首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-gated potassium channels of the ether-a-go-go related gene (ERG) family are implicated in many important cellular processes. Three such genes have been cloned (erg1, erg2 and erg3) and shown to be expressed in the central nervous system (CNS) of mammalians. This communication describes the isolation and characterization of two isoforms of scorpion toxin (CeErg4 and CeErg5, systematic nomenclature γ-KTx1.7 and γ-KTx1.8, respectively) that can discriminate the various subtypes of ERG channels of human and rat. These peptides were purified from the venom of the Mexican scorpion Centruroides elegans elegans. They contain 42 amino acid residues, tightly folded by four disulfide bridges. Both peptides block in a reversible manner human and rat ERG1 channels, but have no effect on human ERG2. They also block completely and irreversibly the rat ERG2 and the human ERG3 channels hence are excellent tools for the discrimination of the various sub-types of ion-channels studied. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

2.
Ether-à-go-go-related gene (ERG) K channels have been implicated in the generation of pacemaker activities in the heart. To study the presence and function of ERG K channels in the pacemaker cells of the small intestine [the interstitial cells of Cajal (ICC)], a combination of patch-clamp techniques, tissue and live cell immunohistochemistry, RT-PCR, and in vitro functional studies were performed. Nonenzymatically isolated ICC in culture were identified by vital staining and presence of rhythmic inward currents. RT-PCR showed the presence of ERG mRNA in the intestinal musculature, and immunohistochemistry on tissue and cultured cells demonstrated that protein similar to human ERG was concentrated on ICC in the Auerbach's plexus region. Whole cell ERG K+ currents were evoked on hyperpolarization from 0 mV (but not from -70 mV) up to -120 mV and showed strong inward rectification. The currents were inhibited by E-4031, cisapride, La3+, and Gd3+ but not by 50 microM Ba2+. The ERG K+ inward current had a typical transient component with fast activation and inactivation kinetics followed by significant steady-state current. E-4031 also inhibited tetraethylammonium (TEA)-insensitive outward current indicating that the ERG K+ current is operating at depolarizing potentials. In contrast to TEA, blockers of the ERG K+ currents caused marked increase in tissue excitability as reflected by an increase in slow-wave duration and an increase in superimposed action potential activity. In summary, ERG K channels in ICC contribute to the membrane potential and play a role in regulation of pacemaker activity of the small intestine.  相似文献   

3.
Alveolar macrophages (AMs) play a vital role in lung immunity. The recent studies demonstrated that potassium channels were associated with macrophage functions, such as activation, migration and cytokines secretion. However, less is known regarding the expression and function of ERG channels in AMs. Our study showed that ERG1 channel expressed in rat alveolar macrophage, and the expression level was increased when AMs were stimulated with LPS. Furthermore, blockade of ERG1 channels with E4031 down-regulated the mature of ERG1 protein, inhibited NF-κB translocation into the nucleus, and reduced LPS-stimulated IL-6 and IL-1β secretion. These results imply that ERG1 channels are functionally expressed in rat alveolar macrophages and play an important role in inflammatory response.  相似文献   

4.
One form of inherited long QT syndrome, LQT2, results from mutations in HERG1, the human ether-a-go-go-related gene, which encodes a voltage-gated K(+) channel alpha subunit. Heterologous expression of HERG1 gives rise to K(+) currents that are similar (but not identical) to the rapid component of delayed rectification, I(Kr), in cardiac myocytes. In addition, N-terminal splice variants of HERG1 and MERG1 (mouse ERG1) referred to as HERG1b and MERG1b have been cloned and suggested to play roles in the generation of functional I(Kr) channels. In the experiments here, antibodies generated against HERG1 were used to examine ERG1 protein expression in heart and in brain. In Western blots of extracts of QT-6 cells expressing HERG1, MERG1, or RERG1 (rat ERG1) probed with antibodies targeted against the C terminus of HERG1, a single 155-kDa protein is identified, whereas a 95-kDa band is evident in blots of extracts from cells expressing MERG1b or HERG1b. In immunoblots of fractionated rat (and mouse) brain and heart membrane proteins, however, two prominent high molecular mass proteins of 165 and 205 kDa were detected. Following treatment with glycopeptidase F, the 165- and 205-kDa proteins were replaced by two new bands at 175 and 130 kDa, suggesting that ERG1 is differentially glycosylated in rat/mouse brain and heart. In human heart, a single HERG1 protein with an apparent molecular mass of 145 kDa is evident. In rats, ERG1 protein (and I(Kr)) expression is higher in atria than ventricles, whereas in humans, HERG1 expression is higher in ventricular, than atrial, tissue. Taken together, these results suggest that the N-terminal alternatively spliced variants of ERG1 (i.e. ERG1b) are not expressed at the protein level in rat, mouse, or human heart and that these variants do not, therefore, play roles in the generation of functional cardiac I(Kr) channels.  相似文献   

