首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harvested by coastal populations for centuries, seaweeds have played an important role in the economy of a number of countries. In Brazil, they occur along the coastline, but are more diversified and abundant from the northeast to a portion of the southeast coast. Historically, the seaweed industry in Brazil is based on seaweed harvesting of natural beds. This practice continues to this day in a number of coastal communities in Northeastern Brazil. Since the 1960s, species of the genera Gracilaria and Hypnea have been collected in the intertidal zone for extraction of agar and carrageenan. Maximum production was achieved in 1973–1974, a period in which the country exported around 2000 t annually (dry weight) to Japan. Later (1977–1979), there was a sharp drop and annual exports fell to 250 t (dry weight). In 1981, Brazil exported only 150 t of dried seaweed for agar extraction. Between 1990 and 2000, overexploitation, decline in a number of agarophyte populations, poor quality, low price, and lack of a socioeconomic policy led to the almost total disappearance of this industry in Northeastern Brazil. Seaweed harvesting on natural beds is currently in decline, and the population that depended on this resource had to migrate or convert to other economic activities, such as fishing, aquaculture, and underwater tourism. However, the promising results obtained in pilot projects (Gracilaria and Kappaphycus) show that Brazil has significant potential as a seaweed biomass producer.  相似文献   

2.
The Latin American seaweed industry plays an important role at a global scale as 17 % of all seaweeds and 37 % of red seaweeds for the phycocolloid industry comes from this region. Increased market demand for algal raw materials has stimulated research and development into new cultivation technologies, particularly in those countries with economically important seaweed industries such as Argentina, Brazil, Chile, México, and Peru. The marine area of Latin America includes almost 59,591 km2 of coastline ranging in latitude from 30ºN to 55ºS and encompasses four different oceanic domains: Temperate Northern Pacific, Tropical Eastern Pacific, Temperate South America, and Tropical Atlantic. Commercial cultivation of red seaweed in Latin America has been basically centered in the production of Gracilaria chilensis in Chile. Attempts have been made to establish seaweed commercial cultivation in other countries, going from experimental research-oriented studies to pilot community/enterprise based cultivation trials. Some genera such as Kappaphycus and Eucheuma have been studied in Brazil and Mexico, Gracilaria species in Argentina and Brazil, Gracilariopsis in Peru and Venezuela, and Chondracanthus chamissoi in Peru and Chile. In this short review, we address the Latin America perspective on the status and future progress for the cultivation of red seaweeds and their sustainable commercial development, and discuss on the main common problems. Particular emphasis is given to the needs for comprehensive knowledge necessary for the management and cultivation of some of the most valuable red seaweed resources in Latin America.  相似文献   

3.
Seaweeds are the primary producers of all aquatic ecosystems. Chemical constituents isolated from diverse classes of seaweeds exert a wide range of nutritional, functional and biological activities. Unique metabolites of seaweeds possess specific biological properties that make them potential ingredients of many industrial applications such as functional foods, pharmaceuticals and cosmeceuticals. Cosmeceuticals of natural origin are becoming more popular than synthetic cosmetics. Hence, the investigation of new seaweeds derived functional components, a different source of natural products, has proven to be a promising area of cosmeceutical studies. Brown seaweeds also produce a range of active components including unique secondary metabolites such as phlorotannins and many of which have specific biological activities that give possibilities for their economic utilization. Brown seaweeds derived active compounds have been shown various functional properties including, antioxidant, antiwrinkling, whitening, antiinflammatory and antiallergy. It is well-known that these kind of biological effects are closely associated with cosmeceutical preparations. This communication reviews the current knowledge on brown seaweeds derived metabolites with various biological activities and the potential use as cosmeceutical ingredients. It is hoped that the reviewed literature on multifunctional properties of brown seaweeds will improve access to the seaweed based natural products specially the ability to incorporate these functional properties in cosmeceutical applications.  相似文献   

