首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, experimental findings concerning the kinetics of hematopoietic reconstitution are compared to corresponding clinical data. Although not clearly apparent, the transplantation practice seems to confirm the basic proposals of experimental hematology concerning hematopoietic reconstitution resulting from successive waves of repopulation stemming from different subpopulations of progenitor and stem cells. One of the "first rate" parameters in clinical transplantations in hematology; i.e. the CD34+ positive cell dose, has been discussed with respect to the functional heterogeneity and variability of cell populations endowed by expression of CD34. This parameter is useful only if the relative proportion of stem and progenitor cells in the CD34+ cell population is more or less maintained in a series of patients or donors. This proportion could vary with respect to the source, pathology, treatment, processing procedure, the graft ex vivo treatment and so on. Therefore, a universal dose of CD34+ cells cannot be defined. In addition, to avoid further confusion, the CD34+ cells should not be named "stem cells" or "progenitor cells" since these denominations only concern functionally characterized cell entities.  相似文献   

2.
Acute central nervous system(CNS)injuries such as spinal cord injury,traumatic brain injury,autoimmune encephalomyelitis,and ischemic stroke are associ- ated with significant morbidity,mortality,and health care costs worldwide.Preliminary research has shown potential neuroprotection associated with adult tissue derived stem/progenitor cell based therapies.While initial research indicated that engraftment and transdif- ferentiation into neural cells could explain the observed benefit,the exact mechanism remains controversial.A second hypothesis details localized stem/progenitor cell engraftment with alteration of the loco-regional milieu;however,the limited rate of cell engraftment makes this theory less likely.There is a growing amount of pre-clinical data supporting the idea that,after intravenous injection,stem/progenitor cells interact with immuno- logic cells located in organ systems distant to the CNS,thereby altering the systemic immunologic/inflammatory response.Such distant cell"bioreactors"could modulate the observed post-injury pro-inflammatory environment and lead to neuroprotection.In this review,we discuss the current literature detailing the above mechanisms of action for adult stem/progenitor cell based therapies in the CNS.  相似文献   

3.
Filtration of mouse marrow cell suspensions over columns of glass wool increased the frequency of small and medium-sized lymphocytes (SML) and of erythropoietic progenitor units (EPU) by about the same factor. Identical results were obtained when erythropoiesis was assayed by isotope uptake (59FeCl3 and 125IUdR) or by the spleen-colony techniques. Transfusion of prospective donor mice with erythrocytes virtually eliminated morphologically recognizable erythroid cells from marrow without affecting the frequency of EPU. Injection of prospective donors with cortisol decreased the frequency of SML in marrow but not that of EPU or erythropoietin-sensitive cells. However, glass wool filtration of lymphocyte-poor marrow taken from mice pretreated with cortisol resulted in a similar increase in frequency of residual SML and of EPU. Therefore, it appears that a subpopulation of marrow SML are EPU. Whereas glass wool filtration increased the frequency of erythropoietic progenitor and colony-forming units, the filtration failed to change the frequency of leukopoietic progenitor or colony-forming units (assayed in mice hypertransfused with erythrocytes to suppress erythropoiesis). It follows that separate progenitor cells for erythropoiesis and leukopoiesis are present in bone marrow of adult mice, in addition to pluripotent stem cells.  相似文献   

4.
Ex vivo production of hematopoietic progenitor cells has potential applications for cell therapy to alleviate cytopenias associated with chemotherapy and for gene therapy. In both therapies, progenitor and stem cells are considered crucial factors for therapeutic success. Assays for progenitor cells, however, take 2 weeks to complete, which is similar to the length of a typical culture. Therefore, a real-time estimation of the percentage or number of progenitor cells, based on rapid measurements, would be useful for optimization of feeding and harvest decisions. In this study, metabolic activity assays and flow cytometric analysis were used to estimate the content of progenitor cells. The measured metabolic activities are a collective contribution from all types of cells. Cells in granulomonocytic cultures have been lumped into six cell types and metabolic rates have been modeled as a linear function of cell composition and growth rate and as a nonlinear function of cell density. Data from 24 experiments were utilized to determine the model parameters in a calibration step. These data include flow cytometric analysis of more mature hematopoietic cells, progenitor cell colony assays, total cell content, and metabolite concentrations, and cover a wide range of cell composition, cell density, and growth rate. After calibration, the model is able to deliver good predictions of progenitor cell content for cultures with higher percentages of progenitor cells, as well as the peak progenitor cell content, based only on parameters that can be rapidly measured. With the aid of those predictions a harvest strategy was developed that will allow optimizing the harvest time based on the culture kinetics of each patient or donor inoculum, rather than using retrospective analysis to determine a uniform harvest time.  相似文献   

