首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transitions in growth irradiance level from 92 to 7 Em-2 s-1 and vice versa caused changes in the pigment contents and photosynthesis of Oscillatoria agardhii. The changes in chlorophyll a and C-phycocyanin contents during the transition from high to low irradiance (HL) were reflected in photosynthetic parameters. In the LH transition light utilization efficiencies of the cells changed faster than pigment contents. This appeared to be related to the lowering of light utilization efficiencies of photosynthesis. As a possible explanation it was hypothesized that excess photosynthate production led to feed back inhibition of photosynthesis. Time-scales of changes in the maximal rate of O2 evolution were discussed as changes in the number of reaction centers of photosystem II in relation to photosynthetic electron transport. Parameters that were subject to change during irradiance transitions obeyed first order kinetics, but hysteresis occurred when comparing HL with LH transients. Interpretation of first order kinetic analysis was discussed in terms of adaptive response vs changes in growth rate.Non-standard abbreviations Chla chlorophyll a - CPC C-phycocyanin - PS II photosystem II - PS I photosystem I - RC II reaction center of photosystem II - P photosynthetic O2-evolution - I irradiance, Em-2 s-1 - light utilization efficiency of cells, mmol O2·mg dry wt-1·h-1/Em-2 s-1 - light utilization efficiency of photosynthetic apparatus, mol O2·mol Chla -1·h-1/Em-2 s-1 - Pmax maximal rate of O2 evolution by cells, mol O2·mg dry wt-1·h-1 - Pmax maximal rate of O2 evolution by photosynthetic apparatus, mol O2·mol·Chla -1·h-1 - LL low light, E m-2 s-1 - HL high light, E m-2 s-1 - LH low to high light transition - HL high to low light transition - k specific rate of adaptation, h-1 - specific growth rate, h-1 - Q pool size of cell constituent, mol·mg dry wt-1 - q net synthesis rate of cell constituent, mol·mg dry wt-1·h-1  相似文献   

2.
We measured CO2 efflux from intact root/rhizosphere systems of 155 day old loblolly (Pinus taeda L.) and ponderosa (Pinus ponderosa Dougl. ex Laws.) pine seedlings in order to study the effects of elevated atmospheric CO2 on the below-ground carbon balance of coniferous tree seedlings. Seedlings were grown in sterilized sand culture, watered daily with either 1, 3.5 or 7 mt M NH 4 + , and maintained in an atmosphere of either 35 or 70 Pa CO2. Carbon dioxide efflux (mol CO2 plant–1 s–1) from the root/rhizosphere system of both species significantly increased when seedlings were grown in elevated CO2, primarily due to large increases in root mass. Specific CO2 efflux (mol CO2 g root–1 s–1) responded to CO2 only under conditions of adequate soil nitrogen availability (3.5 mt M). Under these conditions, CO2 efflux rates from loblolly pine increased 70% from 0.0089 to 0.0151 mol g–1 s–1 with elevated CO2 while ponderosa pine responded with a 59% decrease, from 0.0187 to 0.0077 mol g–1 s–1. Although below ground CO2 efflux from seedlings grown in either sub-optimal (1 mt M) or supra-optimal (7 mt M) nitrogen availability did not respond to CO2, there was a significant nitrogen treatment effect. Seedlings grown in supra-optimal soil nitrogen had significantly increased specific CO2 efflux rates, and significantly lower total biomass compared to either of the other two nitrogen treatments. These results indicate that carbon losses from the root/rhizosphere systems are responsive to environmental resource availability, that the magnitude and direction of these responses are species dependent, and may lead to significantly different effects on whole plant carbon balance of these two forest tree species.  相似文献   

