首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrylamide and glycidamide: genotoxic effects in V79-cells and human blood   总被引:1,自引:0,他引:1  
Acrylamide (AA) can be formed in certain foods by heating, predominantly from the precursor asparagine. It is a carcinogen in animal experiments, but the relevance of dietary exposure for humans is still under debate. There is substantial evidence that glycidamide (GA), metabolically formed from AA by Cyp 2E1-mediated epoxidation, acts as ultimate mutagenic agent. We compared the mutagenic potential of AA and GA in V79-cells, using the hprt mutagenicity-test with N-methyl-N'-nitro-N-nitroso-guanidine (MNNG) as positive control. Whereas MNNG showed marked mutagenic effectivity already at 0.5 microM, AA was inactive up to a concentration of 10 mM. In contrast, GA showed a concentration dependent induction of mutations at concentrations of 800 microM and higher. Human blood was used as model system to investigate genotoxic potential in lymphocytes by single cell gel electrophoresis (comet assay) and by measuring the induction of micronuclei (MN) with bleomycin (BL) as positive control. AA did not induce significant genotoxicity or mutagenicity up to 6000 microM. With GA, concentration dependent DNA damage was observed in the dose range of 300-3000 microM after 4 h incubation. Significant MN-induction was not observed with AA (up to 5000 microM) and GA (up to 1000 microM), whereas BL (4 microM) induced significantly enhanced MN frequencies. Thus, in our systems GA appears to exert a rather moderate genotoxic activity.  相似文献   

2.
Acrylamide (AA) can be formed in certain foods by heating, predominantly from the precursor asparagine. It is a carcinogen in animal experiments, but the relevance of dietary exposure for humans is still under debate. There is substantial evidence that glycidamide (GA), metabolically formed from AA by Cyp 2E1-mediated epoxidation, acts as ultimate mutagenic agent. We compared the mutagenic potential of AA and GA in V79-cells, using the hprt mutagenicity-test with N-methyl-N′-nitro-N-nitroso-guanidine (MNNG) as positive control. Whereas MNNG showed marked mutagenic effectivity already at 0.5 μM, AA was inactive up to a concentration of 10 mM. In contrast, GA showed a concentration dependent induction of mutations at concentrations of 800 μM and higher. Human blood was used as model system to investigate genotoxic potential in lymphocytes by single cell gel electrophoresis (comet assay) and by measuring the induction of micronuclei (MN) with bleomycin (BL) as positive control. AA did not induce significant genotoxicity or mutagenicity up to 6000 μM. With GA, concentration dependent DNA damage was observed in the dose range of 300–3000 μM after 4 h incubation. Significant MN-induction was not observed with AA (up to 5000 μM) and GA (up to 1000 μM), whereas BL (4 μM) induced significantly enhanced MN frequencies. Thus, in our systems GA appears to exert a rather moderate genotoxic activity.  相似文献   

3.
The decrease in microbial mutagenicity of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and N-methyl-N-nitrosourea (MNU) was compared in an animal mediation with rats and in direct incubation with human as well as rat blood and blood components. The mutagenic activity was assayed by reverse mutation from streptomycin (SM) dependence to non-dependence in Escherichia coli, strain Sd-B (TC). The mutagenic response curves of both MNNG and MNU were approximately linear and parallel at non-cytotoxic concentrations. However, the mutagenic capabilities of MNNG were estimated to be 10-fold more potent than those of MNU. The mutagenic activity in blood and liver preparations from rats killed immediately after intravenous injection of MNNG, 50 mg/kg, was negative. Results with MNU, 100 mg/kg, were positive in both cases.For the detection of mutagenicity, blood was diluted 50 times for the final testing mixture (1 ml) to avoid bactericidal effects of the blood itself. When a larger amount of liver preparation was used in the tests, and diluted 8 times, mutagenic activity was still detected 15 min after injection of MNU, 80 mg/kg. Comparisons of the diminished rate of mutagenicity between MNNG and MNU during certain periods of incubation with blood indicated that MNNG was inactivated much more rapidly than MNU with both human and rat blood. Plasma showed a moderate inactivating effect on both MNNG and MNU. Red blood cells inactivated MNNG at a remarkably rapid rate similar to that of whole blood, but was less effective on MNU. In further experiments with red- cell components, the cell contents inactivated both MNNG and MNU at rates similar to those with red cells, but cell membrane had absolutely no effect in decreasing the mutagenicity in either MNNG or MNU.  相似文献   