5.
The induction of inner ear hair cells from stem cells or progenitor cells in the inner ear proceeds through a committed inner ear sensory progenitor cell stage prior to hair cell differentiation. To increase the efficacy of inducing inner ear hair cell differentiation from the stem cells or progenitor cells, it is essential to identify comprehensive markers for the stem cells/progenitor cells from the inner ear, the committed inner ear sensory progenitor cells and the differentiating hair cells to optimize induction conditions. Here, we report that we efficiently isolated and expanded the stem cells or progenitor cells from postnatal mouse cochleae, and induced the generation of inner ear progenitor cells and subsequent differentiation of hair cells. We profiled the gene expression of the stem cells or progenitor cells, the inner ear progenitor cells, and hair cells using aRNA microarray analysis. The pathway and gene ontology (GO) analysis of differentially expressed genes was performed. Analysis of genes exclusively detected in one particular cellular population revealed 30, 38, and 31 genes specific for inner ear stem cells, inner ear progenitor cells, and hair cells, respectively. We further examined the expression of these genes in vivo and determined that Gdf10+Ccdc121, Tmprss9+Orm1, and Chrna9+Espnl are marker genes specific for inner ear stem cells, inner ear progenitor cells, and differentiating hair cells, respectively. The identification of these marker genes will likely help the effort to increase the efficacy of hair cell induction from the stem cells or progenitor cells.  相似文献   

6.
PURPOSE: Treatment with hematopoietic growth factors increases the percentage of hematopoietic progenitor cells in cell cycle. Following withdrawal of certain growth factors, preclinical data suggest that there is a transient fall in the percentage of progenitor cells in cycle below the baseline, thus providing a window to administer chemotherapy with reduced risk of myelotoxicity. PATIENTS AND METHODS: Patients with histologically confirmed, previously untreated neoplasia, were treated with pIXY321 by subcutaneous injection at a dose of 375 microg/m2 twice daily (total dose 750 microg/m2/day) for seven days (days -8 to -2), followed by a two-day rest (days -1 to 0). Patients received ICE (ifosfamide, carboplatin and etoposide) on days 1 to 3. On day 4, pIXY321 was resumed until hematologic recovery. Peripheral blood was collected on days -8, -2, -1, 1, and cell cycle distribution was determined using flow cytometry. RESULTS: Twenty patients were treated in this study and received a total of 54 cycles. Partial responses were observed in three of 13 patients with non-small cell lung cancer (23 percent) and two of five patients with small cell lung cancer (40 percent). Six of 15 patients had an increased number of cells in S+G2/M on day 1 of ICE following seven days of pIXY321 and two days off (days -1 to 0). The average increase was 63 percent (range 6-253). Seven patients had a decreased number of cells in S+G2/M. The average decrease was 55 percent (range 6.3-78). There were no significant differences among the fifteen patients with regards to the observed toxicity of the chemotherapy. DISCUSSION: pIXY321 in this schedule did not consistently decrease the percentage of cycling progenitor cells in the peripheral blood. Future studies should define whether other growth factors and/or schedules can synchronize progenitor cell cycling and protect the marrow compartment from cycle specific chemotherapy.  相似文献   