3.
Larval and adult Ambystoma tigrinum were subjected to acidosis by infusing lactic acid (2 M·g-1) into the peritoneal cavity. Blood was sampled at intervals to establish the time-course of the ensuing acidosis. Both larvae and adults became significantly acidotic after 1 h. The larval acidosis was more pronounced (-4 pH units versus-2 pH units) than adults due to greater extracellular buffering capacity (higher [HCO3 -]) in adults. Both forms recovered in about 8 h. Larvae showed a typical increase in circulating norepinephrine during the initial stages of the acidosis; adults did not, having significantly lower norepinephrine titer than larvae during the acidosis. Both larvae and adults showed transient increases in PO2 during the acidosis. The 1 and 2 antagonists, timolol and butoxamine respectively, (0.2 g·g-1) were administered to separate groups of larvae. Butoxamine (2) delayed the recovery from the acidosis by prolonging the increase in arterial PCO2 and reversing the recovery of [HCO3 -]. Timolol (1) did not delay recovery. We conclude that 2 receptors are involved in the catecholamine responses to acidosis in larvae. Catecholamines appear not to play the same role in adult acid-base disturbances as they seem to in larvae.Abbreviations RBC red blood cell  相似文献   

4.
In the field, photosynthesis of Acer saccharum seedlings was rarely light saturated, even though light saturation occurs at about 100 mol quanta m-2 s-1 photosynthetic photon flux density (PPFD). PPFD during more than 75% of the daylight period was 50 mol m-2 s-1 or less. At these low PPFD's there is a marked interaction of PPFD with the initial slope (CE) of the CO2 response. At PPFD-saturation CE was 0.018 mol m-2 s-1/(l/l). The apparent quantum efficiency (incident PPFD) at saturating CO2 was 0.05–0.08 mol/mol. and PPFD-saturated CO2 exchange was 6–8 mol m-2 s-1. The ratio of internal CO2 concentration to external (C i /C a ) was 0.7 to 0.8 except during sunflecks when it decreased to 0.5. The decrease in C i /C a during sunflecks was the result of the slow response of stomates to increased PPFD compared to the response of net photosynthesis. An empirical model, which included the above parameters was used to simulate the measured CO2 exchange rate for portions of two days. Parameter values for the model were determined in experiments separate from the daily time courses being sumulated. Analysis of the field data, partly through the use of simulations, indicate that the elimination of sunflecks would reduce net carbon gain by 5–10%.List of symbols A measured photosynthetic rate under any set of conditions (mol m-2 s-1) - A m (atm) measured photosynthetic rate at saturating PPFD, 350 l/l CO2 and 21% (v/v) O2 (mol m-2 s-1) - C constant in equation of Smith (1937, 1938) - C a CO2 concentration in the air (l/l) - C i CO2 concentration in the intercellular air space (l/l) - C i /* C i corrected for CO2 compensation point, i.e., C i -I *, (l/l) - CE initial slope of the CO2 response of photosynthesis (mol m-2 s-1/(l/l)) - CEM CE at PPFD saturation - E transpiration rate (mmol m-2 s-1) - F predicted photosynthetic rate (mol m-2 s-1) - G leaf conductance to H2O (mol m-2 s-1) - I photosynthetic photon flux density (mol m-2 s-1) - N number of data points - P m predicted photosynthetic rate at saturating CO2 and given PPFD (mol m-2 s-1) - P ml predicted photosynthetic rate at saturating CO2 and PPFD (mol m-2 s-1) - R d residual respiratory rate (mol m-2 s-1) - T a air temperature (°C) - T l leaf temperature (°C) - V reaction velocity in equation of Smith (1937, 1938) - V max saturated reaction velocity in equation of Smith (1937, 1938) - VPA vapor pressure of water in the air (mbar/bar) - VPD vapor pressure difference between leaf and air (mbar/bar) - X substrate concentration in equation of Smith (1937, 1938) - initial slope of the PPFD response of photosynthesis at saturating CO2 (mol CO2/mol quanta) - (atm) initial slope of the PPFD response of photosynthesis at 340 l/l CO2 and 21% (v/v) O2 (mol CO2/mol quanta) - I * CO2 compensation point after correction for residual respiration (l/l) - PPFD compensation point (mol m-2 s-1)  相似文献   

5.
Bimolecular oxygenation of tri-liganded R-state human hemoglobin (HbA) is described by bi-exponential kinetics with association rate constants k = 27.2 ± 1.3 (M·sec)-1 and k = 62.9 ± 1.6 (M·sec)-1. Both the observed processes have been assigned to the bimolecular oxygenation of - and -subunits of the native tetrameric protein by molecular oxygen. The quantum yields of photodissociation within the completely oxygenated R-state HbA are = 0.0120 ± 0.0017 and = 0.044 ± 0.005 for - and -subunits, respectively. The oxygenation reactions of isolated PCMB- and PCMB-hemoglobin chains are described by mono-exponential kinetics with the association rate constants k = 44 ± 2 (M·sec)-1 and k = 51 ± 1 (M·sec)-1, respectively. The quantum yields of photodissociation of isolated PCMB- and PCMB-chains (0.056 ± 0.006 and 0.065 ± 0.006, respectively) are greater than that observed for appropriate subunits within the R-state of oxygenated HbA.  相似文献   

