首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hengge AC  Stein RL 《Biochemistry》2004,43(3):742-747
To probe the mechanistic origins of convex Eyring plots that have been observed for alpha-chymotrypsin (alpha-CT)-catalyzed hydrolysis of specific p-nitroanilide substrates [Case, A., and Stein, R. L. (2003) Biochemistry 42, 3335-3348], we determined the temperature-dependence of (15)N-kinetic isotope effects for the alpha-CT-catalyzed hydrolysis of N-succinyl-Phe p-nitroanilide (Suc-Phe-pNA). To provide an interpretational context for these enzymatic isotope effects, we also determined 15N-KIE for alkaline hydrolysis of p-nitroacetanilide. In 0.002 and 2 N hydroxide (30 degrees C), 15N-KIE values are 1.035 and 0.995 (+/-0.001), respectively, and are consistent with the reported [HO-]-dependent change in rate-limiting step from leaving group departure from an anionic tetrahedral intermediate in dilute base, to hydroxide attack in concentrated base. For the alpha-CT-catalyzed hydrolysis of Suc-Phe-pNA, 15N-KIE is on kc/Km and thus reflects structural features of transition states for all reaction steps up to and including acylation of the active site serine. The isotope effect at 35 degrees C is 1.014 (+/-0.001) and suggests that in the transition state for this reaction, departure of leaving group from the tetrahedral intermediate is well advanced. Significantly, 15N-KIE does not vary over the temperature range 5-45 degrees C. This result eliminates one of the competing hypotheses for the convex Eyring plot observed for this reaction, that is, a temperature-dependent change in rate-limiting step within the chemical manifold of acylation, but supports a mechanism in which an isomerization of enzyme conformation is coupled to active site chemistry. We finally suggest that the near absolute temperature-independence of 15N-KIE may point to a unique transition state for this process.  相似文献   

2.
Mechanistic features of cholesterol esterase catalyzed hydrolysis of two thiophospholipids, rac-1-(hexanoylthio)-2-hexanoyl-3-glycerophosphorylcholine (6TPC) and rac-1-(decanoylthio)-2-decano-yl-3-glycerophosphorylcholine (10TPC), have been characterized. The hydrolysis of 10TPC that is contained in mixed micelles with Triton X-100 occurs strictly at the micellar interface, since the reaction rate is independent of the micelle concentration but depends hyperbolically on the mole fraction of the substrate in the micelles. This latter observation allows one to calculate the interfacial kinetic parameters V*max and K*m. The hydrolyses of 10TPC and p-nitrophenyl butyrate are similarly inhibited by the transition state analogue inhibitor phenyl-n-butylborinic acid, and therefore, physiological and nonphysiological substrates are processed at the same active site. The similarity of k*cat values for the acyl-similar substrates 10TPC and p-nitrophenyl decanoate indicates that the phospholipase A1 activity of cholesterol esterase is partially rate limited by turnover of a decanoyl-enzyme intermediate. Solvent isotope effects on V*max and V*max/K*m (which monitors acylation only) are approximately 2-3 and are consistent with transition states that are stabilized by general acid-base proton transfers. Proton inventories of V*max/K*m indicate that simultaneous proton transfers stabilize the acylation transition state, which requires a multifunctional acid-base machinery (perhaps a charge-relay system) in the cholesterol esterase active site. Similar results are obtained for the 6TPC reaction, both in the presence and absence of Triton X-100 micelles.  相似文献   

