首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To investigate the release and degradation of arsenoribosides associated with the brown alga Ecklonia radiata, tissues were collected in various marine micro-habitats (water column, sand intertidal, and rock platform intertidal) to establish the importance of decomposition stage and the micro-habitat in which decomposition occurs on arsenoriboside degradation. Total arsenic concentrations in E. radiata tissues varied in a similar pattern across all three sampling locations (Lake Tabourie, Burrill Lake, and Ulladulla Harbour) with concentrations in live tissues (53–124 μg As g?1 (dry mass)) greater than concentrations in tissues decomposing in the water column (28–90 μg As g?1 (dry mass)), which were in turn higher than concentrations in tissues decomposing in intertidal environments (16–21 μg As g?1 (dry mass)). Arsenoribosides, specifically sulfonate (SO3-), phosphate (PO4-), and glycerol (Gly-) accounted for all of the arsenic extracted from live E. radiata tissues. Arsenoribosides also accounted for 100 % of the extractable arsenic species in E. radiata tissues decomposing in the water column. The proportions of arsenic species in decomposing E. radiata tissue from intertidal environments varied with sampling location and therefore micro-habitat. In rock platform-based intertidal zones (Burrill Lake and Ulladulla harbour), considerable concentrations of unextractable arsenic (10–60 %) were present plus known arsenoriboside degradation products such as dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA), and arsenate (As(V)). In sand/beach-based intertidal zones, however, the vast majority of arsenic (≈95 %) was unextractable with only small concentrations of arsenoribosides and As(V) present. This study demonstrates that the release and further degradation of arsenoribosides from E. radiata tissues occurs in a two-step process with arsenoribosides released via leaching, whilst E. radiata remains suspended within the water column. Arsenoribosides are then degraded to various intermediate arsenic species once E. radiata tissues settle on intertidal environments; however, the degree of degradation varies relative to whether decomposition occurs on rock platform or sand-based environments. These results illustrate the key role of marine micro-habitats in the degradation of arsenoribosides contained within marine macro-algae.  相似文献   

2.
Chlorella vulgaris (a freshwater microalga) and Dunaliella tertiolecta (a marine microalga) were grown for bulk harvest, and their biomass was tested as feedstock for electricity production in cubic two-chamber microbial fuel cells (MFCs) at 37°C. The anode inoculum was anaerobic consortium from a municipal sewage sludge digester, enriched separately for the two microalgal biomass feedstocks. After repeated subculturing of the two anaerobic enrichments, the maximum power density obtained in MFCs was higher from C. vulgaris (15.0 vs. 5.3 mW m?2) while power generation was more sustained from D. tertiolecta (13 vs. 9.8 J g-1 volatile solids). Anolytes of algal biomass-fed MFCs also contained substantial levels of butanol (8.7–16 mM with C. vulgaris and 2.5–7.0 mM with D. tertiolecta), which represents an additional form of utilizable energy. Carryover of salts from the marine D. tertiolecta biomass slurry resulted in gradual precipitation of Ca and Mg phosphates on the cathode side of the MFC. Polymerase chain reaction-denaturing gradient gel electrophoresis profiling and sequencing of bacterial communities demonstrated the presence of Wolinella succinogenes and Bacteroides and Synergistes spp. as well as numerous unknown bacteria in both enrichments. The D. tertiolecta enriched consortium contained also Geovibrio thiophilus and Desulfovibrio spp. Thus, the results indicate potential for combining fermentation and anaerobic respiration for bioenergy production from photosynthetic biomass.  相似文献   

3.
Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L?1 day?1. The results showed that 0.74 g L?1 of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L?1 was achieved. This represented an increase of 0.18 g L?1 in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.  相似文献   