4.
Studies with the arabinose-resistant Salmonella forward mutation assay system were performed to determine the antimutagenic activity of chlorophyllin against the mutagenic activity of aflatoxin B1 (AFB1), 2-aminoanthracene (2AA), benzo[a]pyrene (BaP), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and solvent extracts of coal dust (CD), diesel emission particles (DE), airborne particles (AP), tobacco snuff (TS), black pepper (BP) and red wine (RW). Various concentrations of each chemical and complex mixture extract were assayed for mutagenic activity with and/or without S9 in a preincubation test. One concentration of each chemical and complex mixture extract was then tested with various concentrations of chlorophyllin. Results showed that chlorophyllin, at concentrations of 2.5 mg/plate or less, completely or almost completely inhibited the mutagenicity of 2AA, AFB1, BaP, MNNG and solvent extracts of CD, DE and RW. With concentrations from 1.25 to 5 mg/plate, chlorophyllin inhibited over 50% of the mutagenicity of AP, TS and BP extracts. These results further substantiate the antimutagenic efficacy of chlorophyllin against chemicals and complex mixtures.  相似文献   

5.
A high frequency of morphogenetic mutants of Dictyostelium discoideum can be induced by treatment with MNNG under conditions which result in relatively low cell killing. Six temperature-sensitive growth mutants induced by this treatment were isolated by replica plating. Among these, five showed spontaneous reversion rates of 10(-4) to 10(-5). The mutagenic activity of ems, measured for the induction of both morphogenetic and temperature-sensitive mutants, was weaker than that of MNNG and UV radiation. High frequencies of morphogenetic mutants were obtained only with doses of UV irradiation that resulted in high killing of cells or spores. Caffeine, at concentrations that slightly decreased the growth rate of amoebae in axenic medium, induced morphogenetic defects and also enhanced the mutagenic effect of UV irradiation. However, all the aggregateless clones derived from caffeine treatment that were studied reverted to the wild-type phenotype after a variable number of clonal re-isolations.  相似文献   

6.
Growth of granulation tissue was induced in rats inside a subcutaneous air pouch by injection of croton oil. Granulation tissue, isolated and cultured in vitro, gave satisfactory and reproducible cloning efficiency of fibroblast-like cells. This experimental model system was used to study the induction of autosomal point mutations in vivo leading to ouabain resistance. For this purpose the mutagen MNNG was administered in the granuloma pouch, and the formation of ouabain-resistant clones was determined in vitro. Various application schedules, expression times in vivo and selective conditions in vitro were evaluated. The highest frequencies of ouabain-resistant clones were found when MNNG was injected into the pouch 24--48 h after induction of granulation tissue, followed by an expression time in vivo of 24--48 h. No ouabain-resistant clones were formed by cells isolated from untreated rats or from animals receiving the highest tolerated doses of MNNG per os or by intraperitoneal injection. The potential usefulness of the granuloma pouch assay for the evaluation of mutagenic and carcinogenic substances in vivo is discussed.  相似文献   