7.
Human pluripotent stem (hPS) cells are capable of differentiation into derivatives of all three primary embryonic germ layers and can self-renew indefinitely. They therefore offer a potentially scalable source of replacement cells to treat a variety of degenerative diseases. The ability to reprogram adult cells to induced pluripotent stem (iPS) cells has now enabled the possibility of patient-specific hPS cells as a source of cells for disease modeling, drug discovery, and potentially, cell replacement therapies. While reprogramming technology has dramatically increased the availability of normal and diseased hPS cell lines for basic research, a major bottleneck is the critical unmet need for more efficient methods of deriving well-defined cell populations from hPS cells. Phage display is a powerful method for selecting affinity ligands that could be used for identifying and potentially purifying a variety of cell types derived from hPS cells. However, identification of specific progenitor cell-binding peptides using phage display may be hindered by the large cellular heterogeneity present in differentiating hPS cell populations. We therefore tested the hypothesis that peptides selected for their ability to bind a clonal cell line derived from hPS cells would bind early progenitor cell types emerging from differentiating hPS cells. The human embryonic stem (hES) cell-derived embryonic progenitor cell line, W10, was used and cell-targeting peptides were identified. Competition studies demonstrated specificity of peptide binding to the target cell surface. Efficient peptide targeted cell labeling was accomplished using multivalent peptide-quantum dot complexes as detected by fluorescence microscopy and flow cytometry. The cell-binding peptides were selective for differentiated hPS cells, had little or no binding on pluripotent cells, but preferential binding to certain embryonic progenitor cell lines and early endodermal hPS cell derivatives. Taken together these data suggest that selection of phage display libraries against a clonal progenitor stem cell population can be used to identify progenitor stem cell targeting peptides. The peptides may be useful for monitoring hPS cell differentiation and for the development of cell enrichment procedures to improve the efficiency of directed differentiation toward clinically relevant human cell types.  相似文献   

8.
Stochastic branching model for hemopoietic progenitor cell differentiation   总被引:1,自引:0,他引:1  
We present algebraic expressions describing the predictions of a stochastic branching model for differentiation of hemopoietic progenitor cells. The model assumes that there is a fixed probability, p (0 less than or equal to p less than or equal to 1), that commitment to a differentiative event occurs per progenitor cell division for each daughter cell. The model describes properties of in vitro hemopoietic cell differentiation including the population structure at the time the first progenitor cell becomes committed, the number of committed progenitor cells engendered by a single progenitor cell, and the probability of eventual commitment of all daughter cells derived from a single progenitor or stem cell. Application of the model to experimental data obtained from erythroid cultures suggests that the observed data can be explained by the stochastic branching model alone without making the deterministic assumption that there is a differentiative hierarchy in the lineage of the progenitors of erythropoiesis (BFU-E). The qualitative and quantitative aspects of the proposed stochastic model are discussed in conjunction with other analogous stochastic branching models.  相似文献   

9.
During testis development, fetal Leydig cells increase their population from a pool of progenitor cells rather than from proliferation of a differentiated cell population. However, the mechanism that regulates Leydig stem cell self-renewal and differentiation is unknown. Here, we show that blocking Notch signaling, by inhibiting gamma-secretase activity or deleting the downstream target gene Hairy/Enhancer-of-split 1, results in an increase in Leydig cells in the testis. By contrast, constitutively active Notch signaling in gonadal somatic progenitor cells causes a dramatic Leydig cell loss, associated with an increase in undifferentiated mesenchymal cells. These results indicate that active Notch signaling restricts fetal Leydig cell differentiation by promoting a progenitor cell fate. Germ cell loss and abnormal testis cord formation were observed in both gain- and loss-of-function gonads, suggesting that regulation of the Leydig/interstitial cell population is important for male germ cell survival and testis cord formation.  相似文献   

10.
目的:探讨体外培养脐带血单个核细胞定向诱导分化为不同阶段红系祖细胞的动力学变化情况。方法:用0.5%甲基纤维素沉降脐带血红细胞及人淋巴细胞分离液密度梯度离心法得到单个核细胞,在含EPO、SCF、IGF-1等细胞因子的无血清培养体系中诱导其定向分化为红系祖细胞,观察细胞增殖、存活率、细胞集落形成情况,并检测不同阶段细胞红系特异性表面标志CD71和CD235a的表达。结果:随着培养时间的延长,细胞数逐渐增多,14 d细胞可扩增140倍左右,收集诱导后的细胞进行瑞氏吉姆萨染色,可见大量红系祖细胞,诱导后的细胞集落形成能力强,形成的克隆大部分为红系集落。诱导过程中,14 d前CD71、CD235a的表达逐渐增高。按细胞表面标志表达的不同可将诱导的细胞分为4群,分别对应红系祖细胞的不同阶段;随着诱导天数的增加,各时间点细胞对应的早期红系祖细胞群(P2、P3)比例逐渐下降,中晚期红系祖细胞群(P4、P5)的比例逐渐上升。结论:无血清培养基添加细胞因子组合的红系诱导培养体系可较好地诱导扩增红系祖细胞,流式分选可获得相对均一而处于不同分化阶段的红系祖细胞群体。获得了红系祖细胞体外分化的动力学数据,为今后进一步优化红系诱导分化体系获得均一的红系祖细胞奠定了基础,并对未来利用干细胞制备均一的红系祖细胞应用于临床治疗有一定的指导作用。  相似文献   

