首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
代谢工程与全基因组重组构建酿酒酵母抗逆高产乙醇菌株   总被引:1,自引:0,他引:1  
将酿酒酵母海藻糖代谢工程与全基因组重组技术相结合,改良工业酿酒酵母菌株的抗逆性和乙醇发酵性能。对来源于二倍体出发菌株Zd4的两株优良单倍体Z1和Z2菌株进行杂交获得基因组重组菌株Z12,并对Z1和Z2先进行(1)过表达海藻糖-6-磷酸合成酶基因 (TPS1) ,(2)敲除海藻糖水解酶基因 (ATH1), (3)同时过表达 TPS1和敲除ATH1, 经此三种基因工程操作后再进行杂交获得代谢工程菌株的全基因组重组菌株Z12ptps1、Z12 Δath1和Z12pTΔA。与亲株Zd4相比,Z12及结合代谢工程获得的菌株在高糖、高乙醇浓度与高温条件下生长与乙醇发酵性能都有不同程度的改进。对比研究结果表明:在高糖发酵条件下,同时过表达 TPS1和敲除ATH1 的双基因操作工程菌株胞内海藻糖积累、乙醇主发酵速率和乙醇产量相对于亲株的提高幅度要大于只过表达 TPS1,或敲除ATH1 的工程菌。结合了全基因组重组后获得的二倍体工程菌株Z12pTΔA,与原始出发菌株Zd4及重组子Z12相比,主发酵速率分别提高11.4%和6.3%,乙醇产量提高7.0%和4.1%,与其胞内海藻糖含量高于其它菌株、在胁迫条件下具有更强耐逆境能力相一致。结果证明,海藻糖代谢工程与杂交介导的全基因组重组相结合,是提高酿酒酵母抗逆生长与乙醇发酵性能的有效策略与技术途径。  相似文献   

2.
不同渗透压调节剂对Candida krusei生理代谢的影响   总被引:1,自引:0,他引:1  
比较了氯化钠、氯化钾、甘露醇存在的高渗环境下克鲁氏假丝酵母(Candida kru-sei)的生理代谢。3种渗透压调节剂对C.krusei生理代谢影响有显著差异。与甘露醇相比,氯化钠和氯化钾对细胞生长的影响更为显著,而氯化钾对细胞的毒性则又小于氯化钠。细胞对糖的消耗速率依次为甘露醇>氯化钾>氯化钠。甘油和海藻糖是C.krusei在高渗环境下的主要相容性溶质。氯化钠和氯化钾对甘油合成的促进作用明显高于甘露醇。在0.6mol/L氯化钠、氯化钾、甘露醇存在时,细胞甘油浓度较对照提高了74%、63%、57%;胞内甘油最大含量也分别达到对照的3.1,2.4和1.8倍。高渗环境下胞内海藻糖含量在发酵前期均有所降低,但发酵后期在0.6mol/L氯化钾和甘露醇存在时海藻糖迅速积累,其含量分别达对照的1.6和1.4倍。  相似文献   

3.
以洋河酒厂的酒曲为材料,首先利用盐浓度梯度富集培养和氯化三苯四唑(TTC)染色法初筛获得18株酵母菌株,再通过杜氏小管产气及摇瓶发酵实验,从18株初筛菌株中分离得到1株在1. 4 mol/L NaCl浓度下生长性能较好的菌株,命名为W58。经形态观察和26S rDNA基因序列比对分析,该酵母菌株被鉴定为1株库德里阿兹威氏毕赤酵母(Pichia kudriavzevii)。对菌株的生长性能及耐受性进行研究发现:该菌最适生长温度为30℃,最适pH为6. 0,在高盐条件下(1. 4 mol/L NaCl),其胞内海藻糖的积累显著增加,比对照菌株高28. 6%。此外,菌株W58在高盐条件下,其ATPase活性比对照菌显著提高(约3倍)。综上所述,菌株W58在高盐条件下能通过胞内积累海藻糖以及维持一定的ATPase活性抵抗外界环境压力。  相似文献   