4.
Quantitative samples were collected from Lake Atnsjøen five times per year in the growth seasons 1990–2000. The samples were analysed for variation in the phytoplankton composition, and the total volume and volume of the main groups of algae were calculated. Lake Atnsjøen is a large, deep and unregulated lake with a surface area of 4.8 km2 and a maximum depth of 80.2 m. It is a nutrient-poor, oligotrophic lake with a maximum phytoplankton volume varying between 125–393 mm3/m3 in the years 1990–2000. The phytoplankton community is dominated by species of the groups Chrysophyceae and Cryptophyceae. The chrysophytes dominate the phytoplankton in the early part of the growth season (May–June) while the cryptophytes increase throughout the season and dominate in the autumn. Among the chrysophytes different species of chrysomonads were most frequent together with common species of the genus Dinobryon like D. borgei, D. cylindricum var. alpinum and D. crenulatum. A total of 22 species or taxa of chrysophytes were recorded in the samples. Common among the cryptomonads were several species of the genus Cryptomonas. Most important quantitatively, however, were Rhodomonas lacustris and Katablepharis ovalis. The succesion of the phytoplankton throughout the growth season was similar from year to year in quantitative as well as qualitative terms, but some changes were recorded after the great flood in 1995. Canonical Correspondence Analysis (CCA) shows a slight, but significant, phytoplankton community change over the succeeding years.  相似文献   

5.
Coagulation is an important step in the harvesting of algal biomass. This paper presents experimental results for a variety of prospective marine microalgal species using several inorganic and organic coagulants. Tetraselmis suecica and Chlorococcum sp. are readily coagulated using alum or iron(III) sulphate without any pH adjustment; doses of 3–5 mg L?1 or 0.2 mmol m?2 of Al3+ or Fe3+ yielding cell recoveries above 90 % after only 5-min settling. Nannochloropsis salina, Dunaliella tertiolecta and Isochrysis galbana are harder to coagulate and require at least two times more coagulant to achieve similar recoveries. Several cationic polyacrylamides were investigated but were less effective than Al3+ or Fe3+. Addition of NaOH to control pH improved the coagulation efficiency of N. salina but not of D. tertiolecta. The high coagulant demand of N. salina is due in part to its small size and large surface area, while that of D. tertiolecta may be attributable to its high production of extracellular polymer. The implications of cell surface properties for coagulation efficiency are discussed. At the coagulant doses used herein, settled cells remain viable. Resuspension is a potential problem with some species, arising either from cell motility or from flotation of flocs by oxygen bubbles generated by photosynthesis. These effects can be eliminated by small additions of chlorine or by settling the algae in the dark.  相似文献   

6.
The effect of arsenic on leaf photosynthetic rate, growth responses, and accumulation capability of Isatis cappadocica Desv., a Brassica collected from Iranian arsenic-contaminated mine spoils and control populations, was investigated. Both populations of I. cappadocica were considerably more tolerant than the reference Brassica species (Descurainia sophia). The 1,000 μM arsenate exposure inhibited root growth completely in D. sophia, but only by 50 and 40 % in the nonmine and mine populations of I. cappadocica, respectively. Furthermore, the chlorophyll contents of both populations of I. cappadocica were not statistically different, especially when plants were exposed to 5–800 μM As. The chlorophyll a fluorescence kinetics (F v/F m) and electron transfer rate values of treated I. cappadocica populations remained unaffected, indicating normal photosynthetic efficiency and strength of plants in the presence of arsenic. After 28 days of exposure to 1,300 μM As, shoot arsenic concentrations of mine and nonmine populations reached 310 and 345 mg kg?1, respectively, with the arsenic transfer factor and bioaccumulation greater than 1.0. According to these results, it was shown that I. cappadocica had strong tolerance to and the capability to hyperaccumulate arsenic; therefore, it is a potential As hyperaccumulator.  相似文献   