11.
Tissue engineering (TE) of long tracheal segments is conceptually appealing for patients with inoperable tracheal pathology. In tracheal TE, stem cells isolated from bone marrow or adipose tissue have been employed, but the ideal cell source has yet to be determined. When considering the origin of stem cells, cells isolated from a source embryonically related to the trachea may be more similar. In this study, we investigated the feasibility of isolating progenitor cells from pleura and pericard as an alternative cells source for tracheal tissue engineering. Porcine progenitor cells were isolated from pleura, pericard, trachea and adipose tissue and expanded in culture. Isolated cells were characterized by PCR, RNA sequencing, differentiation assays and cell survival assays and were compared to trachea and adipose-derived progenitor cells. Progenitor-like cells were successfully isolated and expanded from pericard and pleura as indicated by gene expression and functional analyses. Gene expression analysis and RNA sequencing showed a stem cell signature indicating multipotency, albeit that subtle differences between different cell sources were visible. Functional analysis revealed that these cells were able to differentiate towards chondrogenic, osteogenic and adipogenic lineages. Isolation of progenitor cells from pericard and pleura with stem cell features is feasible. Although functional differences with adipose-derived stem cells were limited, based on their gene expression, pericard- and pleura-derived stem cells may represent a superior autologous cell source for cell seeding in tracheal tissue engineering.  相似文献   

12.
On the origin of the term "stem cell"   总被引:2,自引:0,他引:2  
Stem cells have fascinated both biologists and clinicians for over a century. Here, we discuss the origin of the term "stem cell," which can be traced back to the late 19th century. The term stem cell originated in the context of two major embryological questions of that time: the continuity of the germ-plasm and the origin of the hematopoietic system. Theodor Boveri and Valentin H?cker used the term stem cell to describe cells committed to give rise to the germline. In parallel, Artur Pappenheim, Alexander Maximow, Ernst Neumann, and others used it to describe a proposed progenitor of the blood system. The original meanings of the term stem cell, rather than being historical relics, continue to capture important aspects of the biology of stem cells as we see them today.  相似文献   

13.
Chondroitin sulfate/dermatan sulfate (CS/DS) proteoglycans, major components of the central nervous system, have the potential to interact with a wide range of growth factors and neurotrophic factors that influence neuronal migration, axon guidance pathways, and neurite outgrowth. Recent studies have also revealed the role of CS/DS chains in the orchestration of the neural stem/progenitor cell micromilieu. Individual functional proteins recognize a set of multiple overlapping oligosaccharide sequences decorated to give different sulfation patterns, which are termed here "wobble CS/DS oligosaccharide motifs," and induce signaling pathways essential for the proliferation, self-renewal, and cell lineage commitment of neural stem/progenitor cells.  相似文献   

14.
The elaboration of the pancreas from epithelial buds to the intricate organ requires complex patterning information that controls fundamental cellular processes such as differentiation and proliferation of pancreatic progenitor cells. During pancreatic organogenesis, endocrine cells are generated from a population of pancreatic progenitor cells. The progenitor cells during the early development simultaneously receive multiple signals, some mitogenic and some inducing differentiation. These extrinsic signals are interpreted through an intrinsic mechanism that either commits the progenitor cell to the mitotic cell cycle or leads to exit from the cell cycle in order to differentiate. The endocrine cells that differentiate from progenitor cells are postmitotic, and direct lineage tracing analyses indicate that a population of progenitor cells persists throughout embryogenesis to allow the differentiation of new endocrine cells. At the end of embryogenesis an early postnatal period is characterized by high rates of beta cell proliferation leading to massive increases in beta cell mass. The beta cell mass expansion considerably slows down in adult animals, though variations in insulin demand due to physiological and pathological states such as pregnancy and obesity can lead to adaptive changes in the beta cells that include hyperplasia, hypertrophy, and increased insulin synthesis and secretion. Deciphering the mechanisms that regulate the plasticity of beta cell mass can be an important step in developing effective strategies to treat diabetes.  相似文献   