3.
The reaction mechanism of acetylcholine hydrolysis by acetylcholinesterase, including both acylation and deacylation stages from the enzyme-substrate (ES) to the enzyme-product (EP) molecular complexes, is examined by using an ab initio type quantum mechanical – molecular mechanical (QM/MM) approach. The density functional theory PBE0/aug-6–31+G* method for a fairly large quantum part trapped inside the native protein environment, and the AMBER force field parameters in the molecular mechanical part are employed in computations. All reaction steps, including the formation of the first tetrahedral intermediate (TI1), the acylenzyme (EA) complex, the second tetrahedral intermediate (TI2), and the EP complex, are modeled at the same theoretical level. In agreement with the experimental rate constants, the estimated activation energy barrier of the deacylation stage is slightly higher than that for the acylation phase. The critical role of the non-triad Glu202 amino acid residue in orienting lytic water molecule and in stabilizing the second tetrahedral intermediate at the deacylation stage of the enzymatic process is demonstrated. Figure The computed energy diagram for the reaction path from the enzyme – substrate complex (ES) to the enzyme-product complex (EP).  相似文献   

4.
Bott RR  Chan G  Domingo B  Ganshaw G  Hsia CY  Knapp M  Murray CJ 《Biochemistry》2003,42(36):10545-10553
The properties of the transition state for serine protease-catalyzed hydrolysis of an amide bond were determined for a series of subtilisin variants from Bacillus lentus. There is no significant change in the structure of the enzyme upon introduction of charged mutations S156E/S166D, suggesting that changes in catalytic activity reflect global properties of the enzyme. The effect of charged mutations on the pK(a) of the active site histidine-64 N(epsilon)(2)-H was correlated with changes in the second-order rate constant k(cat)/K(m) for hydrolysis of tetrapeptide anilides at low ionic strength with a Br?nsted slope alpha = 1.1. The solvent isotope effect (D)2(O)(k(cat)/K(m))(1) = 1.4 +/- 0.2. These results are consistent with a rate-limiting breakdown of the tetrahedral intermediate in the acylation step with hydrogen bond stabilization of the departing amine leaving group. There is an increase in the ratio of hydrolysis of succinyl-Ala-Ala-Pro-Phe-anilides for p-nitroaniline versus aniline leaving groups with variants with more basic active site histidines that can be described by the interaction coefficient p(xy) = delta beta(lg)/delta pK(a) (H64) = 0.15. This is attributed to increased hydrogen bonding of the active site imidazolium N-H to the more basic amine leaving group as well as electrostatic destabilization of the transition state. A qualitative characterization of the transition state is presented in terms of a reaction coordinate diagram that is defined by the structure-reactivity parameters.  相似文献   

5.
A kinetically homogeneous anti-phosphate catalytic antibody preparation was shown to catalyse the hydrolysis of a series of O-aryl N-methyl carbamates containing various substituents in the 4-position of the O-phenyl group. The specific nature of the antibody catalysis was demonstrated by the adherence of these reactions to the Michaelis-Menten equation, the complete inhibition by a hapten analogue, and the failure of the antibody to catalyse the hydrolysis of the 2-nitrophenyl analogue of the 4-nitrophenylcarbamate substrate. Hammett sigma-rho analysis suggests that both the non-catalysed and antibody-catalysed reactions proceed by mechanisms in which development of the aryloxyanion of the leaving group is well advanced in the transition state of the rate-determining step. This is probably the ElcB (elimination-addition) mechanism for the non-catalysed reaction, but for the antibody-catalysed reaction might be either ElcB or B(Ac)2 (addition-elimination), in which the elimination of the aryloxy group from the tetrahedral intermediate has become rate-determining. This result provides evidence of the dominance of recognition of phenolate ion character in the phosphate hapten in the elicitation process, and is discussed in connection with data from the literature that suggest a B(Ac)2 mechanism, with rate-determining formation of the tetrahedral intermediate for the hydrolysis of carbamate substrates catalysed by an antibody elicited by a phosphonamidate hapten in which phenolate anion character is minimized. The present paper contributes to the growing awareness that small differences in the structure of haptens can produce large differences in catalytic characteristics.  相似文献   