7.
Summary The lethal and mutagenic effects of hydroxylamine (HA) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) were investigated in the higher plant Mimulus cardinalis. MNNG was found to be more toxic than HA. The shapes of the survival curves obtained at different concentrations of HA and MNNG are interpreted on the basis of decreased biological activity of the solution to increased age of solution. Based on the appearance of chlorophyll-deficient mutants, MNNG is mutagenic in Mimulus. No albinos were detected in HA treated plants. A total of 67 putative mutants were isolated in the mutation spectra of HA and MNNG treated plants. The frequency of mutants induced by HA and MNNG are different. MNNG is mutagenic at 1/10 the concentration of HA in inducing putative mutations in M 1 plants.A portion of this work will be submitted by the senior author to the Faculty of Miami University in partial fulfillment of the Doctor of Philosophy degree.  相似文献   

8.
Summary In an attempt to characterise which gene products may be involved in the repair system induced in E. coli by growth on low levels of alkylating agent (the adaptive response) we have analysed mutants deficient in other known pathways of DNA repair for the ability to adapt to MNNG. Adaptive resistance to the killing effects of MNNG seems to require a functional DNA polymerase I whereas resistance to the mutagenic effects can occur in polymerase I deficient strains; similarly killing adaptation could not be observed in a dam3 mutant, which was nonetheless able to show mutational adaptation. These results suggest that these two parts of the adaptive response must, at least to some extent, be separable. Both adaptive responses can be seen in the absence of uvrD + uvrE +-dependent mismatch repair, DNA polymerase II activity, or recF-mediated recombination and they are not affected by decreased levels of adenyl cyclase. The data presented support our earlier conclusion that adaptive resistance to the killing and mutagenic effect of MNNG is the result of previously uncharacterised repair pathways.  相似文献   

9.
The role of DNA gyrase in handling DNA damages induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was examined with two Escherichia coli strains, KL161 and KL166. The two strains are isogenic except that KL166 harbors a mutation at the nalA (gyrA) locus which specifies one of the two subunits of DNA gyrase. We treated the two strains with several different types of mutagenic agents and found the nalA strain to be highly resistant to MNNG-induced killing and mutagenic effects as compared with the parental strain. The MNNG resistance was specific, since the two strains were about equally sensitive to methyl methane sulfonate, ethyl methane sulfonate, and UV and gamma radiations. We pulse-labeled the two strains with [(3)H]uridine and (14)C-amino acids after MNNG treatment to analyze RNA and protein synthetic rates. The pulse-labeled proteins were also separated on polyacrylamide gels. The results show that pulse-labeled RNA and proteins persisted in the nalA strain but declined rapidly in the parental strain after MNNG treatment. We compared membrane-free nucleoid preparations from the two strains by sucrose density gradient centrifugation and found a difference in nucleoid organization between the two strains. The nucleoid of the nalA strain, unlike that of the parental strain, may have a highly ordered structure, as indicated by its resistance to ethidium bromide-induced relaxation. The ability of the two strains to express an adaptive response to MNNG was determined. We found that the resistance to MNNG killing and mutagenesis by the nalA strain cannot be further increased by adaptive treatment. These results suggest that an alteration in DNA gyrase may have profound effects on E. coli chromosome organization and base methylation by MNNG.  相似文献   

10.
The effects of tea extracts and their ingredients, catechins and L-ascorbic acid (AsA), on the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were examined in vitro and in the stomachs of rats using E. coli WP2 and S. typhimurium TA100. The extracts of green tea and black tea leaves decreased the mutagenic activity of MNNG to E. coli WP2 in vitro in a desmutagenic manner. Catechins such as (-)-epigallocatechin from green tea leaves and the low-molecular-weight tannin fraction isolated from black tea extract with HP-20 resin also exhibited inhibitory effects against the mutagenic activity of MNNG. A desmutagenic effect of AsA on MNNG-induced mutagenicity was observed depending on the dose, though it was complicated. The effects were also demonstrated in the stomachs of rats by assaying the bacterial mutagenic in vitro; the tea extracts previously given orally to rats reduced the mutagenic activity of MNNG remarkably, though simultaneous administration showed less effect. The effectiveness of tea extracts for the decrease of MNNG-induced mutagenesis in vitro and in vivo suggests that the habitual drinking of tea may reduce the tumor-initiating potency of MNNG-type nitrosoureido compounds if they are formed in the stomach.  相似文献   