4.
Macroalgae represent 26 % of the global production of cultivated organisms, with Gracilaria spp. representing 12 % of that production; Eucheuma spp. and Kappaphycus alvarezii account for 34 % of world’s algae production. Despite the potential for cultivating seaweed in Brazil, and with its more than 8000 km of coastline, there is neither marine algaculture nor detailed knowledge even among aquaculture farmers concerning the utility of algae in agriculture, industry, and gastronomy, with the result that algaculture represents only the smallest fraction of national aquaculture production. The main cultivated species of seaweed sold in Brazil include the exotic K. alvarezii and native species of Gracilaria that are grown on small scales and do not meet national industrial demands, which must be supplemented by imports. We discuss Brazilian algaculture here, pointing out some of the problems that restrict commercial production of algae in that country and offer solutions that could be shared with other nations.  相似文献   

5.
The production of reactive nitrogen worldwide has more than doubled in the last century because of human activities and population growth. Advances in our understanding of the nitrogen cycle and the impacts of anthropogenic activities on regional to global scales is largely hindered by the paucity of information about nitrogen inputs from human activities in fast-developing regions of the world such as the tropics. In this paper, we estimate nitrogen inputs and outputs in Brazil, which is the world’s largest tropical country. We determined that the N cycle is increasingly controlled by human activities rather than natural processes. Nitrogen inputs to Brazil from human activities practically doubled from 1995 to 2002, mostly because of nitrogen production through biological fixation in agricultural systems. This is in contrast to industrialized countries of the temperate zone, where fertilizer application and atmospheric deposition are the main sources of anthropogenic nitrogen. In Brazil, the production of soybean crops over an area of less than 20 million ha, was responsible for about 3.2 Tg N or close to one-third of the N inputs from anthropogenic sources in 2002. Moreover, cattle pastures account for almost 70% of the estimated 280×106 ha of agricultural land in Brazil and potentially fix significant amounts of N when well managed, further increasing the importance of biological nitrogen fixation in the nitrogen budget. Much of these anthropogenic inputs occur in the Brazilian savannah region (Cerrado), while more urbanized regions such as the state of São Paulo also have high rates of nitrogenous fertilizer inputs. In the Amazon, rates of anthropogenic nitrogen inputs are relatively low, but continuing conversion of natural forests into cattle pasture or secondary forests potentially add a significant amount of new nitrogen to Brazil given the vast area of the region. Better measurements of biological fixation rates in Brazil are necessary for improving the nitrogen budgets, especially at a more refined spatial scale.  相似文献   

6.
This study explores the possibility of producing ethanol using the acid hydrolysate of three abundant agar-containing red seaweeds (agarophytes): Gelidium amansii, Gracilaria tenuistipitata, and Gracilariopsis chorda. The main component in the seaweed samples was agar, which ranged from 20 to 51 % (g g?1 dry weight). After optimizing acid hydrolysis, 100 g of seaweed was hydrolyzed at 130 °C for 15 min with 0.2 M H2SO4. Then, 120 mL of a 1:2 mixture of the hydrolysate broth and basal medium was fermented in a 200-mL bottle at 30 °C for 96 h. Of the three seaweeds, G. amansii had the best ethanol yield, producing 0.23 g g?1 of galactose or 45 % of the theoretical yield. This yield increased to 60 % after detoxification of the hydrolysate with activated carbon.  相似文献   

7.
The nutritional properties of seaweeds are incompletely known, and studies on nutrient bioavailability are scarce, although such information is required to evaluate seaweed as a foodstuff. In the present study, samples of wakame (Undaria pinnatifida) and nori (Porphyra purpurea) were analysed to determine their chemical composition. To evaluate the algae as dietary supplements, the effects on rats of the inclusion of these seaweeds in a standard rodent diet were investigated. The control rats were fed a diet containing 100 % standard rodent diet. The wakame diet was obtained by mixing 10 % dried wakame with 90 % standard rodent diet, and the nori diet was obtained by mixing 10 % dried nori with 80 % standard rodent diet and 10 % starch. Food intake and the body weight were measured. Nitrogen ingested and excreted were determined to calculate true digestibility, biological value, net protein utilization and nitrogen balance. Biochemical determinations were made on serum blood samples. The protein content was high (16.8 % for wakame and 33.2 % for nori), the fat content was low (1 % for wakame and 2.8 % for nori) and the carbohydrates comprised 37 % for both seaweeds. The fibre and ash contents in wakame were 16.9 and 28.3 %, respectively, and in nori, they were 7.5 and 21.3 %, respectively. Both seaweeds contain high concentrations of calcium, sodium, potassium, iron and magnesium, and the most abundant vitamin was vitamin A. Few changes were observed in the nutritional parameters, but LDL cholesterol levels were significantly lower in rats fed with seaweed-supplemented diets than in the control rats. Wakame and nori are excellent sources of nutrients and are well accepted by experimental animals.  相似文献   