5.
In dogs and in humans, potassium channels formed by ether-a-go-go-related gene 1 protein ERG1 (KCNH2) and KCNQ1 alpha-subunits, in association with KCNE beta-subunits, play a role in normal repolarization and may contribute to abnormal repolarization associated with long QT syndrome (LQTS). The molecular basis of repolarization in horse heart is unknown, although horses exhibit common cardiac arrhythmias and may receive drugs that induce LQTS. In horse heart, we have used immunoblotting and immunostaining to demonstrate the expression of ERG1, KCNQ1, KCNE1, and KCNE3 proteins and RT-PCR to detect KCNE2 message. Peptide N-glycosidase F-sensitive forms of horse ERG1 (145 kDa) and KCNQ1 (75 kDa) were detected. Both ERG1 and KCNQ1 coimmunoprecipitated with KCNE1. Cardiac action potential duration was prolonged by antagonists of either ERG1 (MK-499, cisapride) or KCNQ1/KCNE1 (chromanol 293B). Patch-clamp analysis confirmed the presence of a slow delayed rectifier current. These data suggest that repolarizing currents in horses are similar to those of other species, and that horses are therefore at risk for acquired LQTS. The data also provide unique evidence for coassociation between ERG1 and KCNE1 in cardiac tissue.  相似文献   

6.
Saccharomyces cerevisiae strains that contain the ery8-1 mutation are temperature sensitive for growth due to a defect in phosphomevalonate kinase, an enzyme of isoprene and ergosterol biosynthesis. A plasmid bearing the yeast ERG8 gene was isolated from a YCp50 genomic library by functional complementation of the erg8-1 mutant strain. Genetic analysis demonstrated that integrated copies of an ERG8 plasmid mapped to the erg8 locus, confirming the identity of this clone. Southern analysis showed that ERG8 was a single-copy gene. Subcloning and DNA sequencing defined the functional ERG8 regulon as an 850-bp upstream region and an adjacent 1,272-bp open reading frame. The deduced 424-amino-acid ERG8 protein showed no homology to known proteins except within a putative ATP-binding domain present in many kinases. Disruption of the chromosomal ERG8 coding region by integration of URA3 or HIS3 marker fragments was lethal in haploid cells, indicating that this gene is essential. Expression of the ERG8 gene in S. cerevisiae from the galactose-inducible galactokinase (GAL1) promoter resulted in 1,000-fold-elevated levels of phosphomevalonate kinase enzyme activity. Overproduction of a soluble protein with the predicted 48-kDa size for phosphomevalonate kinase was also observed in the yeast cells.  相似文献   

7.
In the heart, several K(+) channels are responsible for the repolarization of the cardiac action potential, including transient outward and delayed rectifier K(+) currents. In the present study, the cellular and subcellular localization of the two delayed rectifier K(+) channels, KCNQ1 and ether-a-go-go-related gene-1 (ERG1), was investigated in the adult rat heart. Confocal immunofluorescence microscopy of atrial and ventricular cells revealed that whereas KCNQ1 labeling was detected in both the peripheral sarcolemma and a structure transversing the myocytes, ERG1 immunoreactivity was confined to the latter. Immunoelectron microscopy of atrial and ventricular myocytes showed that the ERG1 channel was primarily expressed in the transverse tubular system and its entrance, whereas KCNQ1 was detected in both the peripheral sarcolemma and in the T tubules. Thus, whereas ERG1 displays a very restricted subcellular localization pattern, KCNQ1 is more widely distributed within the cardiac cells. The localization of these K(+) channels to the transverse tubular system close to the Ca(2+) channels renders them with maximal repolarizing effect.  相似文献   