4.
木质纤维素预处理过程中产生的有毒副产物严重影响了纤维素乙醇发酵,提高酿酒酵母抑制物耐受性是提高纤维素乙醇发酵效率的有效方法。文中通过过表达LCB4基因,研究了重组菌株S288C-LCB4在乙酸、糠醛和香草醛胁迫下的细胞生长和乙醇发酵性能。结果表明,LCB4过表达菌株在分别含有10 g/L乙酸、1.5 g/L糠醛和1 g/L香草醛的平板中生长均优于对照菌株;在分别含有10 g/L乙酸、3 g/L糠醛和2 g/L香草醛的液体乙醇发酵过程中,重组菌株S288C-LCB4乙醇发酵产率分别为0.85 g/(L·h)、0.76 g/(L·h)和1.12 g/(L·h),比对照菌株提高了34.9%、85.4%和330.8%;且糠醛和香草醛胁迫下发酵时间分别缩短了30 h和44 h。根据发酵终点发酵液代谢物分析发现重组菌株比对照菌株产生了更多甘油、海藻糖和琥珀酸,这些物质有利于增强菌株的抑制物耐受性。综上所述,LCB4基因过表达可显著提高酿酒酵母S288C在乙酸、糠醛和香草醛胁迫下的乙醇发酵性能。  相似文献   

5.
研究了不同磷浓度时渗透压对产甘油假丝酵母甘油合成与胞内磷积累的影响。结果表明,不同磷含量时,产甘油假丝酵母甘油合成越多,分泌至胞外和积累于胞内的甘油也越多,其最大甘油合成量存在一个最适渗透压。同样;在相同渗透压下,其最大甘油合成量也存在一个最适磷浓度。在相同磷含量时,渗透压增高能够促进胞内聚磷酸盐积累;当渗透压相同时,培养基中磷含量增加,胞内游离磷和聚磷酸盐均增加。在生长稳定期后期,富磷可以促进胞内游离磷和聚磷酸盐积累显著增加。经分析发现,产甘油假丝酵母胞内积累甘油与聚磷酸盐,可能对克服对数生长期细胞数量少而渗透压胁迫大的困境发挥了极其重要的作用,从而能维持其生长稳定期较高的生物量、细胞存活率和甘油产量。  相似文献   

6.
考察了E.coli NZN111及其重组菌株E.coli NZN111/pTrc99a-pncB发酵生产丁二酸的性能。E.coli NZN111两阶段发酵丁二酸的同时,会造成丙酮酸的大量积累。研究发现:通过过量表达烟酸转磷酸核糖激酶,两阶段发酵重组菌株E.coli NZN111/pTrc99a-pncB,减少丙酮酸的积累且无副产物乙酸生成,提高丁二酸的产量,丁二酸得率和耗糖速率分别提高了139%和20%。  相似文献   

7.
【目的】从基因水平探究枯草芽孢杆菌渗透压调节因子L-脯氨酸合成途径中glnA、proB、proA基因的功能,通过分子改造实现对代谢途径的人工扰动。【方法】从枯草芽孢杆菌WB600出发,通过向胞内引入一系列基因敲除或过表达,分别构建了proB和proA基因过表达的重组菌WB601和WB602、glnA基因缺失的重组菌WB603以及在此基础之上过表达proB基因的重组菌WB604。借助菌株胞外和胞内游离脯氨酸积累的表型分析影响途径的关键节点。【结果】在非胁迫条件下,重组菌WB601和WB602胞外脯氨酸含量分别是原始菌的2.21倍和2.82倍,单位细胞胞外脯氨酸得率分别是原始菌的4.09倍和9.80倍,胞内游离脯氨酸含量分别是原始菌的1.91倍和3.34倍;重组菌WB603胞外脯氨酸含量上升至1221.43 mg/L,是原始菌的6.28倍,单位细胞胞外和胞内游离脯氨酸得率分别为原始菌的9.13倍和3.66倍;而重组菌WB604胞外脯氨酸含量最高达1391.65 mg/L,相比菌株WB603,其胞外脯氨酸含量及单位细胞得率分别提高了13.94%和14.10%,且胞内游离脯氨酸含量提高了32.60%。在5%Na Cl胁迫条件下,重组菌WB601和WB602的胞外脯氨酸含量分别是原始菌的1.94倍和1.54倍,单位细胞胞外脯氨酸得率分别是原始菌的2.15倍和2.19倍;重组菌WB603胞外脯氨酸含量及其单位细胞得率分别是原始菌的4.16倍和7.29倍;相同条件下,相比于重组菌WB603,重组菌WB604的胞外脯氨酸含量及其单位细胞得率分别提高了32.61%和5.54%。此外,实验组菌株的胞内游离脯氨酸含量均高于非胁迫时,并达到相对平衡状态。【结论】proB和proA基因的过表达均能显著提升细胞合成脯氨酸的能力,并且能增强细胞的耐盐性;glnA基因的缺失能增强脯氨酸合成途径,提高脯氨酸的积累;两种效应的正向叠加可进一步提升细胞脯氨酸合成能力。  相似文献   