6.
A method of measuring CO2gas exchange (caused, for example, by microalgal photosynthesis on emersed tidal mudflats) using open flow IR gas analyzers is described. The analyzers are integrated in a conventional portable photosynthesis system (LI-6400, LI-COR, Nebraska, USA), which allows manipulation and automatic recording of environmental parameters at the field site. Special bottomless measuring chambers are placed directly on the surface sediment. Measurements are performed under natural light conditions and ambient CO2concentrations, as well as under different CO2concentrations in air, and various PAR radiation levels produced by a LED light source built into one of the measurement chambers. First results from tidal channel banks in a north Brazilian mangrove system at Bragança (Pará, Brazil) under controlled conditions show a marked response of CO2assimilation to CO2concentration and to irradiance. Photosynthesis at 100molmol–1CO2in air in one sample of a well-developed algal mat was saturated at 309mol photons m–2s–1, but increased with increasing ambient CO2concentrations (350 and 1000mol mol–1CO2) in the measuring chamber. Net CO2assimilation was 0.8mol CO2m–2s–1at 100mol mol–1CO2, 5.9mol CO2m–2s–1at 350mol mol–1CO2and 9.8mol CO2m–2s–1at 1000mol mol–1CO2. Compensation irradiance decreased and apparent photon yield increased with ambient CO2concentration. Measurements under natural conditions resulted in a quick response of CO2exchange rates when light conditions changed. We recommend the measuring system for rapid estimations of benthic primary production and as a valuable field research tool in connection with certain ecophysiological aspects under changing environmental conditions.  相似文献   

7.
Summary In mammals hepatic glycogenolysis is controlled by several hormones using cyclicAMP, Ca2+ and/or diacylglycerol as intracellular messengers. In contrast, in teleost fish, lungfish and amphibians fewer hormones promote hepatic glycogenolysis, and cyclicAMP is the sole intra-cellular messenger. This suggests that the -adrenergic mechanism became associated with the liver after amphibians separated from the vertebrate line. Reptiles separated later, and the aim of this study is to elucidate the hormonal control of hepatic glycogenolysis in a reptile,Amphibolurus nuchalis, and especially to determine which adrenergic receptor system is operative.InA. nuchalis liver pieces cultured in vitro, adrenaline and glucagon stimulated glycogen breakdown and glucose release, glycogen phosphorylase activity and accumulation of cyclicAMP in the tissue. Neurohypophysial peptides did not affect these parameters. These actions of adrenaline were completely blocked by the -adrenergic antagonist, propranolol and slightly reduced by the -adrenergic antagonist, phentolamine. Removal of Ca2+ from the medium and addition of the Ca2+ chelator, EGTA, did not block the actions of adrenaline, and the Ca2+ ionophore A23187 did not mimic these actions.The -adrenegic ligand [125I]-iodocyanopindolol (ICP) bound specifically to an isolated membrane preparation fromA. nuchalis liver with a calculated KD of 100 pM and a Bmax of 37.6 fmol·mg protein–1. The adrenergic ligands propranolol, isoprenaline, adrenaline, noradrenaline, phenylephrine and phentolamine displaced ICP with KD's of 20 nM, 1 M, 4.5 M, 32 M, 35 M and 500 M, respectively. The 2-adrenergic ligand yohimbine did not bind specifically to the membrane, but at 1 nM and 100 pM, specific binding of the 1-adrenergic ligand prazosin was 45% of total with a mean of 11.3 fmoles·mg protein–1 specifically bound.These findings indicate that the glycogenolytic actions of adrenaline are mediated primarily via -adrenergic receptors inA. nuchalis, but that -adrenergic receptors may also play some role in the control of hepatic metabolism.  相似文献   