15.
The relatively low immunogenic and tumorigenic nature of fetal stem cells makes them attractive candidates for transplantation. Pancreatic progenitor cells (PPCs) derived from human fetal pancreas that are amenable to growth and differentiation into transplantable insulin-producing islet-like cell clusters (ICCs) have been reported recently; however, the immunological nature of these cells has yet to be characterized. We thus investigated and compared the immunogenicity of pancreatic progenitor cells and islet-like cell clusters from first- and second-trimester human fetal pancreas. Polymerase chain reaction demonstrated that pancreatic progenitor cells and islet-like cell clusters express immune-related genes of major histocompatibility complex, MHC-I and MHC-II, complement component 3 (C3), chemokine ligand (CCL19), and tumor necrosis factor super family (TNFSF10), but no expression of the co-stimulatory genes, CD80 and CD86. Interestingly, pancreatic progenitor cells showed a differential expression of MHC-I and MHC-II with advancing gestational age with a greater expression in pancreatic progenitor cells from the second trimester. Pre-incubation of the second-trimester cells with interferon-γ (IFN-γ) increased MHC molecule expression. Functional alloreactivity of pancreatic progenitor cells was investigated via mixed lymphocyte reactions (MLRs). Relative to first-trimester pancreatic progenitor cells, second-trimester pancreatic progenitor cells induced a greater extent of proliferation of peripheral blood mononuclear cells (PBMCs) and resulted in more IFN-γ production in phytohaemagllutinin-stimulated peripheral blood mononuclear cells following co-culture. Results of the study indicated that first-trimester pancreatic progenitor cells and islet-like cell clusters have a distinctively lower immunogenicity relative to second-trimester pancreatic progenitor cells, even after a pro-inflammatory cytokine challenge.  相似文献   

16.
Multipotent stem cells must generate various differentiated cell types in correct number and sequence during neural development. In the peripheral nervous system (PNS), this involves the formation of postmigratory progenitor cell types which maintain multipotency and are able to give rise to neural and non-neural cells in response to instructive growth factors. We propose that fate restrictions in such progenitor cells are controlled by the combinatorial interaction of different extracellular signals, including community effects in response to both neurogenic and gliogenic factors. In addition, distinct progenitor cell types display intrinsic differences which modulate their response to the extracellular environment. Thus, a progenitor cell is apparently able to integrate multiple intrinsic and extrinsic cues and thereby to choose fates appropriate for its location. Fate analysis of genetically modified progenitor cells will help to identify the molecules involved. This approach appears promising given the identification of multipotent progenitor cells from the mouse PNS and the availability of genetics in the mouse system.  相似文献   

17.
Adult reserve stem cells and their potential for tissue engineering   总被引:6,自引:0,他引:6  
Tissue restoration is the process whereby multiple damaged cell types are replaced to restore the histoarchitecture and function to the tissue. Several theories, have been proposed to explain the phenomenon of tissue restoration in amphibians and in animals belonging to higher order. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed progenitor cells, and activation of reserve, precursor cells. Studies by Young et al. and others demonstrated that connective tissue compartments throughout postnatal individuals contain reserve precursor cells. Subsequent repetitive single cell-cloning and cell-sorting studies revealed that these reserve precursor cells consisted of multiple populations of cells, including, tissue-specific progenitor cells, germ-layer lineage stem cells, and pluripotent stem cells. Tissue-specific progenitor cells display various capacities for differentiation, ranging from unipotency (forming a single cell type) to multipotency (forming multiple cell types). However, all progenitor cells demonstrate a finite life span of 50 to 70 population doublings before programmed cell senescence and cell death occurs. Germ-layer lineage stem cells can form a wider range of cell types than a progenitor cell. An individual germ-layer lineage stem cell can form all cells types within its respective germ-layer lineage (i.e., ectoderm, mesoderm, or endoderm). Pluripotent stem cells can form a wider range of cell types than a single germ-layer lineage stem cell. A single pluripotent stem cell can form cells belonging to all three germ layer lineages. Both germ-layer lineage stem cells and pluripotent stem cells exhibit extended capabilities for self-renewal, far surpassing the limited life span of progenitor cells (50–70 population doublings). The authors propose that the activation of quiescent tissue-specific progenitor cells, germ-layer lineage stem cells, and/or pluripotent stem cells may be a potential explanation, along with dedifferentiation and transdifferentiation, for the process of tissue restoration. Several model systems are currently being investigated to determine the possibilities of using these adult quiescent reserve precursor cells for tissue engineering.  相似文献   