7.
We compared nitrate concentrations, phytoplankton biomass, and phytoplankton community structure in lakes fed by glacier melt and snowmelt (GSF lakes) and by snowmelt only (SF lakes) within North Cascades National Park (NOCA) in Washington State, USA. In the U.S. Rocky Mountains, glacier melting has greatly increased nitrate concentrations in GSF lakes (52–236 µg NO3–N L?1) relative to SF lakes (1–14 µg NO3–N L?1) and thereby stimulated phytoplankton changes in GSF lakes. Considering NOCA contains approximately one-third of the glaciers in the continental U.S., and many mountain lakes that receive glacier meltwater inputs, we hypothesized that NOCA GSF lakes would have greater nitrate concentrations, greater phytoplankton biomass, and greater abundance of nitrogen-sensitive diatom species than NOCA SF lakes. However, at NOCA nitrate concentrations were much lower and differences between lake types were small compared to the Rockies. At NOCA, nitrate concentrations averaged 13 and 5 µg NO3–N L?1 in GSF and SF lakes, respectively, and a nitrate difference was not detectable in several individual years. There also was no difference in phytoplankton biomass or abundance of nitrogen-sensitive diatoms between lake types at NOCA. In contrast to the Rockies, there also was not a significant positive relationship between watershed percent glacier area and lake nitrate at NOCA. Results demonstrate that biogeochemical responses to global change in Western U.S. mountain lake watersheds may vary regionally. Regional differences may be affected by differing nitrogen deposition, climate, geology, or microbial processes within glacier environments, and merit further investigation.  相似文献   

8.
Factors which influence the attachment of bacterioplankton to particles (including phytoplankton) were investigated by using (i) water samples removed from a coastal temperate fjord over an annual cycle and (ii) unialgal cultures of Prorocentrum minimum, Dunaliella tertiolecta, and Skeletonema costatum. Silt and salinity levels in this fjord seawater did not appear to influence bacterial attachment, but the percent attached bacteria was inversely related to both chlorophyll a concentrations and primary productivities. During periods of high primary productivities the percent attached bacteria was low, whereas during periods of low, increasing, and declining primary productivities the percent attached bacteria was high. A similar pattern of bacterial attachment was observed when the three phytoplankton were grown as batch cultures. The percent attached bacterial numbers increased upon the initiation of algal growth and after these cells stopped growing, but not while the algae were growing. We suggest that a major factor influencing the attachment of bacterioplankton is the physiological condition of their major nutrient source, the phytoplankton; mainly free-living bacteria are associated with growing phytoplankton, whereas a much greater proportion of the bacteria are attached among senescent phytoplankton populations.  相似文献   

9.
Understanding the dynamics of upwelling systems, especially the interactions between nutrients and light, has benefited from the application of models of varying complexity. Validation of such models using unialgal cultures or field observations has often proven difficult, but short-term incubations of contained natural assemblages and use of instantaneous physiological indicators offer an alternative approach. In May and June 1996, phytoplankton communities deep in the euphotic zone were sampled from nearly identical physical environments. Replicate samples (20 l volume) were incubated on deck at 50% surface irradiance with either no nutrient additions (Controls) or additions of 20 μM nitrate (Enrichments). Over 24 h, variable fluorescence (F v:F m), nitrate reductase activity (NR), nutrients, chlorophyll a and particulate C and N were monitored. Initial chlorophyll a (~3 μg l?1), phosphate (~0.2 μM), nitrate (~1.5 μM) and silicate (~3 μM) were similar in both months. Changes in NR and F v:F m indicated clear physiological responses to changes in irradiance and added nitrate that differed between months. In May, Controls and Enrichments responded in the same way. F v:F m stayed constant (0.5), chlorophyll a increased slightly, and NR activity increased markedly in all samples. In contrast, in June, treatments responded quite differently. F v:F m was near the theoretical maximum (0.7–0.8) initially and remained constant in Enrichments, but fell sharply in Controls. Declines in controls were also seen for chlorophyll a, and NR activity. Thus, the addition of 20 μM nitrate had a significant effect even though ambient levels of nitrate (>1 μM) should not have been limiting. Small (<20 μm) flagellates predominated in the May samples, but in June large and chain-forming centric diatoms constituted a significant proportion of the phytoplankton community. We conclude that the response of a phytoplankton community to environmental changes can depend on factors that are poorly represented by bulk measurements of chlorophyll, nutrients and particulate elements.  相似文献   