8.
In this study the contents of nucleosides, nucleobases and free amino acids (FAAs) in common brown seaweeds Saccharina japonica, Sargassum pallidum, S. fusiforme, S. thunbergii and S. muticum from major production areas in China were determined by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQ-MS). The total contents of nucleosides and nucleobases varied from 48.46 to 4,105.00 μg g?1. Among the five seaweeds, levels of nucleosides and nucleobases in S. japonica were higher than the other species. The contents of ribonucleosides in these brown seaweeds were higher than those of deoxynucleosides. Uridine was the predominant constituent in all samples while 2′-deoxycytidine was the least in most samples. FAAs contents ranged from 0.14 to 22.76 mg g?1. Among the five seaweeds, levels of FAAs in S. muticum were higher than the other species. Essential amino acids accounted for 3.26–51.49 % of total FAAs contents in different species. Glutamic acid was the major constituent in most samples. Four non-protein amino acids, γ-aminobutyric acid, taurine, hydroxyproline and citrulline, were found in the seaweed samples. Furthermore, principal component analysis (PCA) showed that chemical profiles of nucleosides, nucleobases and FAAs in S. pallidum and S. fusiforme were different from S. muticum, S. thunbergii and S. japonica. Common brown seaweeds could be promising natural sources for future industrial research into nucleosides, nucleobases and FAAs with potential benefits for human health.  相似文献   

9.
Seaweed cultivation is imperative to augment increasing industrial demand. Ulva fasciata Delile is a potential seaweed for cultivation with applications in food industries. There is a renewed interest in large-scale aquaculture of this species in India due to its envisaged demand in snack food products. In the present study, we have successfully demonstrated the possibility of inducing zoospores in vegetative tissue, effective regeneration and improved growth in this seaweed by manipulating salinity (from 15 to 30 psu) and temperature (from 15 to 35°C). The optimum salinity and temperature requirement for zoospores induction were found to be 15 psu and 25°C, respectively. The quadriflagellate zoospores showed negative phototaxis and the settlement and germination pattern similar to several other green seaweeds. The optimum regeneration (78.53?±?10.05%) was recorded at 25°C and 30 psu salinity. The maximum daily growth rate (16.1?±?0.28%) was at 25°C and 30 psu salinity which corresponded to the field conditions. This method could be further refined at nursery culture to achieve artificial seeding essential for the success of commercial cultivation of this seaweed.  相似文献   

10.
Aquaculture and maritime traffic have been identified as the main vectors for introductions of alien marine species. Except for one notorious case of Caulerpa taxifolia, the role of aquarium trade towards the introduction of alien seaweeds has been largely unassessed. Here, we address the risk of accidental release of seaweed species from the aquarium trade market in European waters. We assessed the importance and diversity of seaweed species in the European online aquarium retail circuit. Our web survey revealed more than 30 genera available for online sale into Europe, including known introduced and invasive species. A second aspect of the study consisted in sampling algal diversity found in aquaria. While allowing direct and accurate identification of the specimens, this approach was targeting not only ornamental species, but also seaweeds that may be accidentally present in the aquarium circuit. By DNA-barcoding we identified no less than 134 taxa, 7 of which are flagged as introduced in Europe and 5 reported as invasive. Climate envelope models show that at least 23 aquarium species have the potential to thrive in European waters. As expected by the tropical conditions in most aquaria, southern Atlantic regions of Europe and the Mediterranean are the most vulnerable towards new introductions. Further predictions show that this risk will increase and shift northwards as global warming proceeds. Overall our data indicate that aquarium trade poses a potential risk of new seaweed introductions, and calls for a cautious approach.  相似文献   