6.
Catalytic parameters of human butyrylcholinesterase (BuChE) for hydrolysis of homologous pairs of oxo-esters and thio-esters were compared. Substrates were positively charged (benzoylcholine versus benzoylthiocholine) and neutral (phenylacetate versus phenylthioacetate). In addition to wild-type BuChE, enzymes containing mutations were used. Single mutants at positions: G117, a key residue in the oxyanion hole, and D70, the main component of the peripheral anionic site were tested. Double mutants containing G117H and mutations on residues of the oxyanion hole (G115, A199), or the pi-cation binding site (W82), or residue E197 that is involved in stabilization of tetrahedral intermediates were also studied. A mathematical analysis was used to compare data for BuChE-catalyzed hydrolysis of various pairs of oxo-esters and thio-esters and to determine the rate-limiting step of catalysis for each substrate. The interest and limitation of this method is discussed. Molecular docking was used to analyze how the mutations could have altered the binding of the oxo-ester or the thio-ester. Results indicate that substitution of the ethereal oxygen for sulfur in substrates may alter the adjustment of substrate in the active site and stabilization of the transition-state for acylation. This affects the k2/k3 ratio and, in turn, controls the rate-limiting step of the hydrolytic reaction. Stabilization of the transition state is modulated both by the alcohol and acyl moieties of substrate. Interaction of these groups with the ethereal hetero-atom can have a neutral, an additive or an antagonistic effect on transition state stabilization, depending on their molecular structure, size and enantiomeric configuration.  相似文献   

7.
Bacillus subtilisin has been a popular model protein for engineering altered substrate specificity. Although some studies have succeeded in increasing the specificity of subtilisin, they also demonstrate that high specificity is difficult to achieve solely by engineering selective substrate binding. In this paper, we analyze the structure and transient state kinetic behavior of Sbt160, a subtilisin engineered to strongly prefer substrates with phenylalanine or tyrosine at the P4 position. As in previous studies, we measure improvements in substrate affinity and overall specificity. Structural analysis of an inactive version of Sbt160 in complex with its cognate substrate reveals improved interactions at the S4 subsite with a P4 tyrosine. Comparison of transient state kinetic behavior against an optimal sequence (DFKAM) and a similar, but suboptimal, sequence (DVRAF) reveals the kinetic and thermodynamic basis for increased specificity, as well as the limitations of this approach. While highly selective substrate binding is achieved in Sbt160, several factors cause sequence specificity to fall short of that observed with natural processing subtilisins. First, for substrate sequences which are nearly optimal, the acylation reaction becomes faster than substrate dissociation. As a result, the level of discrimination among these substrates diminishes due to the coupling between substrate binding and the first chemical step (acylation). Second, although Sbt160 has 24-fold higher substrate affinity for the optimal substrate DFKAM than for DVRAF, the increased substrate binding energy is not translated into improved transition state stabilization of the acylation reaction. Finally, as interactions at subsites become stronger, the rate-determining step in peptide hydrolysis changes from acylation to product release. Thus, the release of the product becomes sluggish and leads to a low k(cat) for the reaction. This also leads to strong product inhibition of substrate turnover as the reaction progresses. The structural and kinetic analysis reveals that differences in the binding modes at subsites for substrates, transition states, and products are subtle and difficult to manipulate via straightforward protein engineering. These findings suggest several new strategies for engineering highly sequence selective enzymes.  相似文献   