10.
Phytoplankton population dynamics play an important role in biogeochemical cycles in the Southern Ocean during austral summer. However, the relationship between phytoplankton community composition and primary productivity remains elusive in this region. We investigated the community composition and photosynthetic physiology of surface phytoplankton assemblages in the Australian sector of the Southern Ocean from December 2010 to January 2011. There were significant latitudinal variations in hydrographic and biological parameters along 110°E and 140°E. Surface (5 m) chlorophyll a (chl a) concentrations measured with high-performance liquid chromatography varied between 0.18 and 0.99 mg m?3. The diatom contribution to the surface chl a biomass increased in the south, as estimated with algal chemotaxonomic pigment markers, while the contributions of haptophytes and chlorophytes decreased. In our photosynthesis–irradiance (PE) curve experiment, the maximum photosynthetic rate normalized to chl a ( \(P_{ \hbox{max} }^{*}\) ), initial slope (α *), the maximum quantum yield of carbon fixation (Φ c max), and the photoinhibition index (β *) were higher in the region where diatoms contributed >50 % to the chl a biomass. In addition, there were statistically significant correlations between the diatom contribution to the chl a biomass and the PE parameters. These results suggested that the changes in the phytoplankton community composition, primarily in diatoms, could strongly affect photosynthetic physiology in the Australian sector of the Southern Ocean.  相似文献   

11.
Microbial populations are involved in the arsenic biogeochemical cycle in catalyzing arsenic transformations and playing indirect roles. To investigate which ecotypes among the diverse microbial communities could have a role in cycling arsenic in salt lakes in Northern Chile and to obtain clues to facilitate their isolation in pure culture, sediment samples from Salar de Ascotán and Salar de Atacama were cultured in diluted LB medium amended with NaCl and arsenic, at different incubation conditions. The samples and the cultures were analyzed by nucleic acid extraction, fingerprinting analysis, and sequencing. Microbial reduction of As was evidenced in all the enrichments carried out in anaerobiosis. The results revealed that the incubation factors were more important for determining the microbial community structure than arsenic species and concentrations. The predominant microorganisms in enrichments from both sediments belonged to the Firmicutes and Proteobacteria phyla, but most of the bacterial ecotypes were confined to only one system. The occurrence of an active arsenic biogeochemical cycle was suggested in the system with the highest arsenic content that included populations compatible with microorganisms able to transform arsenic for energy conservation, accumulate arsenic, produce H2, H2S and acetic acid (potential sources of electrons for arsenic reduction) and tolerate high arsenic levels.  相似文献   

12.
13.
Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.  相似文献   

14.
Forest biogeochemical cycles are shaped by effects of dominant tree species on soils, but the underlying mechanisms are not well understood. We investigated effects of temperate tree species on interactions among carbon (C), nitrogen (N), and acidity in mineral soils from an experiment with replicated monocultures of 14 tree species. To identify how trees affected these soil properties, we evaluated correlations among species-level characteristics (e.g. nutrient concentrations in leaf litter, wood, and roots), stand-level properties (e.g. nutrient fluxes through leaf litterfall, nutrient pools in stemwood), and components of soil C, N, and cation cycles. Total extractable acidity (aciditytot) was correlated positively with mineral soil C stocks (R 2  = 0.72, P < 0.001), such that a nearly two-fold increase in aciditytot was associated with a more than two-fold increase of organic C. We attribute this correlation to effects of tree species on soil acidification and subsequent mineral weathering reactions, which make hydrolyzing cations available for stabilization of soil organic matter. The effects of tree species on soil acidity were better understood by measuring multiple components of soil acidity, including pH, the abundance of hydrolyzing cations in soil solutions and on cation exchange sites, and aciditytot. Soil pH and aciditytot were correlated with proton-producing components of the soil N cycle (e.g. nitrification), which were positively correlated with species-level variability in fine root N concentrations. Soluble components of soil acidity, such as aluminum in saturated paste extracts, were more strongly related to plant traits associated with calcium cycling, including leaf and root calcium concentrations. Our results suggest conceptual models of plant impacts on soil biogeochemistry should be revised to account for underappreciated plant traits and biogeochemical processes.  相似文献   