11.
It is known that UV, X-rays, MMC and MMS are not mutagenic for H. influenzae, whereas HZ, EMS and MNNG are potent mutagens for this bacterium. All of these agents, however, are known to be both mutagenic and able to induce prophage in E. coli. We report here that all the agents except HZ induce prophage in H. influenzae, and EMS even induces in the recombination-defective recl mutant, which is non-inducible by UV, MMC, MNNG and MMS. MMS did not cause single-strand breaks or gaps in DNA synthesized after treatment of H. influenzae, but EMS and MNNG produced them. EMS caused more breaks in DNA synthesized before treatment than in that synthesized after treatment. On the other hand we did observe such breaks or gaps induced in E. coli in DNA synthesized posttreatment by EMS as well as by MMS and MNNG, at comparable survival levels.  相似文献   

12.
The induction of 5-methyltryptophan (5-MT) resistance mutations was assayed as a test system for mutagenic chemicals in Escherichia coli. It is assumed that different premutational alterations in several genes of the Escherichia coli chromosome will lead to 5-MT-resistant mutants. The chemicals used were three monofunctional alkylating agents as reference compounds, namely β-propiolactone (β-PL), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and methyl methanesulfonate (MMS), which are all mutagenic in the 5-MT system; of the eight organophosphorus insecticides tested, four have definite mutagenic activity (Dichlorvos, Oxydemetonmethyl, Dimethoate, and Bidrin), one is probably mutagenic (Methylparathion) and the remaining three (Parathion, Malathion and Diazinon) do not induce 5-MT resistance mutations in the conditions used here (< 30% survival). The relative mutagenic activity after a treatment time of 60 min is (in decreasing order) MNNG > MMS > Dichlorvos > Oxydemetonmethyl, Dimethoate and Bidrin. The concentration-dependent mutagenic activity of all mutagenic compounds is nearly linear when plotted on a log-log scale (with slopes varying from 1.0 to 1.5) and could be taken as an indication that one premutational reaction will be sufficient for the induction of one 5-MT-resistant mutant.  相似文献   

13.
N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces cycloheximide-resistant mutations in Saccharomyces cerevisiae, but few, if any, resistant mutants are induced by the acridine mustard ICR-170. Cycloheximide sensitivity in yeast is associated with the ribosome, and treatment with the antibiotic at concentrations of 2 mug/ml results in complete inhibition of protein synthesis. Missense mutations induced by MNNG probably lead to the loss of cycloheximide binding sites on the ribosome, resulting in resistance to the antibiotic without altering the activity of the organelle in protein synthesis. ICR-170, however, induced primarily frameshift mutations that would alter ribosome structural integrity, resulting in cell death rather than resistance. ICR-170 and MNNG are both mutagenic in a system in which base-pair substitution and frameshift mutations can be detected. These results indicate that cycloheximide resistance in S. cerevisiae, like streptomycin and spectinomycin resistance in Escherichia coli, can be induced by base-pair substitution mutagens but not by frameshift mutagens such as ICR-170.  相似文献   

14.
2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is a potent bacterial mutagen formed during cooking of beef. IQ was administered intravenously to Sprague-Dawley rats at concentrations ranging from 7.5-50 mg/kg body weight. Urine was collected and analyzed for mutagenicity. Urinary mutagens were found which required activation by S9 mix, and reverted Ames test strains TA98 and TA100, but not TA1535 or TA1537. The amount of urinary mutagen(s) were related to IQ dose administered and were excreted within 48 h. Additional mutagenic activity was not released after incubation with beta-glucuronidase or aryl sulfatase. Analysis of urinary mutagens by HPLC indicates that the majority of mutagenic activity is due to unchanged IQ, but a small peak of mutagenic activity may correspond to N-acetyl or 3-N-demethylated metabolite. Since only 1% of the administered mutagenic activity is recovered in the urine, IQ may be readily detoxified in vivo.  相似文献   