8.
The scorpion toxin BeKm-1 is unique among a variety of known short scorpion toxins affecting potassium channels in its selective action on ether-a-go-go-related gene (ERG)-type channels. BeKm-1 shares the common molecular scaffold with other short scorpion toxins. The toxin spatial structure resolved by NMR consists of a short alpha-helix and a triple-stranded antiparallel beta-sheet. By toxin mutagenesis study we identified the residues that are important for the binding of BeKm-1 to the human ERG K+ (HERG) channel. The most critical residues (Tyr-11, Lys-18, Arg-20, Lys-23) are located in the alpha-helix and following loop whereas the "traditional" functional site of other short scorpion toxins is formed by residues from the beta-sheet. Thus the unique location of the binding site of BeKm-1 provides its specificity toward the HERG channel.  相似文献   

9.
Similar to CNG and HCN channels, EAG and ERG channels contain a cyclic nucleotide binding domain (CNBD) in their C terminus. While cyclic nucleotides have been shown to facilitate opening of CNG and HCN channels, their effect on EAG and ERG channels is less clear. Here we explored cyclic nucleotide binding and modulation of mEAG1 and hERG1 channels with fluorescence and electrophysiology. Binding of cyclic nucleotides to the isolated CNBD of mEAG1 and hERG1 channels was examined with two independent fluorescence-based methods: changes in tryptophan fluorescence and fluorescence of an analog of cAMP, 8-NBD-cAMP. As a positive control for cyclic nucleotide binding we used changes in the fluorescence of the isolated CNBD of mHCN2 channels. Our results indicated that cyclic nucleotides do not bind to the isolated CNBD domain of mEAG1 channels and bind with low affinity (Kd ≥ 51 μm) to the isolated CNBD of hERG1 channels. Consistent with the results on the isolated CNBD, application of cyclic nucleotides to inside-out patches did not affect currents recorded from mEAG1 channels. Surprisingly, despite its low affinity binding to the isolated CNBD, cAMP also had no effect on currents from hERG1 channels even at high concentrations. Our results indicate that cyclic nucleotides do not directly modulate mEAG1 and hERG1 channels. Further studies are necessary to determine if the CNBD in the EAG family of K+ channels might harbor a binding site for a ligand yet to be uncovered.The EAG family of K+ channels comprises ether-à-go-go (EAG),2 EAG-related gene (ERG), and EAG-like (ELK) K+ channel subfamilies (1) with diverse tissue expression patterns and physiological functions (reviewed in Ref. 2). mEAG channels are overexpressed in tumor tissues (3, 4), where they are involved in regulation of tumor progression (5, 6). Inhibition of the EAG channel expression by RNAi interference (7), application of channel blockers (8, 9), and monoclonal antibody that selectively inhibits currents from EAG channels (10) decreased cell proliferation in tumor tissues.ERG channels are best known for their function in the heart. Because of their unique physiological properties, fast inactivation, and slow deactivation, ERG channels are major contributors to the repolarization phase of the cardiac action potential (1114). Mutations in the ERG channels and administration of ERG channel blockers, such as class III antiarrhythmic drugs, cause long QT syndrome, a potentially lethal cardiac arrhythmia characterized by a prolonged cardiac action potential (1519). In addition to their role in cardiac excitability, ERG channels also regulate proliferation of tumor cells (2022). The physiological role of ELK channels is not well understood, however, early reports suggest their possible involvement in the regulation of neuronal excitability (23).K+ channels in the EAG family are structurally related to the cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-modulated (HCN) K+ channels (1, 24). All of these channels contain a CNBD in their C-terminal region. Unlike HCN and CNG channels whose regulation by direct binding of cyclic nucleotides to the CNBD is well established (2532), regulation of the EAG family of K+ channels by the direct binding of cyclic nucleotides is controversial. It has been reported that EAG channels in mouse (33), rat (34), and bovine retina (35) and ERG channels in humans (36) are not regulated by cyclic nucleotides. However, in similar studies other groups have shown that EAG channels in Drosophila (37, 38) and ERG channels in humans (39, 40) are regulated by cAMP. Most of the above mentioned studies were performed in a whole-cell or two-electrode voltage clamp configuration. In either of these configurations it is difficult if not impossible to control the concentration of the applied cyclic nucleotides and differentiate between direct effect of cyclic nucleotides on the EAG and ERG channels and secondary effects through signaling pathways regulated by cyclic nucleotides.To resolve this controversy we took a direct approach by applying cyclic nucleotides directly to the isolated CNBD and membrane patches expressing channels in the inside-out configuration. The direct binding of cAMP and cGMP to the isolated CNBD of the mEAG1 (also known as KCNH1 and Kv10.1) and hERG1 (also known as KCNH2 and Kv11.1) channels was examined with fluorescence-based methods. To demonstrate the validity of our approach, the fluorescence methods were also applied to the isolated CNBD of mHCN2 channels. The effect of cAMP and cGMP on full-length channels was examined by direct application of cyclic nucleotides to inside-out patches expressing mEAG1 and hERG1 channels. The fluorescent-based experiments indicated no binding of the cyclic nucleotides to the CNBD of mEAG1 and only low affinity binding (Kd ≥ 51 μm) of cAMP to the CNBD of hERG1 channels. Direct application of cAMP and cGMP had no effect on the currents recorded from mEAG1 and hERG1 channels. Our results indicate that cAMP and cGMP do not regulate mEAG1 and hERG1 channels by direct binding to the CNBD.  相似文献   