8.
郝小明  陈博  安泰 《生物工程学报》2015,31(8):1151-1161
工业微生物在发酵生产过程中会面对发酵环境和自身产生的各类酸性物质,而这些酸性物质会影响工业微生物的生长和代谢,即产生酸胁迫。微生物通过调控胞内质子浓度、保护和修复生物大分子、改变细胞膜组分以及整体水平调控等耐受机制来应对酸胁迫。结合酸胁迫的各种耐受机制,利用自然筛选和人工改造的方法提高工业微生物的抗酸胁迫能力,为构建出更能适应工业生产条件的菌株提供理论依据。  相似文献   

9.
进化代谢选育高渗透压耐受型产琥珀酸大肠杆菌   总被引:1,自引:0,他引:1  
在以碳酸钠为酸中和剂的大肠杆菌两阶段发酵产琥珀酸的过程中,由于Na+的积累造成发酵体系中渗透压的提高,严重抑制了琥珀酸的产物浓度。为了增强大肠杆菌对渗透压的耐受性,考察了利用进化代谢方法筛选高渗透压耐受型高产琥珀酸大肠杆菌菌株的可行性。进化代谢系统作为一种菌株突变装置,可以使菌体在连续培养条件下以最大的生长速率生长。以NaCl为渗透压调节剂,通过在连续培养装置中逐步提高NaCl浓度使菌体在高渗透压条件下快速生长,最终得到了一株高渗透压耐受型琥珀酸生产菌株Escherichia coli XB4。以碳酸钠为酸中和剂,在7 L发酵罐中利用Escherichia coli XB4进行两阶段发酵,厌氧培养60 h后,琥珀酸产量达到了69.5 g/L,琥珀酸生产速率达到了1.81 g/(L.h),分别比出发菌株提高了18.6%和20%。  相似文献   

10.
利用重组毕赤酵母(Richia pastoris)强化表达S-腺苷甲硫氨酸(S-adenvylmethionine,SAM)合成酶(SAM synthetase,SAMS),发酵生产SAM时,胞内SAMS活性和ATP水平是影响SAM合成的重要因素.为了同时保持较高的SAMS活性和ATP供应,我们构建了一株既含有AOX1诱导型表达单元,又含有GAP组成型表达单元的双SAMS表达单元P.pastoris重组菌株Gd.它既能受甲醇调控表达SAMS,又能以甘油为碳源表达SAMS.在培养过程中,先是以甲醇诱导SAMS表达,得到较高的酶活,然后在发酵中后期再将碳源换为甘油.这样不但可以维持较高的酶活,而且可以提高胞内ATP含量.实验结果显示,对于同时利用AOX1和GAP启动子表达SAMS的重组菌,可采取甲醇和甘油两阶段补料,该重组菌的SAMS比产率高于组成型重组茵Xg,Gd进入甘油补料期后胞内ATP含量高于诱导型重组菌Ga.双表达单元菌株Gd的SAM产量达到1.41 g/L,比诱导型表达SAMS的重组菌株提高了76.3%,比组成型表达SAMS的重组菌株提高了60.2%,.  相似文献   

11.
12.
13.
Brown[1]在1976年提出了相容溶质(Compatible solutes)的概念,尽管有关它们功能的确切机制尚不是非常清楚,但是通常它们被认为是具有渗透调节作用和对细胞中生物活性物质具保护功能的物质.海藻糖和甘油在这方面所表现出的特殊功能已被国内外广泛关注[2].Brown[3]和Crowe[4]还分别报道了甘油和海藻糖在保护胞内可溶性酶和细胞膜稳定性方面的功能.Crowe[5]在研究几种不同碳水化合物对动物肌细胞的保护功能时发现,海藻糖和甘油都在不同程度上表现出这种特性.关于酵母细胞在加盐培养基中的生长代谢情况Kuniho Nakata[6]和Sukesh [7]分别进行了报道,发现酵母细胞内有海藻糖的积累,并且海藻糖的量与细胞对外界不利环境的耐受性有密切关系.  相似文献   