15.
The addition of bicarbonate (NaHCO3; 0, 1, or 2 g L?1) to microalgal cultures has been evaluated for two species (Tetraselmis suecica and Nannochloropsis salina) in respect of growth and biochemical composition. In batch cultures, addition of bicarbonate (1 g L?1) resulted in significantly (P?<?0.05) higher final mean cell abundances for both species. No differences in specific growth rates (SGRs) were recorded for T. suecica between treatments; however, increasing bicarbonate addition decreased SGR values in N. salina cultures. Bicarbonate addition (1 g L?1) significantly improved nitrate utilisation from the external media and photosynthetic efficiency (F v /F m ) in both species. For both T. suecica and N. salina, bicarbonate addition significantly increased the cellular concentrations of total pigments (3,432–3,587 and 19–37 fg cell?1, respectively) compared to cultures with no additional bicarbonate (1,727 and 11 fg cell?1, respectively). Moreover, final concentrations of total cellular fatty acids in T. suecica and N. salina cultures supplemented with 2 g L?1 bicarbonate (7.6?±?1.2 and 1.8?±?0.1 pg cell?1, respectively) were significantly higher than those cells supplemented with 0 or 1 g L?1 bicarbonate (3.2–3.5 and 0.9–1.0 pg cell?1, respectively). In nitrate-deplete cultures, bicarbonate addition caused species-specific differences in the rate of cellular lipid production, rates of change in fatty acid composition and final lipid levels. In summary, the addition of sodium bicarbonate is a viable strategy to increase cellular abundance and concentrations of pigments and lipids in some microalgae as well as the rate of lipid accumulation in nitrate-deplete cultures.  相似文献   

16.
The spatiotemporal distribution of chlorophyll pigments (chloropigments) in the water column of a meromictic lake, Lake Suigetsu (Fukui, Japan), was investigated. Water samples were collected from the central basin of Lake Suigetsu bimonthly between May 2008 and March 2010 at appropriate depths, including the oxic surface, oxic–anoxic interface, and anoxic bottom layers. Chlorophyll a, related to cyanobacteria and eukaryotic phytoplankton, was detected throughout the water column during the years of the study, whereas bacteriochlorophyll e, related to brown-colored green sulfur bacteria, was detected in the anoxic layers below the chemocline at a maximum concentration of 825 μg L?1. The concentration of bacteriochlorophyll e was generally maximal at or just below the chemocline of the lake. The cellular content of bacteriochlorophyll e was estimated to be low in the upper part of the chemocline and tended to increase with increasing water depth. Bacteriochlorophyll a, which was presumably related to purple sulfur bacteria, was only detected at the chemocline during summer and autumn at concentrations of 5.4–16.3 μg L?1. Our analysis of the chloropigment distribution for the two years of the study suggested that brown-colored green sulfur bacteria are the predominant phototroph in the anoxic layers of Lake Suigetsu, and that these play a significant role in the carbon and sulfur cycling of the lake, especially from spring to summer.  相似文献   

17.
While several studies have suggested that bacterium-phytoplankton interactions have the potential to dramatically influence harmful algal bloom dynamics, little is known about how bacteria and phytoplankton communities interact at the species composition level. The objective of the current study was to determine whether there are specific associations between diverse phytoplankton and the bacteria that co-occur with them. We determined the phylogenetic diversity of bacterial assemblages associated with 10 Alexandrium strains and representatives of the major taxonomic groups of phytoplankton in the Gulf of Maine. For this analysis we chose xenic phytoplankton cultures that (i) represented a broad taxonomic range, (ii) represented a broad geographic range for Alexandrium spp. isolates, (iii) grew under similar cultivation conditions, (iv) had a minimal length of time since the original isolation, and (v) had been isolated from a vegetative phytoplankton cell. 16S rRNA gene fragments of most Bacteria were amplified from DNA extracted from cultures and were analyzed by denaturing gradient gel electrophoresis and sequencing. A greater number of bacterial species were shared by different Alexandrium cultures, regardless of the geographic origin, than by Alexandrium species and nontoxic phytoplankton from the Gulf of Maine. In particular, members of the Roseobacter clade showed a higher degree of association with Alexandrium than with other bacterial groups, and many sequences matched sequences reported to be associated with other toxic dinoflagellates. These results provide evidence for specificity in bacterium-phytoplankton associations.  相似文献   