10.
11.
A Jandrositz  F Turnowsky  G H?genauer 《Gene》1991,107(1):155-160
The gene (ERG1) encoding squalene epoxidase (ERG) from Saccharomyces cerevisiae was cloned. It was isolated from a gene library, prepared from an allylamine-resistant (AlR) S. cerevisiae mutant, by screening transformants in a sensitive strain for AlR colonies. The ERG tested in a cell-free extract from one of these transformants proved to be resistant to the Al derivative, terbinafine. From this result, we concluded that the recombinant plasmid in the transformant carried an allelic form of the ERG1 gene. The nucleotide sequence showed the presence of one open reading frame coding for a 55,190-Da peptide of 496 amino acids. Southern hybridization experiments allowed us to localize the ERG1 gene on yeast chromosome 15.  相似文献   

12.
Previous studies have shown that murine portal vein myocytes express ether-à-go-go related genes (ERGs) and exhibit distinctive currents when recorded under symmetrical K+ conditions. The aim of the present study was to characterize ERG channel currents evoked from a negative holding potential under conditions more pertinent to a physiological scenario to assess the possible functional impact of this conductance. Currents were recorded with ruptured or perforated patch variants of the whole cell technique from a holding potential of –60 mV. Application of three structurally distinct and selective ERG channel blockers, E-4031, dofetilide, and the peptide toxin BeKM-1, all inhibited a significant proportion of the outward current and abolished inward currents with distinctive "hooked" kinetics recorded on repolarization. Dofetilide-sensitive currents at negative potentials evoked by depolarization to +40 mV had a voltage-dependent time to peak and rate of decay characteristic of ERG channels. Application of the novel ERG channel activator PD-118057 (1–10 µM) markedly enhanced the hooked inward currents evoked by membrane depolarization and hyperpolarized the resting membrane potential recorded by current clamp and the perforated patch configuration by 20 mV. In contrast, ERG channel blockade by dofetilide (1 µM) depolarized the resting membrane potential by 8 mV. These data are the first record of ERG channel currents in smooth muscle cells under quasi-physiological conditions that suggest that ERG channels contribute to the resting membrane potential in these cells. vascular smooth muscle; voltage-dependent K+ current; membrane excitability  相似文献   

13.
Ether-à-go-go (EAG) and EAG-related gene (ERG) K(+) channels are close homologues but differ markedly in their gating properties. ERG1 channels are characterized by rapid and extensive C-type inactivation, whereas mammalian EAG1 channels were previously considered noninactivating. Here, we show that human EAG1 channels exhibit an intrinsic voltage-dependent slow inactivation that is markedly enhanced in rate and extent by 1-10 μM 3-nitro-N-(4-phenoxyphenyl) benzamide, or ICA105574 (ICA). This compound was previously reported to have the opposite effect on ERG1 channels, causing an increase in current magnitude by inhibition of C-type inactivation. The voltage dependence of 2 μM ICA-induced inhibition of EAG1 current was half-maximal at -73 mV, 62 mV negative to the half-point for channel activation. This finding suggests that current inhibition by the drug is mediated by enhanced inactivation and not open-channel block, where the voltage half-points for current inhibition and channel activation are predicted to overlap, as we demonstrate for clofilium and astemizole. The mutation Y464A in the S6 segment also induced inactivation of EAG1, with a time course and voltage dependence similar to that caused by 2 μM ICA. Several Markov models were investigated to describe gating effects induced by multiple concentrations of the drug and the Y464A mutation. Models with the smallest fit error required both closed- and open-state inactivation. Unlike typical C-type inactivation, the rate of Y464A- and ICA-induced inactivation was not decreased by external tetraethylammonium or elevated [K(+)](e). EAG1 channel inactivation introduced by Y464A was prevented by additional mutation of a nearby residue located in the S5 segment (F359A) or pore helix (L434A), suggesting a tripartite molecular model where interactions between single residues in S5, S6, and the pore helix modulate inactivation of EAG1 channels.  相似文献   