8.
Xu Q  Guo HB  Wlodawer A  Nakayama T  Guo H 《Biochemistry》2007,46(12):3784-3792
Quantum mechanical/molecular mechanical molecular dynamics and free energy simulations are performed to study the acylation reaction catalyzed by kumamolisin-As, a serine-carboxyl peptidase, and to elucidate the catalytic mechanism and the origin of substrate specificity. It is demonstrated that the nucleophilic attack by the serine residue on the substrate may not be the rate-limiting step for the acylation of the GPH*FF substrate. The present study also confirms the earlier suggestions that Asp164 acts as a general acid during the catalysis and that the electrostatic oxyanion hole interactions may not be sufficient to lead a stable tetrahedral intermediate along the reaction pathway. Moreover, Asp164 is found to act as a general base during the formation of the acyl-enzyme from the tetrahedral intermediate. The role of dynamic substrate assisted catalysis (DSAC) involving His at the P1 site of the substrate is examined for the acylation reaction. It is demonstrated that the bond-breaking and -making events at each stage of the reaction trigger a change of the position for the His side chain and lead to the formation of the alternative hydrogen bonds. The back and forth movements of the His side chain between the C=O group of Pro at P2 and Odelta2 of Asp164 in a ping-pong-like mechanism and the formation of the alternative hydrogen bonds effectively lower the free energy barriers for both the nucleophilic attack and the acyl-enzyme formation and may therefore contribute to the relatively high activity of kumamolisin-As toward the substrates with His at the P1 site.  相似文献   

9.
Human trypsin 4 is an unconventional serine protease that possesses an arginine at position 193 in place of the highly conserved glycine. Although this single amino acid substitution does not affect steady-state activity on small synthetic substrates, it has dramatic effects on zymogen activation, interaction with canonical inhibitors, and substrate specificity toward macromolecular substrates. To study the effect of a non-glycine residue at position 193 on the mechanism of the individual enzymatic reaction steps, we expressed wild type human trypsin 4 and its R193G mutant. 4-Methylumbelliferyl 4-guanidinobenzoate has been chosen as a substrate analogue, where deacylation is rate-limiting, and transient kinetic methods were used to monitor the reactions. This experimental system allows for the separation of the individual reaction steps during substrate hydrolysis and the determination of their rate constants dependably. We suggest a refined model for the reaction mechanism, in which acylation is preceded by the reversible formation of the first tetrahedral intermediate. Furthermore, the thermodynamics of these steps were also investigated. The formation of the first tetrahedral intermediate is highly exothermic and accompanied by a large entropy decrease for the wild type enzyme, whereas the signs of the enthalpy and entropy changes are opposite and smaller for the R193G mutant. This difference in the energetic profiles indicates much more extended structural and/or dynamic rearrangements in the equilibrium step of the first tetrahedral intermediate formation in wild type human trypsin 4 than in the R193G mutant enzyme, which may contribute to the biological function of this protease.  相似文献   

10.
11.
Adediran SA  Kumar I  Pratt RF 《Biochemistry》2006,45(43):13074-13082
Beta-lactam antibiotics restrict bacterial growth by inhibiting DD-peptidases. These enzymes catalyze the final transpeptidation step in bacterial cell wall biosynthesis. Although much structural information is now available for these enzymes, the mechanism of the actual transpeptidation reaction has not been studied in detail. The reaction is known to involve a double-displacement mechanism with an acyl-enzyme intermediate, which can be attacked by water, specific amino acids, peptides, and other acyl acceptors. We describe in this paper an investigation of acyl acceptor specificity and assess the need for general base catalysis in the deacylation transition state of the Streptomyces R61 DD-peptidase. We show, by the criterion of solvent deuterium kinetic isotope effect measurements and proton inventories, that the transition states of specific and nonspecific substrates are very similar, at least with respect to proton motion. The transition states for attack (tetrahedral intermediate formation) by d-amino acids and Gly-l-Xaa dipeptides do not include a general base catalyst, while such catalysis is essential for reaction with water and d-alpha-hydroxy acids. D-Alpha-hydroxy acids act as acyl acceptors for glycyl substrates but not for more specific d-alanyl substrates; hydroxy acids actually behave, more generally, as mixed inhibitors of the DD-peptidase. The structural and mechanistic bases of these observations are discussed; they should inform transition state analogue design.  相似文献   