18.
Effects of road salt deicers on sediment biogeochemistry   总被引:1,自引:0,他引:1  
Road salt deicers, especially NaCl and CaCl2, are increasingly applied to paved areas throughout the world. The goal of this study is to investigate the influence of high concentrations of these salts on wetland biogeochemistry. Sediment cores were collected in fall and spring from a freshwater wetland fringing an urban kettle lake (Asylum Lake, Kalamazoo, MI, USA), and incubated for 100 days in deionized water (control) or with treatments of 1 or 5 g/L CaCl2·2H2O or 5 g/L NaCl to simulate addition of road salt deciers. At monthly intervals, cores were sliced into three depths (0–5, 5–10, 10–15 cm) and pore waters extracted for analysis of pH, total alkalinity and dissolved Mn(II), Fe(II), PO 4 ?3 , NH3, H2S, SO4 ?2, Na, K, Mg, and Ca. Changes in solid phase geochemistry were assessed by measuring the percent organic matter and the distribution of Fe and Mn among four operationally defined sediment fractions (exchangeable, carbonate, reducible, oxidizable) in the control and treatment cores. Addition of NaCl, and especially CaCl2, stimulated significant growth of microbial mats at the core sediment–water interface and led to decreased pH and increased concentrations of Mn(II), Fe(II) and exchangeable cations (Ca, Mg, K, Na) in the sediment pore waters. This study demonstrates that the influx of road salt deciers is likely to have a significant impact on biogeochemical cycling in wetland sediments.  相似文献   

19.
Silicon (Si) has various biogeochemical functions, such as regulating soil formation and species composition, not only in terrestrial ecosystems but also in aquatic ones. Bamboo stands accumulate large quantities of amorphous Si. Evaluating Si dynamics in moso bamboo (Phyllostachys pubescens) forests, which are currently spreading through eastern Asia, is important in understanding their biogeochemical function as a supply source of phytoliths. We conducted a study on the organic accumulation and biological cycle of Si in three P. pubescens stands in central Japan with different site characteristics. The amounts of Si accumulation aboveground and underground were 200–360 and 180–460 kg/ha, respectively. These values indicate that Si accumulation underground was comparable to that aboveground. Silicon supply to the forest floor through litterfall was 77–330 kg/ha/year corresponding to 165–706 kg/ha/year as phytoliths (SiO2), and 72–88 % was supplied as leaf litter. These results showed that a huge biogenic Si pool derived from bamboo plants exists in the floor of bamboo forests. Furthermore, we estimated the Si turnover time in P. pubescens forests as being 1.3–12.2 years, although this variation may depend on forestry conditions such as soil water content or stem density.  相似文献   

20.
The dumping of bauxite tailings into Batata Lake, an Amazonian clear-water lake, generated high levels of turbidity and caused a serious decrease in phytoplankton densities, which could possibly be the result of a photosynthetic limitation due to light attenuation together with an increase in algal sinking due to the adhesion of clay particles. This study aimed to investigate the sinking process through the addition of different suspended clay concentrations in columns containing Batata lake water. Since no effect of the suspended clays on Batata Lake phytoplankton sinking was observed, it was then evaluated, under laboratory conditions, whether the low conductivity of the Batata Lake water could interfere with the algae-clay aggregation process. Cultures of two algal species known to be capable to aggregate to Batata Lake suspended clays in algal culture medium: Staurodesmus convergens and Phormidium amoenum, were added to both the low conductivity Batata Lake water (14 μS cm?1) and the high conductivity algal culture media (WC – 300 μS cm?1 and Z8 – 560 μS cm?1) together with Batata lake suspended clays. In both algal culture media and Batata lake water the two species had their sinking accelerated due to clay adhesion. It is thus suggested that the decrease in phytoplankton densities recorded in Batata Lake may not be related to an increase in phytoplankton loss rates due to algal-clay aggregation, but rather are a consequence of decreasing growth rates because of light attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号