8.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

9.
Effects of elevated CO2 (525 and 700 L L–1), and a control (350 L L–1 CO2), on biochemical properties of a Mollic Psammaquent soil in a well-established pasture of C3 and C4 grasses and clover were investigated with continuously moist turves in growth chambers over four consecutive seasonal temperature regimes from spring to winter inclusive. After a further spring period, half of the turves under 350 and 700 L L–1 were subjected to summer drying and were then re-wetted before a further autumn period; the remaining turves were kept continuously moist throughout these additional three consecutive seasons. The continuously moist turves were then pulse-labelled with 14C-CO2 to follow C pathways in the plant/soil system during 35 days.Growth rates of herbage during the first four seasons averaged 4.6 g m–2 day–1 under 700 L L–1 CO2 and were about 10% higher than under the other two treatments. Below-ground net productivity at the end of these seasons averaged 465, 800 and 824 g m–2 in the control, 525 and 700 L L–1 treatments, respectively.in continuously moist soil, elevated CO2 had no overall effects on total, extractable or microbial C and N, or invertase activity, but resulted in increased CO2-C production from soil, and from added herbage during the initial stages of decomposition over 21 days; rates of root decomposition were unaffected. CO2 produced h–1 mg–1 microbial C was about 10% higher in the 700 L L–1 CO2 treatment than in the other two treatments. Elevated CO2 had no clearly defined effects on N availability, or on the net N mineralization of added herbage.In the labelling experiment, relatively more 14C in the plant/soil system occurred below ground under elevated CO2, with enhanced turnover of 14C also being suggested.Drying increased levels of extractable C and organic-N, but decreased mineral-N concentrations; it had no effect on microbial C, but resulted in lowered microbial N in the control only. In soil that had been previously summer-dried, CO2 production was again higher, but net N mineralization was lower, under elevated CO2 than in the control after autumn pasture growth.Over the trial period of 422 days, elevated CO2 generally appears to have had a greater effect on soil C turnover than on soil C pools in this pasture ecosystem.  相似文献   

10.
Measurement of the light response of photosynthetic CO2 uptake is often used as an implement in ecophysiological studies. A method is described to calculate photosynthetic parameters, such as the maximum rate of whole electron transport and dissimilative respiration in the light, from the light response of CO2 uptake. Examples of the light-response curves of flag leaves and ears of wheat (Triticum aestivum cv. ARKAS) are shown.Abbreviations and symbols A net photosynthesis rate - D 1 rate of dissimilative respiration occurring in the light - f loss factor - I incident PPFD - I effective absorbed PPFD - J rate of whole electron transport - J m maximum rate of whole electron transport - p c intercellular CO2 partial pressure - PPFD photosynthetic photon flux density - q effectivity factor for the use of light (electrons/quanta) - absorption coefficient - I * CO2 compensation point in the absence of dissimilative respiration (bar) - II conversion factor for calculation of CO2 uptake from the rate of whole electron transport - convexity factor Gas-exchange rates relate to the projective area and are given in mol·m-2·s-1. Electron-transport rates are given in mol electrons·m-2·s-1; PPFD is given in mol quanta·m-2·s-1.  相似文献   

11.
APS-kinase (ATP: adenylylsulphate 3-phosphotransferase, EC 2.7.1.25) has been purified from the alga Chlamydomonas reinhardii, strain CW 15 by means of chromatofocussing and affinity chromatography. The isolated protein showed an apparent molecular mass of 44,000 upon sodium dodecylsulphate polyacrylamide gel electrophoresis. The transfer of phosphate groups from ATP onto APS required a pH of 6.8, the presence of Mg2+ ions and a reducing thiol. Its catalytical activity was destroyed by sulphhydryl group inhibitors (phenyl-mercuri compounds, dithiopyridine) and alkylating reagents.The purified enzyme attained a V max of 360 pkat under optimal reaction conditions declining to v limit of 260 pkat in the presence of excess substrate APS. This sensitivity towards changes in substrate concentrations was parallelled by a high affinity and specificity: apparent K m APS: 2 · 10-6 mol · l-1, and K m ATP: 7 · 10-6 mol · l-1. The enzyme was found specific for ATP, d-ATP and CTP, while UTP, ITP and GTP showed marginal activity. The Hill coefficients suggested 4 binding sites for APS and 1 for ATP. Excessive APS resulted in a negative slope indicating 3 inhibiting sites of the substrate.Abbreviations APS Adenosine 5-phosphosulphate - dATP 2-deoxyadenosine 5-triphosphate - p-CMB p-chloromercuribenzoate - DTE dithioerythritol - DTT dithiothreitol - -MSH -mercaptoethanol - PAPS 3-phosphoadenosine 5-phosphosulphate - PAP 3-phosphoadenosine 5-phosphate - SDS sodium dodecyl sulphate This work is part of a dissertation submitted by H. G. J., Bochum 1982  相似文献   

