Here, we identify a novel cytosolic GAPDH-enolase fusion protein in several dinoflagellate species. Phylogenetic analyses revealed that the GAPDH moiety of this fusion is weakly related to a cytosolic GAPDH previously reported in dinoflagellates, ciliates, and an apicomplexan. The enolase moiety has phylogenetic affinity with sequences from ciliates and apicomplexans, as expected for dinoflagellate genes. Furthermore, the enolase moiety has two insertions in a highly conserved region of the gene that are shared with ciliate and apicomplexan homologues, as well as with land plants, stramenopiles, haptophytes, and a chlorarachniophyte. Another glycolytic gene fusion in eukaryotes is the mitochondrion-targeted triose-phosphate isomerase (TPI) and GAPDH fusion in stramenopiles (i.e. diatoms and oomycetes). However, unlike the mitochondrial TPI-GAPDH fusion, the GAPDH-enolase fusion protein appears to exist in the same compartment as stand-alone homologues of each protein, and the metabolic reactions they catalyze in glycolysis and gluconeogenesis are not directly sequential. It is possible that the fusion is post-translationally processed to give separate GAPDH and enolase products, or that the fusion protein may function as a single bifunctional polypeptide in glycolysis, gluconeogenesis, or perhaps more likely in some previously unrecognized metabolic capacity.  相似文献   

13.
In cells undergoing apoptosis, mitochondrial outer-membrane permeabilization (MOMP) is followed by caspase activation promoted by released cytochrome c. Although caspases mediate the apoptotic phenotype, caspase inhibition is generally not sufficient for survival following MOMP; instead cells undergo a "caspase-independent cell death" (CICD). Thus, MOMP may represent a point of commitment to cell death. Here, we identify glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a critical regulator of CICD. GAPDH-expressing cells preserved their clonogenic potential following MOMP, provided that caspase activation was blocked. GAPDH-mediated protection of cells from CICD involved an elevation in glycolysis and a nuclear function that correlated with and was replaced by an increase in Atg12 expression. Consistent with this, protection from CICD reflected an increase in and a dependence upon autophagy, associated with a transient decrease in mitochondrial mass. Therefore, GAPDH mediates an elevation in glycolysis and enhanced autophagy that cooperate to protect cells from CICD.  相似文献   

14.
When Toxoplasma gondii egresses from the host cell, glyceraldehyde‐3‐phosphate dehydrogenase 1 (GAPDH1), which is primary a glycolysis enzyme but actually a quintessential multifunctional protein, translocates to the unique cortical membrane skeleton. Here, we report the 2.25 Å resolution crystal structure of the GAPDH1 holoenzyme in a quaternary complex providing the basis for the molecular dissection of GAPDH1 structure–function relationships Knockdown of GAPDH1 expression and catalytic site disruption validate the essentiality of GAPDH1 in intracellular replication but we confirmed that glycolysis is not strictly essential. We identify, for the first time, S‐loop phosphorylation as a novel, critical regulator of enzymatic activity that is consistent with the notion that the S‐loop is critical for cofactor binding, allosteric activation and oligomerization. We show that neither enzymatic activity nor phosphorylation state correlate with the ability to translocate to the cortex. However, we demonstrate that association of GAPDH1 with the cortex is mediated by the N‐terminus, likely palmitoylation. Overall, glycolysis and cortical translocation are functionally decoupled by post‐translational modifications.  相似文献   

15.
Glutathione peroxidases (Gpxs) are the key anti-oxidant enzymes found in Saccharomyces cerevisiae. Among the three Gpx isoforms, glutathione peroxidase 3 (Gpx3) is ubiquitously expressed and modulates the activities of redox-sensitive thiol proteins involved in various biological reactions. By using a proteomic approach, glyceraldehyde-3-phosphate dehydrogenase 2 (GAPDH2; EC 1.2.1.12) was found as a candidate protein for interaction with Gpx3. GAPDH, a key enzyme in glycolysis, is a multi-functional protein with multiple intracellular localizations and diverse activities. To validate the interaction between Gpx3 and GAPDH2, immunoprecipitation and a pull-down assay were carried out. The results clearly showed that GAPDH2 interacts with Gpx3 through its carboxyl-terminal domain both in vitro and in vivo. Additionally, Gpx3 helps to reduce the S-nitrosylation of GAPDH upon nitric oxide (NO) stress; this subsequently increases cellular viability. On the basis of our findings, we suggest that Gpx3 protects GAPDH from NO stress and thereby contributes to the maintenance of homeostasis during exposure to NO stress.  相似文献   

16.
17.
18.
Nitroxyl (HNO) was found to inhibit glycolysis in the yeast Saccharomyces cerevisiae. The toxicity of HNO in yeast positively correlated with the dependence of yeast on glycolysis for cellular energy. HNO was found to potently inhibit the crucial glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an effect which is likely to be responsible for the observed inhibition of glycolysis in whole cell preparations. It is proposed that GAPDH inhibition occurs through reaction of HNO with the active site thiolate residue of GAPDH. Significantly, levels of HNO that inhibit GAPDH do not alter the levels or redox status of intracellular glutathione (GSH), indicating that HNO has thiol selectivity. The ability of HNO to inhibit GAPDH in an intracellular environment that contains relatively large concentrations of GSH is an important aspect of HNO pharmacology and possibly, physiology.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号