首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The phospholipid and fatty acid composition of primary cultures (24 h) of chick embryo skeletal muscle myoblasts treated for 4-24 h with physiological concentrations of 1,25-dihydroxyvitamin D-3 and 25-hydroxyvitamin D-3 were analyzed. 25-Hydroxyvitamin D-3 did not alter the relative amounts of individual muscle cell phospholipids whereas 1,25-dihydroxyvitamin D-3 significantly increased phosphatidylcholine content, mainly at the expense of a decrease in phosphatidylethanolamine concentration. The increase in phosphatidylcholine occurred at a faster rate during the first 8 h than in the subsequent 8-24 h treatment period. A similar time course in 1,25-dihydroxyvitamin D3-dependent changes in myoblast calcium uptake has been observe. In addition, this metabolite markedly increased (100%) the arachidonate content of myoblast phosphatidylcholine near the fusion stage of the cells (24 h of treatment). The levels of docosahexaenoate, a minor polyunsaturated fatty acid, in phosphatidylcholine and phosphatidylethanolamine were also substantially elevated by 1,25-dihydroxyvitamin D-3. No significant changes in fatty acid composition in response to 25-hydroxyvitamin D-3 were observed. Modifications in phospholipids and polyunsaturated fatty acids may play a role in the effects of 1,25-dihydroxyvitamin D-3 on muscle cell calcium transport and differentiation.  相似文献   

3.
Basolateral plasma membrane vesicles of rat small intestinal epithelium accumulate calcium through an ATP-dependent pumping system. The activity of this system is highest in duodenum and decreases towards the ileum. This distribution along the intestinal tract is similar as the active calcium absorption capacity of intact intestinal epithelial segments. ATP-dependent calcium uptake in basolateral membrane vesicles from duodenum and ileum increased significantly after repletion of young vitamin D-3-deficient rats with 1 alpha,25-dihydroxy-vitamin D-3. Ca2+ -ATPase activity in duodenal basolateral membranes increased to the same extend as ATP-dependent calcium transport, but (Na+ + K+)-ATPase activity remained unaltered.  相似文献   

4.
5.
6.
The fluxes of carbohydrates across the plasma membranes of higher-plant cells are catalysed mainly by monosaccharide and disaccharide-H+ symporters. cDNAs encoding these different transporters have been cloned recently and the functions and properties of the encoded proteins have been studied extensively in heterologous expression systems. Several of the proteins have been identified biochemically in these expression systems and their location in plants has been shown immunohistochemically or with transgenic plants which were transformed with reporter genes, expressed under the control of the promoters of individual transporter genes. In this paper we summarize the current knowledge on the molecular biology and biochemistry of higher-plant sugar transport proteins.  相似文献   

7.
Bao L  Miao ZW  Zhou PA  Jiang Y  Sha YL  Zhang RJ  Tang YC 《FEBS letters》1999,446(2-3):351-354
A 22-mer peptide, identical to the primary sequence of domain I segment 3 (IS3) of rat brain sodium channel I, was synthesized. With the patch clamp cell-attached technique, single channel currents could be recorded from the patches of cultured rat myotube membranes when the patches were held at hyperpolarized potentials and the electrode solution contained NaCl and 1 microM IS3, indicating that IS3 incorporated into the membranes and formed ion channels. The single channel conductances of IS3 channels were distributed heterogeneously, but mainly in the range of 10-25 pS. There was a tendency that the mean open time and open probability of IS3 channels increased and the mean close time decreased with the increasing of hyperpolarized membrane potentials. IS3 channels are highly selective for Na+ and Li+ but not for Cl- and K+, similar to the authentic Na+ channels.  相似文献   

8.
An improved procedure was developed for the isolation of skeletal muscle plasma membranes. This method includes a DNAse treatment of the homogenate prior to the isolation of membranes by differential and sucrose gradient centrifugation techniques. We obtained two light fractions which were highly enriched in many biochemical and chemical plasma membrane markers. These fractions were shown to be mostly inside-out vesicles containing a Ca2+-ATPase activity. These results suggested that this enzyme could participate in the extrusion of calcium ions from the muscle cells.  相似文献   

9.
10.
Using the radioisotope method, the Ca2+ transport through proteoliposomes was investigated. The proteoliposomes originating from total brain lipids and skeletal muscle T-system membranes of the rabbit were shown to possess a Ca2+ permeability which can be stimulated by 1.4-dihydroxypyridine derivatives (10(-9)-10(-7) M). Verapamil and Cd2+ (10(-5) M and 10(-3) M, respectively) inhibit the Ca2+ permeability of proteoliposomes stimulated by dihydroxypyridine derivatives. The activating effect of the latter depends on the microviscosity of the proteoliposome lipid bilayer. An addition of cholesterol to brain phospholipids at a ratio of 1:5 increases the stimulating effect of dihydroxypyridine by 50%.  相似文献   