12.
HIV-1 protease (PR) is the target for several important antiviral drugs used in AIDS therapy. The drugs bind inside the active site cavity of PR where normally the viral polyprotein substrate is bound and hydrolyzed. We report two high-resolution crystal structures of wild-type PR (PRWT) and the multi-drug-resistant variant with the I54V mutation (PRI54V) in complex with a peptide at 1.46 and 1.50 A resolution, respectively. The peptide forms a gem-diol tetrahedral reaction intermediate (TI) in the crystal structures. Distinctive interactions are observed for the TI binding in the active site cavity of PRWT and PRI54V. The mutant PRI54V/TI complex has lost water-mediated hydrogen bond interactions with the amides of Ile50 and Ile50' in the flap. Hence, the structures provide insight into the mechanism of drug resistance arising from this mutation. The structures also illustrate an intermediate state in the hydrolysis reaction. One of the gem-diol hydroxide groups in the PRWT complex forms a very short (2.3 A) hydrogen bond with the outer carboxylate oxygen of Asp25. Quantum chemical calculations based on this TI structure are consistent with protonation of the inner carboxylate oxygen of Asp25', in contrast to several theoretical studies. These TI complexes and quantum calculations are discussed in relation to the chemical mechanism of the peptide bond hydrolysis catalyzed by PR.  相似文献   

13.
We synthesized the following four new peptide substrates, Suc-Phe-Leu-pNA, Suc-Phe-Leu-NMec, Suc-Phe-Leu-ONPh, and Pht-Phe-Leu-pNA, and we applied the proton inventory method to their hydrolysis by papain. Useful relationships between the rate constants of the catalytic reaction have been established and contributed to the elucidation of the hydrolytic mechanism of papain. For all amide substrates, the parameter K(S) and the rate constants k(1), k(-)(1), and k(2) were estimated. Moreover, it was found that k(cat)/K(m) = k(1) for all four substrates, while two exchangeable hydrogenic sites, one in the ground state and another in the transition state, generate an inverse isotope effect during the reaction governed by this parameter. The proton inventories of both k(2) and k(3) are essentially linear, whatever the acyl moiety and/or the leaving group of the substrate. The proton inventories of K(S) are also essentially linear for all amide substrates, while the observed large isotope effect of about 3 to 9 originates from a single hydrogenic site in the product state. This latter, in agreement to both the small transition state fractionation factors found for k(cat)/K(m) (or k(1)) and the unit ground-state fractionation factors found for k(2), argues for the formation of a tetrahedral adduct during the reaction governed by the k(1) parameter. Furthermore, papain acts as a one-proton catalyst during acylation or deacylation, both of which proceed through similar concerted reaction pathways, where a nucleophilic attack is accompanied by the movement of one proton.  相似文献   

14.
A K Mishra  M H Klapper 《Biochemistry》1986,25(23):7328-7336
We have measured, by permeable membrane/mass spectrometry, the 16O/18O, 12C/13C, and solvent H2O/D2O kinetic isotope effects (kie) associated with acyl-alpha-chymotrypsin hydrolysis and transesterification. The hydrolysis of alpha-chymotrypsinyl 2-furoate has a 12C/13C kie of approximately 1.06. Transesterification of the same acyl enzyme shows 16O/18O, 12C/13C, and solvent H2O/D2O kinetic isotope effects of 1.015 (0.003), 1.01-1.02, and 2.226 (0.007), respectively. From the temperature independence of the 16O/18O transesterification kinetic isotope effect and kinetic data reported elsewhere [Wang, C.-L. A., Calvo, K. C., & Klapper, M. H. (1981) Biochemistry 20, 1401-1408], we conclude that there are two active forms of acylchymotrypsin. We also propose that formation of the tetrahedral intermediate is the rate-limiting step in both hydrolysis and transesterification and that the position of the transition state in the transesterification is closer to the starting enzyme ester while that for the hydrolytic reaction is closer to the tetrahedral intermediate. These results are discussed in terms of reaction mechanism plasticity.  相似文献   