12.
The CO2 gas exchange rates of the Central European perennial understory plantAsarum europaeum L. were measured in late autumn (October 30 to November 30) in its natural habitat day and night.During these measurements the temperature ranged from 0 to 15°C and the absolute air humidity from 3 to 10 mg H2O·1–1. Temperature and absolute air humidity over these ranges did not affect CO2 net assimilation which was determined almost entirely by quantum flux density.CO2 net assimilation was light saturated at about 100 M·m–2·s–1 quantum flux density. The uptake rate at this point was 4.3 mg·dm–2·h–1. The compensation point occurred at approximately 1 M·m–2·s–1.  相似文献   

13.
Effects of elevated CO2 (700 L L–1) and a control (350 L L–1 CO2) on the productivity of a 3-year-old ryegrass/white clover pasture, and on soil biochemical properties, were investigated with turves of a Typic Endoaquept soil in growth chambers. Temperature treatments corresponding to average winter, spring, and summer conditions in the field were applied consecutively to all of the turves. An additional treatment, at 700 L L–1 CO2 and a temperature 6°C higher throughout than in the other treatments, was included.Under the same temperature conditions, overall herbage yields in the 700 L L–1 CO2 treatment were ca. 7% greater than in the control at the end of the summer period. Root mass (to ca 25 cm depth) in the 700 L L–1 CO2 treatment was then about 50% greater than in the control, but in the 700 L L–1 CO2+6°C treatment it was 6% lower than in the control. Based on decomposition results, herbage from the 700 L L–1+6°C treatment probably contained the highest proportion of readily decomposable components.Elevated CO2 had no consistent effect on soil total C and N, microbial C and N, or extractable C concentrations in any of the treatments. Under the same temperature conditions, it did, however, enhance soil respiration (CO2-C production) and invertase activity. The effects of elevated CO2 on rates of net N mineralization were less distinct, and the apparent availability of N for the sward was not affected. Under elevated CO2, soil in the higher-temperature treatment had a higher microbial C:N ratio; it also had a greater potential to degrade plant materials.Data interpretation was complicated by soil spatial variability and the moderately high background levels of organic matter and biochemical properties that are typical of New Zealand pasture soils. More rapid cycling of C under CO2 enrichment is, nevertheless, indicated. Futher long-term experiments are required to determine the overall effect of elevated CO2 on the soil C balance.  相似文献   

14.
Two transgenic lines of mice were produced which contained the S Antilles- and 2-hemoglobin genes trandemly coupled to the micro locus control region (LCR). The LCRS Antilles2-hemoglobin transgenic mice expressed high levels of 2-hemoglobin while S Antilles-hemoglobin expression was virtually undetectable. Abundant 2-hemoglobin protein was observed in the blood of transgenic mice, while S Antilles-hemoglobin chains could not be detected. Transgenic red blood cells had substantially decreased sensitivity to osmotic lysis. Attempts to produce homozygotes containing the transgene were unsuccessful. The phenotype of these mice closely resembles that of -thalassemic mice. The LCRS Antilles2 transgenic mice demonstrate that if the LCR is coupled to the S Antilles- and 2-hemoglobin genes in tandem, only the distal 2-hemoglobin gene is selected for expression to significant levels in adult mice. These results support a reciprocally competitive model for LCR-hemoglobin developmental switching.  相似文献   