11.
Seaweeds, particularly species of red macroalgae, are promising resources for bioethanol production because of their exceptionally high carbohydrate content. Of 20 seaweeds evaluated, Palmaria palmata (Rhodymenia palmata) contained the highest carbohydrate content (469.8 mg g?1 seaweed) with a carrageenan content of 354 mg g?1 seaweed. Such a high carrageenan content makes the high-volume production of bioethanol feasible. Acid hydrolysis of P. palmata in 0.4 M H2SO4 at 125 °C for 25 min released 27 mg of glucose, 218.4 mg of reducing sugars, and 127.6 mg of galactose per gram of seaweed. Ethanol fermentation of these hydrolysis products using an inoculum concentration of 1.5 mg mL?1 at 30 °C and 72 h in a shaking incubator at 130 rpm yielded 17.3 mg of ethanol per gram of seaweed.  相似文献   

12.
The ability of extracts and fractions of the red seaweed Plocamium brasiliense to inhibit hemorrhagic, edematogenic, hemolytic, clotting and proteolytic activities of Lachesis muta snake venom was analyzed. In Brazil, snakebites by L. muta are low (2 %) when compared to Bothrops genus (90 %); however, their lethality indexes are three times higher than Bothrops. Envenomation by L. muta venom results in hemorrhage, pain, necrosis, hemolysis, myotoxicity, and death. Since antivenom does not efficiently neutralize local effects, a large number of researchers have attempted to identify molecule(s) from natural sources to inhibit such activities to use them as an alternative treatment for snakebite. We tested four extracts of seaweed P. brasiliense obtained with solvents of increasing polarities: n-hexane (HEX), dichloromethane (DCM), ethyl acetate (ACE), and hydroalcohol (HYD). Extracts of alga or fractions were incubated with L. muta venom, and then, biological assays were performed. The extracts, except the HYD, inhibited all the assays but with different potencies. The DCM extract fully inhibited all activities. Moreover, DCM and HEX extracts inhibited hemolysis induced by a phospholipase A2 isolated from L. muta venom (LM-PLA2-I). A fraction from HEX enriched in cholesterol isolated from HEX extract inhibited proteolysis by L. muta venom and hemolysis by LM-PLA2-I; in contrast, monoterpenes isolated from DCM extract did not inhibit both activities. Seaweeds may be a promising source of natural inhibitors of the toxic effects caused by snakebite by L. muta venom, and they may be used to develop new strategies for antivenom treatment.  相似文献   

13.
Tanzania, like many other countries where eucheumatoid seaweeds are farmed, is experiencing die-off of Kappaphycus alvarezii. Farming is failing in many cultivation sites in shallow intertidal areas where it used to grow well. Production has fallen dramatically, and in some areas, hardly any seaweed is produced any longer. This study was carried out in Songo Songo Island, southern Tanzania, one of the most affected areas, during February–May 2009. Water temperature averaged 35.7?±?2.4 °C, higher than what had been observed in seaweed farms in other areas in Tanzania. Salinity was normal seawater at 34.7?±?0.5 ppt. In the abandoned farming sites, signs of ice-ice, epiphytic Neosiphonia and “dark spots” were observed on the seaweed. Fouling was also observed. Seaweed production decreased from 423.9 t worth US$82,000 in 2003 to 26 t in 2008 worth only US$4,500, and 28 t in 2012 worth US$4,300. Number of farmers was highest (809) during the production peak in 2003 then decreased to 320 in 2008. The number of fishing vessels decreased with an increase in number of farmers and seaweed production and increased when the number of farmers and seaweed production fell. Thus, high-surface water temperatures coupled with fouling, epiphytism, and ice-ice disease signs have caused dramatic decrease in seaweed production in Songo Songo. The onetime lucrative seaweed farming activity in Songo Songo Island of Tanzania has been reduced to almost standstill.  相似文献   