15.
Hypoxanthine (Hx), thymidine (TdR) and deoxycytidine (CdR), at concentrations of 10(-5) M increased the yield of 8-azaguanine-resistant (AzGr) mutants induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in cultured Chinese hamster V79 cells. The cytotoxicity of MNNG was increased 2-fold in the presence of Hx, and more than 10-fold in the presence of TdR. This cytotoxic effect of TdR was abolished by equal concentrations of CdR, which by itself did not increase the cytotoxicity of MNNG. However, the yield of MNNG-induced AzGr colonies was increased 2--10-fold in the presence of both CdR and TdR. The AzGr colonies displayed phenotypes characteristic of hypoxanthine: guaninephosphoribosyltransferase-deficient (HGPRT-) mutants, or indicative of mutant HGPRT with altered substrate affinities. The nucleosides did not affect the growth or expression time of the HGPRT- mutants; the same extent of alkali-labile DNA damage occurred in cells treated with alkylating agents in the presence and absence of TdR and CdR; and the increase in mutation frequency in the presence of these nucleosides occurred not only with MNNG, but also with ethylating agents. Nucleosides treated with MNNG were not mutagenic, and treatment of the cells with TdR and CdR only prior to treatment with MNNG or only during selection with AzG did not increase the induced mutation frequency. Therefore, the interpretation is proposed that CdR, TdR and Hx produce nucleotide-pool imbalances that increase lethal and mutagenic errors of replication of alkylated DNA.  相似文献   

16.
When Esherichia coli cells are exposed to a low level of simple alkylating agents, they induce the adaptive response which renders them more resistant to the killing and the mutagenic effects of the same or other alkylating agents. This paper describes the isolation of one strain that was deficient in mutagenic adaptation and five that were deficient in both mutagenic and killing adaptation, confirming previous suggestions that killing and mutagenic adaptation are, at least to some extent, separable. These six strains have been called Ada mutants. They were more sensitive to the killing and mutagenic effects of N-methy-N'-nitro-N-nitrosoguanidine (MNNG) than the unadapted Ada+ parent. Thus, the adaptation pathway is responsible for circumventing some alkylation-induced damage even in cells that are preinduced. The increase in mutation frequency seen in Ada cells treated with MNNG was the same whether the cells were lexA+ or lexA, showing that the extra mutations found in Ada- strains do not depend upon the SOS pathway. Ada strains accumulated more O6-methyl guanine lesions than the Ada+ parent on prolonged exposure to MNNG, and this supports the idea that O6-methyl guanine is the most important lesion for MNNG-induced mutagenesis. The ada mutations have been shown to map in the 47 to 53-min region of the E. coli chromosome.  相似文献   

17.
Hepatoma tissue culture (HTC) cells were incubated in the presence of the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) to study the variations in the bisnucleosides polyphosphates (Ap4X) pool size. A transient but sensitive accumulation of these compounds is observed; if 3-aminobenzamide (3AB) which is a potent inhibitor of the ADP-ribosyltransferase (ADPRT) is added after the MNNG treatment, a more pronounced and persistent accumulation of Ap4X can be seen. A moderate heat-shock (30 min at 43 degrees C) results also in a small accumulation of Ap4X but the shape of the accumulation curve is quite different and the increase of the Ap4X pool is not sensitive to the presence of 3AB. However, both MNNG treatment and hyperthermia cause a marked inhibition of protein synthesis. On the other hand, the ADPRT activity is enhanced in the presence of MNNG whereas hyperthermia has little or a slightly inhibitory effect on this activity. These results suggest that MNNG treatment triggers an Ap4X accumulation in eukaryotic cells different from that observed after heat-shock and it seems likely that these compounds are involved in the DNA excision repair system in which the ADPRT enzyme is also implicated.  相似文献   