15.
Presteady state and steady state analyses of the alpha-chymotrypsin [EC 3.4.21.1]-catalyzed hydrolysis of three specific ester substrates and three ring-substituted derivatives were carried out to elucidate the effect of hydrophobic interactions due to the different side chains of the substrates on the individual steps of the reaction. Hydrolysis of all the substrates except for N alpha-acetyl-Nin-formyltryptophan methyl ester (Ac-Trp(CHO)-OMe) was controlled by the deacylation rate. In spite of their comparable Ks values, the substrates with small kcat, such as N alpha-acetyltryptophan methyl ester and N alpha-acetyl-2-(2-nitro-4-carboxyphenylsufenyl)-tryptophan methyl ester, characteristically gave Km values one order of magnitude smaller than the others. For the reaction of Ac-Trp(CHO)-OMe, it was ascertained that the deacylation step was not rate-controlling. It is suggested that the acylation step controls the rate in this case.  相似文献   

16.
The gamma-glutamyl transpeptidase (GGT) purified from rat kidney reacts with a series of eight parasubstituted L-glutamyl gamma-anilides, in the presence of Gly-Gly, catalyzing the formation of gamma-Glu-Gly-Gly (pH 8.0, 37 degrees C). The transpeptidation reaction was followed through the discontinuous colorimetric determination of the concentration of released parasubstituted aniline. Steady-state kinetic studies were performed to measure k(cat) and K(M) values for each anilide substrate. A Hammett plot constructed by the correlation of log(k(cat)) and the sigma(-) parameter for each anilide substrate displays statistically significant upward curvature, consistent with a general-acid-catalyzed acylation mechanism in which the geometry of the transition state changes with the nature of the para substituent. Kinetic isotope effects were measured and are consistent with a reaction involving a proton in flight at the rate-limiting transition state. The pH-rate profiles measured over pH 7.0-9.5 are bell-shaped with kinetic pK(a) values that may be attributed to the active site nucleophile (or its general-base catalytic partner) and the active-site general acid. The variation of the latter pK(a) value as a function of temperature is consistent with an enthalpy of ionization expected for an ammonium ion acting as a general acid. Examination of the variation of k(cat) as a function of temperature gave values for the enthalpy and entropy of activation that are similar to those determined for the general-acid-catalyzed breakdown of the tetrahedral intermediate formed during acylation of chymotrypsin by similar amide substrates.  相似文献   

17.
Both functional and structural studies of serine beta-lactamases indicate the existence of an oxyanion hole at the active site with an important role in catalysis. The functional presence of the oxyanion hole is demonstrated by the previous observation that thiono-beta-lactams are very poor substrates of beta-lactamases (B. P. Murphy, and R. F. Pratt, 1988, Biochem. J. 256, 669-672) and in the present paper by the inability of these enzymes to catalyze hydrolysis of a thiono analog of a depsipeptide substrate. This thiono effect was first noted and interpreted in regard to classical serine hydrolases although the chemical basis for it has not been firmly established either in those enzymes or in beta-lactamases. In this paper a computational approach to a further understanding of the effect has been taken. The results for a class C beta-lactamase show that the deacylation tetrahedral intermediate interacted more strongly with the enzyme with an O(-) placed in the oxyanion hole than an S(-). On the other hand, the converse was true for acylation tetrahedral intermediate species, a result distinctly not in accord with experiment. These results indicate that the thiono effect does not arise from unfavorable interactions between enzyme and thiono substrate at the tetrahedral intermediate stage but must be purely kinetic in nature, i.e., arise in a transitional species at an early stage of the acylation reaction. The same conclusion as to the origin of the thiono effect was also indicated by a less extensive series of calculations on a class A beta-lactamase and on chymotrypsin.  相似文献   

18.
The reaction mechanism of carboxypeptidase Y catalyzed reactions is investigated. Presteady state and steady state kinetic measurements are performed on the hydrolysis and aminolysis of an ester and an amide substrate. It is found that deacylation is the rate determining step in hydrolysis of the ester, pivalic acid 4-nitrophenol and acylation in that of the amide, succinyl-L-alanyl-L-alalyl-L-propyl-L-phenylalanine 4-nitroanilide.