11.
12.
The aim of this study was to characterize the erythrocyte cell membrane transport of trimethylamine oxide (TMAO) in the little skate, Raja erincea. Uptake of TMAO occurs by two processes, Na(+)-dependent and Na(+)-independent. 2,4 dinitrophenol (2,4 DNP), a known ATP synthesis inhibitor, inhibited TMAO uptake, suggesting the involvement of the Na(+)/K(+)-ATP pump in Na(+)-dependent TMAO transport. Na(+)-independent TMAO uptake was stimulated by cell swelling when erythrocytes were incubated in hypotonic elasmobranch incubation medium. Swelling-activated, Na(+)-independent TMAO uptake was inhibited by the anion transport inhibitors quinine and 4, 4'-diisthiocyanostilbene-2,2'-disulfonic acid (DIDS), two blockers of the swelling-activated osmolyte channel in skate erythrocytes. TMAO efflux was stimulated by hypotonic stress in the erythrocytes of the spiny dogfish, Squalus acanthias. DIDS also inhibited this efflux, indicating that TMAO is transported by the organic osmolyte channel in the erythrocytes of this elasmobranch as well. J. Exp. Zool. 284:605-609, 1999.  相似文献   

13.
The effects of denervation on the macromolecular components of active monovalent cation transport in skeletal muscle have been studied using purified sarcolemma membranes. A comparison of membrane activities of fast-twitch, slow-twitch, and mixed-fiber muscles was made to determine what role, if any, the motor nerve has in regulating this important aspect of muscle metabolism. A dramatic increase in the basal sarcolemmal Mg++ ATPase activity (three- to fourfold) was found for both major muscle types. An increase in the ouabain-inhibitable (Na+ + K+)-stimulated enzyme was also found, but the effect was substantially less (1.5- to twofold). [3H]-ouabain binding, as an index of glycoside receptor sites, also increased (two- to threefold) midway in the course of denervation. On the other hand, the phosphorylated intermediate activity, a functional component of the transport system, clearly decreased over the same time course and remained below control values for the remainder of the course. This resulted in a two- to threefold increase in the turnover number, suggesting that active transport of cations should increase dramatically with denervation. The membrane protein patterns on SDS gels were less obvious than the changes observed in the functional components. The major effects appeared after only one week and seemed to be restricted to high molecular weight membrane proteins, especially in the 100,000 to 250,000 daltons range. This effect was more prominent in slow-twitch membranes with an apparent semiquantitative decrease in stain at 240,000 daltons. In gels of membranes from fast-twitch muscles a decreased stain in the range of 100,000 to 110,000 daltons occurred, and this became more obvious with longer periods of denervation. The results suggest that considerable influence on the macromolecular components of active cation transport in skeletal muscle is exerted by the motor nerve. No appreciable difference was found in this effect when the two major types of skeletal muscle, fast-twitch and slow-twitch, were compared, suggesting that motor nerve regulation of this membrane property is qualitatively the same.  相似文献   

14.
A procedure was developed to isolate plasma membranes from rabbit skeletal muscle. K+-dependent phosphatase activity was used as marker enzyme for plasma membranes and was determined in the presence of CHAPS (3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate), a zwitterionic detergent. Ca2+-ATPase and succinate dehydrogenase activities were used as marker enzymes for sarcoplasmic reticulum and mitochondria, respectively. Electron-microscopy revealed that plasma membranes were in the form of vesicles. Significant proteolysis of membrane proteins was observed during extraction, which was inhibited by EGTA and 20 mM molybdate. SDS-polyacrylamide gel electrophoresis revealed the disappearance of an intense 96 kDa protein band when membranes were purified in the absence of EGTA and molybdate. Specific binding sites for [3H]dexamethasone were identified in plasma membranes after freezing and incubation with CHAPS. Dithiothreitol was essential for steroid binding and ATP increased it. Under standardized assay conditions, binding was complete with 50 min à 37°C. No binding occurred at 0°C, nor if EGTA and molybdate were absent from the extraction medium.  相似文献   

15.
This paper examines the control of phosphate uptake into Chara corallina. Influxes of inorganic phosphate (Pi) into isolated single internodal cells were measured with 32Pi. Pretreatment of cells without Pi for up to 10 d increased Pi influx. However, during this starvation the concentrations of Pi in both the cytoplasm and the vacuole remained quite constant. When cells were pre-treated with 0.1 mM Pi, the subsequent influx of Pi was low. Under these conditions the Pi concentrations in the cytoplasm was almost the same as that of Pi-starved cells, but vacuolar Pi increased with time. Transfer of cells from medium containing 0.1 mM Pi to Pi-free medium induced an increase of Pi influx within 3 d irrespective of the concentration of Pi in the vacuole.During Pi starvation, neither the membrane potential nor the cytoplasmic pH changed. Manipulation of the cytoplasmic pH by weak acids or ammonium decreased the Pi influx slightly.Pi efflux was also measured, using cells loaded with 32Pi. Addition of a low concentration of Pi in the rinsing medium rapidly and temporarily induced an increase in the efflux.The results show that Pi influx is controlled by factors other than simple feedback from cytoplasmic or vacuolar Pi concentrations or thermodynamic driving forces for H+-coupled Pi uptake. It is suggested that uptake of Pi is controlled via the concentration of Pi in the external medium through induction or repression of two types of plasma membrane Pi transporters.Key words: Chara corallina, membrane transport, phosphate influx, phosphate starvation   相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号