14.
The seaweed genus Gracilaria is a potential candidate for the production of bioethanol due to its high carbohydrate content. Gracilaria is abundant throughout the world and can be found in both wild and cultivated forms. Differences in the ecological factors such as temperature, salinity, and light intensity affecting wild and cultivated specimens may influence the biochemical content of seaweeds, including the carbohydrate content. This study aimed to investigate the proximate composition and potential bioethanol production of wild and cultivated G. gigas and G. verrucosa. Bioethanol was produced using separate hydrolysis fermentation (SHF), employing a combination of enzymatic and acid hydrolysis, followed by fermentation with Saccharomyces cerevisiae ATCC 200062. The highest carbohydrate content was found in wild G. gigas. The highest galactose and glucose contents (20.21 ± 0.32 and 9.70 ± 0.49 g L?1, respectively), as well as the highest production of bioethanol (3.56 ± 0.02 g L?1), were also found in wild G. gigas. Thus, we conclude that wild G. gigas is the most promising candidate for bioethanol production. Further research is needed to optimize bioethanol production from wild G. gigas. Domestication of wild G. gigas is a promising challenge for aquaculture to avoid overexploitation of this wild seaweed resource.  相似文献   

15.
Many types of macroalgae contain a wide range of bioactive compounds that have antioxidant potential. However, in contrast to terrestrial plants, only a few studies have reported the antioxidant activity of seaweeds. Therefore, extracts from 26 marine macroalgae species from the south and southeast coasts of Brazil were evaluated for their antioxidant activity, using the 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) method and β-carotene/linoleic acid assay, and their total phenolic contents, through Folin–Ciocalteu method. Padina gymnospora, Sargassum vulgare, and Osmundaria obtusiloba presented the highest values of total phenolic content. Using β-carotene bleaching assay, Colpomenia sinuosa, Dictyota sp., Dichotomaria marginata, Ganonema farinosum, and Spyridia clavata presented up to 65 % of antioxidant activity. Some of the extracts showed more than 60 % of inhibition of DPPH in the lowest concentration (0.01 mg/mL), including Amansia sp., Bostrychia tenella, Cryptonemia seminervis, Hypnea musciformis, Plocamium brasiliense (1), and S. clavata. Both Amansia sp., and C. seminervis presented the most relevant antioxidant potential, with percentage of inhibition greater than 70 % in the three tested concentrations. These two species were then analyzed by nuclear magnetic resonance spectroscopy (NMR) and were selected for guided fractionation bioassay. They both presented lipid compounds, fatty acids, esters of fatty acids, triglycerides, and sterols as major components. The fractionation of extracts revealed that the organic fractions were responsible for the antioxidant activity. The results obtained through this work indicate that the analyzed seaweeds are a promising source of compounds with high antioxidant potential.  相似文献   

16.
The farming of shrimp is developing quickly worldwide, and recently, ingredients such as seaweeds in low proportion (25 to 4 %), incorporated into the commercial food, have been shown to improve the shrimp productive variables. The change of commercial foods to commercial feed with a proportion of natural food, and finally, to natural food has been little and simultaneously evaluated. The aim of our study was to determine the relative contribution of dietary carbon to the growth of Litopenaeus vannamei fed with a proportion of 4 % Sargassum13C = ?20.9?±?0.05?‰), 4 % Ulva13C = ?20.6?±?0.6?‰) meal, and a control diet (δ13C?=??22.6?±?0.2?‰) in 60-L tanks for 30 days, and finally, with the green seaweed Ulva spp. (δ13C = ?13.2?±?0.25?‰) and Ulva meal (δ13C = ?14.5?±?0.6?‰) in open-air ponds for 120 days, by measuring δ13C for each of the foods and in the muscle of shrimp. After 15 days, the rates of metabolic turnover (Δ13C = δ13Cshrimp ? δ13Cfood) were constant until the end of the experiment in the tanks. The muscle of shrimp assimilated carbon from all diets, which demonstrated the potential use of combined diets and the optimization of their use in diets containing seaweed. Our data will be useful in future interpretations of field and laboratory isotopic values for this species.  相似文献   

17.
New Zealand has a rich and diverse macroalgal flora that has been studied since James Cook's first voyage to New Zealand in 1769. The New Zealand region ranges from cool temperate seas at southerly latitudes to subtropical waters in the north. Here we review the history of phycological research in New Zealand since 1900, and the current status of research in taxonomy, ecology, physiology and seaweed uses including aqua‐culture and seaweed extracts. Some 770 species of seaweed are known to New Zealand, of which 22 are alien. Few taxa have received monographic treatment and many remain to be described. Polysaccharides have been identified from over 80 New Zealand seaweeds and many of these compounds have commercial potential. In addition to urgent taxonomic work, future research should include a national program of long‐term (> 5 years) monitoring of macroalgal communities, rates of growth and primary production, and the contribution of seaweed‐based production to coastal food webs.  相似文献   