18.
It is thought that small intestinal epithelial stem cell progeny, via Notch signaling, yield a Hes1-expressing columnar lineage progenitor and an Atoh1 (also known as Math1)-expressing common progenitor for all granulocytic lineages including enteroendocrine cells, one of the body's largest populations of endocrine cells. Because Neurogenin 3 (Neurog3) null mice lack enteroendocrine cells, Neurog3-expressing progenitors derived from the common granulocytic progenitor are thought to produce the enteroendocrine lineage, although more recent work indicates that Neurog3+ progenitors also contribute to non-enteroendocrine lineages. We aimed to test this model and better characterize the progenitors leading from the stem cells to the enteroendocrine lineage. We investigated clones derived from enteroendocrine precursors and found no evidence of a common granulocytic progenitor that routinely yields all granulocytic lineages. Rather, enteroendocrine cells are derived from a short-lived bipotential progenitor whose offspring, probably via Notch signaling, yield a Neurog3+ cell committed to the enteroendocrine lineage and a progenitor committed to the columnar lineage. The Neurog3+ cell population is heterogeneous; only about 1/3 are slowly cycling progenitors, the rest are postmitotic cells in early stages of enteroendocrine differentiation. No evidence was found that Neurog3+ cells contribute to non-enteroendocrine lineages. Revised lineage models for the small intestinal epithelium are introduced.  相似文献   

19.
Epithelial Langerhans cells (LC) represent immature dendritic cells that require TGF-beta 1 stimulation for their development. Little is known about the mechanisms regulating LC generation from their precursor cells. We demonstrate here that LC development from human CD34+ hemopoietic progenitor cells in response to TGF-beta 1 costimulation (basic cytokine combination GM-CSF plus TNF-alpha, stem cell factor, and Flt3 ligand) is associated with pronounced cell cluster formation of developing LC precursor cells. This cell-clustering phenomenon requires hemopoietic progenitor cell differentiation, since it is first seen on day 4 after culture initiation of CD34+ cells. Cell cluster formation morphologically indicates progenitor cell development along the LC pathway, because parallel cultures set up in the absence of exogenous TGF-beta 1 fail to form cell clusters and predominantly give rise to monocyte, but not LC, development (CD1a-, lysozyme+, CD14+). TGF-beta 1 costimulation of CD34+ cells induces neoexpression of the homophilic adhesion molecule E-cadherin in the absence of the E-cadherin heteroligand CD103. Addition of anti-E-cadherin mAb or mAbs to any of the constitutively expressed adhesion molecule (CD99, CD31, LFA-1, or CD18) to TGF-beta 1-supplemented progenitor cell cultures inhibits LC precursor cell cluster formation, and this effect is, with the exception of anti-E-cadherin mAb, associated with inhibition of LC generation. Addition of anti-E-cadherin mAb to the culture allows cell cluster-independent generation of LC from CD34+ cells. Thus, functional E-cadherin expression and homotypic cell cluster formation represent a regular response of LC precursor cells to TGF-beta 1 stimulation, and cytoadhesive interactions may modulate LC differentiation from hemopoietic progenitor cells.  相似文献   

20.
The effects of X irradiation on oligodendrocyte-type-2-astrocyte (O-2A) progenitor cells derived from different regions of the perinatal central nervous system (CNS) of rats were investigated in vitro. The O-2A progenitor cells can differentiate into either oligodendrocytes or type-2 astrocytes. The depletion of these cells could lead to demyelination, seen as a delayed reaction after irradiation of the CNS in vivo. To quantify cell survival, O-2A progenitor cells were grown on monolayers of type-1 astrocytes. Monolayers of type-1 astrocytes stimulate O-2A progenitor cells to divide. O-2A progenitor cells were irradiated in vitro and clonogenic cell survival was measured. The O-2A progenitor cells derived from perinatal optic nerve were quite radiosensitive in contrast to O-2A progenitor cells derived from perinatal spinal cord and perinatal corpus callosum. Furthermore, O-2A progenitor cells derived from the optic nerve formed smaller colonies, with most colonies showing early differentiation into oligodendrocytes. In contrast, more than half of the colonies derived from corpus callosum did not show any differentiation after 2 weeks in vitro and kept growing. These differences support the view that perinatal O-2A progenitor cells derived from the optic nerve are committed progenitor cells while the O-2A progenitor cells derived from the perinatal corpus callosum and the perinatal spinal cord have more stem cell properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号