15.
An extracellular -glucosidase (EC 3.2.2.21) from the anaerobic fungus Piromyces sp. strain E2 was purified. The enzyme is a monomer with a molecular mass of 45 kDa and a pI of 4.15. The enzyme readily hydrolyzes p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, cellobiose, cellotriose, cellotetraose and cellopentaose but is not active towards Avicel, carboxymethylcellulose, xylan, p-nitrophenyl--d-galactoside and p-nitrophenyl--d-xyloside. To cleave p-nitrophenyl--d-glucoside the maximum activity is reached at pH 6.0 and 55°C, and the enzyme is stable up to 72 h at 40°C. Activity is inhibited by d-glucurono--lactone, cellobiose, sodium dodecyl sulfate, Hg2+ and Cu2+ cations. With p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, and. cellobiose as enzyme substrates, the K m and V max balues are 1.5 mM and 25.5 IU·mg-1, 1.1. mM and 133 IU·mg-1, and 0.05 mM and 55.6 IU·mg-1, respectively.  相似文献   

16.
We studied the effects of atmospheric CO2 enrichment (280, 420 and 560 l CO2 l–1) and increased N deposition (0,30 and 90 kg ha–1 year–1) on the spruce-forest understory species Oxalis acetosella, Homogyne alpina and Rubus hirtus. Clones of these species formed the ground cover in nine 0.7 m2 model ecosystems with 5-year-old Picea abies trees (leaf area index of approx 2.2). Communities grew on natural forest soil in a simulated montane climate. Independently of N deposition, the rate of light-saturated net photosynthesis of leaves grown and measured at 420 l CO2 l–1 was higher in Oxalis and in Homogyne, but was not significantly different in Rubus compared to leaves grown and measured at the pre-industrial CO2 concentration of 280 l l–1. Remarkably, further CO2 enrichment to 560 l l–1 caused no additional increase of CO2 uptake. With increasing CO2 supply concentrations of non-structural carbohydrates in leaves increased and N concentrations decreased in all species, whereas N deposition had no significant effect on these traits. Above-ground biomass and leaf area production were not significantly affected by elevated CO2 in the more vigorously growing species O. acetosella and R. hirtus, but the slow growing H. alpina produced almost twice as much biomass and 50% more leaf area per plant under 420 l CO2 l–1 compared to 280 l l–1 (again no further stimulation at 560 l l–1). In contrast, increased N addition stimulated growth in Oxalis and Rubus but had no effect on Homogyne. In Oxalis (only) biomass per plant was positively correlated with microhabitat quantum flux density at low CO2, but not at high CO2 indicating carbon saturation. On the other hand, the less shade-tolerant Homogyne profited from CO2 enrichment at all understory light levels facilitating its spread into more shady micro-habitats under elevated CO2. These species-specific responses to CO2 and N deposition will affect community structure. The non-linear responses to elevated CO2 of several of the traits studied here suggest that the largest responses to rising atmospheric CO2 are under way now or have already occurred and possible future responses to further increases in CO2 concentration are likely to be much smaller in these understory species.  相似文献   

17.
In order to maintain axenic seedstock cultures axenically of thecommercially important red seaweed, Porphyra yezoensis, aprocedure was developed for axenic isolation and culture of conchocelis andmonospores. For axenic isolation of the conchocelis, contaminated microalgaewere most effectively removed by filtering contaminated samples through a100-m mesh after sonication. Removal of bacteria and otheralgaewas accomplished using a mixture of 5 agents (0.02% chitosan, 100 gml–1 GeO2, 10 gml–1 ampicillin, 40 gml–1 kanamycin and 200 gml–1 streptomycin). Axenic single colonies wereisolatedfrom a semi-solid medium prepared from 1% transfer gel. After collectingmonospores from the 40–50% density layer on a percoll-gradient, removalofbacteria and fungi from the monospores was accomplished using a mixture of 5antibiotics (3.5 g ml–1 nystatin, 2 mgml–1 ampicillin, 400 gml–1 kanamycin, 50 gml–1 neomycin and 800 gml–1 streptomycin). Axenic single juvenile blades wereisolated from a semi-solid medium prepared from 0.5% transfer gel.  相似文献   