18.
P Kerklaan  S Bouter  G Mohn 《Mutation research》1983,122(3-4):257-266
A mutant of Salmonella typhimurium strain TA1535 with decreased glutathione (GSH) levels was isolated after treatment with UV and selection for N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) resistance; this GSH- mutant also exhibited increased resistance to MNNG, the methyl analog of ENNG. Estimation of the cellular GSH content showed that the GSH- derivative contained about 20% of the GSH levels found in TA1535. In mutagenicity tests (hisG46 leads to His+), the GSH- strain required the presence of GSH or L-cysteine in the medium for an optimal phenotypic expression and/or growth of spontaneous and induced His+ revertants, and may, therefore, be allelic to cys mutants of Salmonella described earlier. The mutagenic activity of MNNG, ENNG and 1,2-dibromoethane (DBE), but not that of N-ethylnitrosourea (ENU), was strongly reduced in TA1535/GSH-; pretreatment of the strain with GSH restored the mutagenicity of the first 3 chemicals to levels normally found in TA1535. The results support the current view that MNNG, ENNG and DBE, but not ENU, can be activated via reaction with GSH to species of higher reactivity and mutagenicity. It is concluded that the present GSH- strain can be used to study more systematically the role of GSH in the bioactivation and -deactivation of xenobiotics to mutagenic factors.  相似文献   

19.
Amanuma K  Nakamura T  Aoki Y 《Mutation research》2004,556(1-2):151-161
To evaluate the feasibility of a mutagenicity assay using adult rpsL transgenic zebrafish, 4- to 8-month-old females were exposed to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) (0, 15 or 30 mg/L in a water bath for 2 h). At 2 weeks after exposure, MNNG showed a concentration-dependent significant increase in mutant frequency (MF) of 8 x 10(-5), 18 x 10(-5), and 51 x 10(-5), respectively, in the gill. DNA sequencing revealed that 60-74% of the induced mutations were G:C to A:T transitions, consistent with the known mutagenic effects of MNNG. A marginal but significant increase in MF was observed in the hepatopancreas only in the group exposed to 30 mg/L, with the induction of some G:C to A:T transitions. A time-course of the appearance of mutations was determined in fish treated with 15 mg/L MNNG. In both, the gill and hepatopancreas, a higher MF was observed at 3 weeks than at 2 weeks, suggesting that an expression time of at least 3 weeks is preferable for the assay. When embryos (29 h post-fertilization) were exposed to MNNG (0, 50, and 150 mg/L) for 1 h, MFs increased significantly with an increase in the concentration of MNNG (5 x 10(-5), 40 x 10(-5), and 144 x 10(-5), respectively) at 3 days after exposure. G:C to A:T transitions were the predominant mutations, and these occurred at the same sites in the rpsL gene as in adult tissues. Thus, MNNG induces typical mutations in the gill and hepatopancreas of adult fish, and in embryos, suggesting that the rpsL zebrafish is a useful tool for monitoring genotoxicity caused by water-borne mutagens.  相似文献   

20.
Summary The treatment of mice with repeated injections of BUdR and FUdR allows for the demonstration of differentially stained metaphases from bone marrow after FPG (fluorescence plus Giemsa; Perry and Wolff, 1974) treatment. Thus, it is possible to determine the number of SCE's under in vivo conditions, which appears as a very promising system for mutagenicity testing. We studied the response of this system in comparison to the micronucleus test using six mutagenic agents: triaziquone, cyclophosphamide (CP), dimethylphenyltriazene (PDMT), methylnitronitrosoguandine (MNNG), dimethylnitrosamine (DMNA), and diethylnitrosamine (DENA). With the exception of MNNG and DENA, all these agents induce both, SCE and micronuclei, MNNG and DENA being ineffective in both systems. The most potent SCE-inducing agent was triaziquone, followed by PDMT, CP, and DMNA. The quantitative comparison indicates that SCE are induced at 1/10–1/100 of the concentrations which are required for the detection of micronuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号