14.
15.
Fermentation and succinic acid production by Actinobacillus succinogenes YZ0819 was inhibited by high NaCl. To enhance the resistance of this strain to osmotic stress, an NaCl-tolerant mutant strain of A. succinogenes (CH050) was screened and selected through a continuous culture using survival in 0.7 M NaCl as the selection criterion. Using Na2CO3 as the pH regulator and glucose as the carbon source in batch fermentation, the isolated osmo-resistant stain, A. succinogenes CH050, produced up to 66 g/l succinic acid with a yield of 73.37% (w/w). The concentration of succinic acid and mass yield were increased by 37.5 and 4.37%, respectively, compared to the parent strain. The dry cell weight reached 10.1 g/l, which is 37% higher than that of the parent strain. The high tolerance of A. succinogenes CH050 to osmotic stress increased improved the succinic acid production from batch fermentation.  相似文献   

16.
Glycine betaine strongly stimulated the growth rate of five strains of Erwinia chrysanthemi when grown in a synthetic medium at 0·986, 0·983 and 0·980 a w (NaCl) whereas in four strains, little effect was observed compared with the control. Proline, dimethyl glycine, carnitine and pipecolic acid also actedas osmoprotectants. Glutamate and trehalose, commonly accumulated by enteric bacteria in response to osmotic stress, failed to act as osmoprotectants when supplied exogenously. Glycine betaine and pipecolic acid partially overcame the inhibition of pectate lyase release by NaCl in strain ECC. 13C NMR spectroscopy of two osmotically-stressed strains showed that glycine betaine was accumulated intracellularly from synthetic media containing the exogenous osmoprotectant. However, both strains also synthesized and accumulated trehalose in addition to glycine betaine in response to osmotic stress in complex media containing glycine betaine.  相似文献   

17.
To synthesize glycerol, a major by-product during anaerobic production of ethanol, the yeast Saccharomyces cerevisiae would consume up to 4% of the sugar feedstock in typical industrial ethanol processes. The present study was dedicated to decreasing the glycerol production mostly in industrial ethanol producing yeast without affecting its desirable fermentation properties including high osmotic and ethanol tolerance, natural robustness in industrial processes. In the present study, the GPD1 gene, encoding NAD+-dependent glycerol-3-phosphate dehydrogenase in an industrial ethanol producing strain of S. cerevisiae, was deleted. Simultaneously, a non-phosphorylating NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Bacillus cereus was expressed in the mutant deletion of GPD1. Although the resultant strain AG1A (gpd1△ P(PGK)-gapN) exhibited a 48.7±0.3% (relative to the amount of substrate consumed) lower glycerol yield and a 7.6±0.1% (relative to the amount of substrate consumed) higher ethanol yield compared to the wild-type strain, it was sensitive to osmotic stress and failed to ferment on 25% glucose. However, when trehalose synthesis genes TPS1 and TPS2 were over-expressed in the above recombinant strain AG1A, its high osmotic stress tolerance was not only restored but also improved. In addition, this new recombinant yeast strain displayed further reduced glycerol yield, indistinguishable maximum specific growth rate (μ(max)) and fermentation ability compared to the wild type in anaerobic batch fermentations. This study provides a promising strategy to improve ethanol yields by minimization of glycerol production.  相似文献   

18.
Tao X  Zheng D  Liu T  Wang P  Zhao W  Zhu M  Jiang X  Zhao Y  Wu X 《PloS one》2012,7(2):e31235
Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes.  相似文献   

19.
In the presence of a suitable carbon source, whole cells and protoplasts of Saccharomyces cerevisiae synthesized glycerol as a compatible organic solute in response to increased external osmotic pressure. Boyle-van't Hoff plots showed that protoplasts, and non-turgid cells, exhibited a linear relationship between volume and the external osmotic pressure (i.e. they behaved as near-ideal osmometers), and that both protoplasts and cells have a component which is not osmotically responsive--the non-osmotic volume (NOV). Glycerol levels in whole cells and protoplasts were elevated by increased external osmotic pressure over a similar time-scale to the period of exponential cell growth, reaching a maximum value at 6-12 h and declining thereafter. This suggests that the restoration of turgor pressure in whole cells was not the sole regulator of glycerol accumulation. Stationary phase whole cells had negligible levels of intracellular glycerol after growth in a medium of raised osmotic pressure. However, intracellular trehalose synthesis in these cells began earlier and reached a higher maximum level than in basal medium. Once exponential growth had stopped, cell turgor and internal osmotic pressure decreased somewhat. These new, lower values may be determined by the extent of trehalose accumulation in stationary phase cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号