18.
The South African abalone aquaculture industry is expanding and there is a lack of information on the nutritional profiles of the seaweeds that are used as feed. The current study quantified the protein contents of Ulva rigida and Ulva capensis from natural populations and Ulva lactuca from a commercial, integrated seaweed/abalone aquaculture system. Three methods of protein quantification were used: the Bradford method, crude protein, and specific nitrogen to protein (N-Prot) conversion factors, and results were compared to each other. The results showed that values obtained with the “traditional” conversion factor of 6.25 were on average higher than Bradford values by factors of 64.1 % in U. capensis, 77.1 % in U. rigida and 58.9 % in U. lactuca. This pattern is in line with other published work on seaweed and microalgae. Analyses of amino acid composition showed that aspartic acid was the most abundant amino acid and that these species were also rich in glycine and alanine but poor in histidine, methionine and cysteine. N-Prot factors were as follows: U. capensis, 5.58; U. rigida, 5.12 and U. lactuca, 5.65. An average N-Prot factor of 5.45 provides a more accurate estimate of the protein content of the Ulva species studied than the “traditional” factor of N?×?6.25.  相似文献   

19.
ABSTRACT

The use of seaweeds has a long history, as does the cultivation of a select and relatively small group of species. This review presents several aspects of seaweed production, such as an update on the volumes of seaweeds produced globally by both extraction from natural beds and cultivation. We discuss uses, production trends and economic analysis. We also focus on what is viewed as the huge potential for growing industrial-scale volumes of seaweeds to provide sufficient, sustainable biomass to be processed into a multitude of products to benefit humankind. The biorefinery approach is proposed as a sustainable strategy to achieve this goal. There are many different technologies available to produce seaweed, but optimization and more efficient developments are still required. We conclude that there are some fundamental and very significant hurdles yet to overcome in order to achieve the potential contributions that seaweed cultivation may provide the world. There are critical aspects, such as improving the value of seaweed biomass, along with a proper consideration of the ecosystem services that seaweed farming can provide, e.g. a reduction in coastal nutrient loads. Additional considerations are environmental risks associated with climate change, pathogens, epibionts and grazers, as well as the preservation of the genetic diversity of cultivated seaweeds. Importantly, we provide an outline for future needs in the anticipation that phycologists around the world will rise to the challenge, such that the potential to be derived from seaweed biomass becomes a reality.  相似文献   

20.
The use of different seaweeds such as Sargassum sp., Turbinaria conoides, and Ulva sp. in removing mercury(II) from aqueous solutions were investigated. The initial experimental runs, conducted at different equilibrium pH conditions, demonstrated that brown seaweeds outperformed green seaweed in Hg(II) biosorption at all pH conditions. In particular, at pH 5, maximum biosorption capacities of 170.3 and 145.8 mg/g were recorded for the brown seaweeds T. conoides and Sargassum sp., respectively, compared with 138.4 mg/g for the green seaweed Ulva sp. Isotherm data were modeled and interpreted using the Langmuir, Freundlich, Redlich-Peterson, and Toth models, with the latter described the Hg(II) isotherms with high correlation coefficients and low % error values. The kinetic data indicate the rapidity of the biosorption process, with the equilibrium achieved within 90 min. Several models, including the Elovich, pseudo-first-order, and pseudo-second-order models, were examined for their suitability with the present data; the correlation coefficient and % error values, along with better prediction of equilibrium uptake values, favored the pseudo-first-order model. The desorption experiments were highly successful for T. conoides biomass with 0.05 M HCl, whereas for the other two seaweeds, 0.05 M HCl resulted in high biomass weight loss. Reusing T. conoides biomass in three successive sorption-desorption cycles resulted in only 8.8% reduction in Hg(II) biosorption capacity compared with its original uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号