The kinetic effects observed in the presence of a nucleophile, L-valine amide, where aminolysis occurs in parallel to the hydrolysis reaction are analysed in details. The results are described satisfactorily by a reaction scheme which involves the binding of the added nucleophile, (i) to the free enzyme, resulting in a simple competitive effect, and (ii) to the acyl-enzyme with the formation of a complex between the enzyme and the aminolysis product, the dissociation of which is rate determining. That scheme can account for both increases and decreases of kinetic parameter values as a function of the nucleophile concentration. There is no indication of binding of the nucleophile to the enzyme-substrate complex before acylation takes place.  相似文献   

19.
Arginine 127 stabilizes the transition state in carboxypeptidase   总被引:1,自引:0,他引:1  
Crystallographic studies suggest that Arg-127 is a key amino acid in the hydrolysis of peptides and esters by carboxypeptidase A. The guanidinium group of Arg-127 is hypothesized to stabilize the oxyanion of the tetrahedral intermediate formed by the attack of water on the scissile carbonyl bond. We have replaced this amino acid in rat carboxypeptidase A1 with lysine (R127K), methionine (R127M), and alanine (R127A), in order to define the role of Arg-127 in carboxypeptidase catalyzed hydrolysis. The wild-type and mutant enzymes were expressed in yeast and purified. Kinetic studies show that Arg-127 substitution decreases kcat for both ester and amide substrates, whereas Km is relatively unchanged; for R127M and R127A this corresponds to a 6 kcal/mol decrease in transition state stabilization of the rate-limiting step. The binding affinity for the phosphonate transition state analog, Cbz-Phe-Ala(P)-OAla, was decreased by 5.4 kcal/mol, whereas binding affinity for the ground state inhibitor, DL-benzylsuccinic acid, was decreased by only 1.7 kcal/mol for R127M. Electrostatic calculations employing a finite difference solution to the Poisson-Boltzmann equation predict that the positive charge of Arg-127 should stabilize the transition state by 6-8 kcal/mol. Therefore, the experimental and theoretical data suggest that the primary role of Arg-127 is stabilization of the transition state through electrostatic interaction with the oxyanion.  相似文献   

20.
Feng J  Roberts MF  Drin G  Scarlata S 《Biochemistry》2005,44(7):2577-2584
Phosphatidylinositol-specific phospholipase C (PLC) enzymes catalyze the hydrolysis of phosphatidylinositol 4,5 bisphosphate in a two step reaction that involves a cyclic intermediate. The PLCbetafamily are activated by both the alpha and betagamma subunits of heterotrimeric G proteins. To determine which catalytic step is affected by Gbetagamma subunits, we compared the change in PLCbeta(2) activity catalysis toward monomeric short-chain phosphatidylinositol (PI) substrates and monomeric water-soluble cyclic inositol phosphates as well as long-chain PI in bilayer and micellar interfaces in the absence and presence of Gbetagammasubunits. Unlike other PLC enzymes, no cyclic products were detected for either wild-type PLCbeta(2) or a chimeric protein composed of the PH domain of PLCbeta(2) and the catalytic domain of PLCdelta(1). Using cIP as a substrate to examine the second step of the reaction, we found that the presence of Gbetagamma subunits stimulated this step by a higher level than that for the overall reaction (k(cat) 1.5-fold (cIP) as opposed to 1.20-fold for soluble diC(4)PI). Detergents above their CMC can generate the same kinetic activation of PLCbeta(2) as Gbetagamma, suggesting that hydrophobic compounds stabilize the activated state of the enzyme. The most pronounced effect of Gbetagamma is that it relieves competitive product inhibition. Taken together, our results show that activation of PLCbeta(2) occurs through enhancement in the catalytic rate of hydrolysis of the cyclic intermediate and increased product release, and that hydrophobic interactions play a key role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号