18.
The effect of phosphate feeding on the influence of low (2%) oxygen on photosynthetic carbon assimilation has been investigated in leaf discs of spinach (Spinacia oleracea L.) at 12°C. The following observations were made. First, after the transition from 20% O2 to 2% O2, the rate of CO2 uptake was inhibited at CO2 concentrations between about 250 and about 800 l CO2·l-1. Second, phosphate feeding stimulated the rate of CO2 uptake in 20% O2 at higher concentrations of CO2 (500–900 l·l-1). Third, phosphate feeding stimulated the rate of CO2 uptake in 2% O2 at all but the highest (900 l·l-1) and lowest 74 (l·l-1) concentrations of CO2 employed. Phosphate thereby restored the stimulation of photosynthesis by 2% O2 and it did so over a wide range of lower temperatures. Fourth, oscillatory behaviour, however generated, was dampened by phosphate feeding, even at very low concentrations of CO2. Contents of leaf metabolites were measured during the transition to 2% O2 in control and phosphate-fed leaf discs. During this period the ratio glycerate-3-phosphate/triose phosphate rose steeply, but fell again only in the phosphate-treated leaf discs. These data, taken together with measured ATP/ADP ratios, showed that assimilatory power, the ratio [ATP]·[NAD(P)H]/[ADP]·[Pi]·[NAD(P)], decreased when leaves were exposed to 2% O2, but that this decrease was minimised by previous feeding of phosphate. The mechanism of phosphate limitation is discussed in the light of the results.Abbreviations Ci intercellular concentration of CO2 - RuBP ribulose-1,5-bisphosphate  相似文献   

19.
Summary The rate of CO2 assimilation at light saturation and an intercellular CO2 concentration of 350 l l-1 (photosynthetic capacity), measured in leaves of Eucalyptus pauciflora, E. behriana, E. delegatensis and Acacia melanoxylon, declined over the course of cloudless days under naturally varying environmental conditions as well as under constant optimal conditions for high CO2 uptake. Since the capacity did not recover during the light period, it was different from the midday depression of gas exchange. The change appeared to be caused neither by the diurnal variation of total leaf water potential, by photoinhibition of redox-reaction centres in photosystems nor by changes in the intrinsic properties of Ribulose-bisphosphate carboxylase-oxygenase. The decline was more pronounced in winter than in summer. It was related to the duration of illumination or the cumulative carbon gain. It was reversible in the following dark phase, and it did not occur on changeable days with short peaks of high light.Despite the decline in photosynthetic capacity, the initial slope of the CO2 response of net photosynthesis, as obtained at low intercellular CO2 concentrations, remained constant during the day, but declined at night when photosynthetic capacity recovered. In all cases stomatal conductance varied in parallel with photosynthetic capacity. The relevance of changes in photosynthetic capacity for the intercellular CO2 concentration is discussed.Abbreviations and symbols A CO2 assimilation - ABA abscisic acid - Ac350 photosynthetic capacity at ci=350l l-1 - ci intercellular CO2 concentration - g leaf conductance to water vapour - I photon flux density (irradiance) - P air pressure - Pi inorganic phosphate - Rd net CO2 release at * - Rubisco Ribulose-bisphosphate carboxylase-oxygenase - RuBP Ribulose-bisphosphate - T leaf temperature - w leaf-to-air water vapour concentration difference - A/ci carboxylation efficiency at low ci - * light-independent CO2 compensation point - total leaf water potential  相似文献   

20.
The effect of long-term exposure to elevated levels of CO2 on biomass partitioning, net photosynthesis and starch metabolism was examined in cotton. Plants were grown under controlled conditions at 350, 675 and 1000 l l-1 CO2. Plants grown at 675 and 1000 l l-1 had 72% and 115% more dry weight respectively than plants grown at 350 l l-1. Increases in weight were partially due to corresponding increases in leaf starch. CO2 enrichment also caused a decrease in chlorophyll concentration and a change in the chlorophyll a/b ratio. High CO2 grown plants had lower photosynthetic capacity than 350 l l-1 grown plants when measured at each CO2 concentration. Reduced photosynthetic rates were correlated with high internal (non-stomatal) resistances and higher starch levels. It is suggested that carbohydrate accumulation causes a decline in photosynthesis by feedback inhibition and/or physical damage at the chloroplast level.Abbreviations Ci internal CO2 concentration - Chl chlorophyll - DMSO dimethylsulfoxide - HSD honestly significant difference (procedure) - MCW methanolchloroform-water - Pi inorganic phosphate - S.E.M. standard error of mean  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号