14.
15.
Ion channels encoded byether-à-go-go-related genes (ERG) have been implicatedin repolarization of the cardiac action potential and also ascomponents of the resting membrane conductance in various cells. Theaim of the present study was to determine whether ERG channels wereexpressed in smooth muscle cells isolated from portal vein. RT-PCRdemonstrated the expression of murine ERG (mERG), and real-timequantitative PCR showed that the mERG1b isoform predominated over themERG1a, mERG2, and mERG3 in portal vein. Single myocytes from portalvein displayed membrane staining with an ERG1-specific antibody. Wholecell voltage-clamp experiments were performed to determine whetherportal vein myocytes expressed functional ERG channels. Large inwardcurrents with distinctive kinetics were elicited that were inhibitedrapidly by E-4031 (mean amplitude of the E-4031-sensitive current at120 mV was 205 ± 24 pA; n = 14). Deactivationof the E-4031-sensitive current was voltage dependent (mean timeconstants at 80 and 120 mV were 103 ± 9 and 33 ± 2 ms,respectively; n = 13). Because of the rapid kinetics ofmERG currents at more negative potentials, there was a substantialnoninactivating "window" current that reached a maximum of66 ± 10 pA at 70 mV. Complete portal veins exhibitedspontaneous contractile activity in isometric tension experiments, andthis activity was modified significantly by E-4031. These data showthat ERG channels are expressed in murine portal vein myocytes that maycontribute to the resting membrane conductance.

  相似文献   

16.
Chloroquine retinopathy is a severe toxic retinal impairment which may result in loss of vision by alterations of the pigmentary epithelium and photoreceptors. Currently, there is no specific treatment for this retinopathy. In order to test the possible involvement of Platelet-Activating Factor (PAF) in chloroquine-induced retinopathy and the use of PAF antagonists for prevention of this condition, we have examined the effect of these substances on the electroretinogram (ERG) of isolated rat retina. When retinas from normal rats were perfused with chloroquine (10(-6) M), a marked and rapid decrease in ERG b-wave amplitude was observed. In contrast, chloroquine had no effect on the ERG of retina isolated from animals pretreated with the PAF antagonist, BN 50730 (30 mg/kg/day i.p., 5 days). The results obtained indicate that (i) chloroquine is a toxic drug for retinal function, (ii) PAF plays a key role in chloroquine retinopathy and (iii) PAF antagonists may constitute valuable agents for the treatment of this retinal impairment.  相似文献   

17.
BACKGROUND: Previous studies of ion channel regulation by G proteins have focused on the larger, heterotrimeric GTPases, which are activated by heptahelical membrane receptors. In contrast, studies of the Rho family of smaller, monomeric, Ras-related GTPases, which are activated by cytoplasmic guanine nucleotide exchange factors, have focused on their role in cytoskeletal regulation. RESULTS: Here we demonstrate novel functions for the Rho family GTPases Rac and Rho in the opposing hormonal regulation of voltage-activated, ether-a-go-go-related potassium channels (ERG) in a rat pituitary cell line, GH(4)C(1). The hypothalamic neuropeptide, thyrotropin-releasing hormone (TRH) inhibits ERG channel activity through a PKC-independent process that is blocked by RhoA(19N) and the Clostridium botulinum C3 toxin, which inhibit Rho signaling. The constitutively active, GTPase-deficient mutant of RhoA(63L) rapidly inhibits the channels when the protein is dialysed directly into the cell through the patch pipette, and inhibition persists when the protein is overexpressed. In contrast, GTPase-deficient Rac1(61L) stimulates ERG channel activity. The thyroid hormone triiodothyronine (T3), which antagonizes TRH action in the pituitary, also stimulates ERG channel activity through a rapid process that is blocked by Rac1(17N) and wortmannin but not by RhoA(19N). CONCLUSIONS: Rho stimulation by G(13)-coupled receptors and Rac stimulation by nuclear hormones through PI3-kinase may be general mechanisms for regulating ion channel activity in many cell types. Disruption of these novel signaling cascades is predicted to contribute to several specific human neurological diseases, including epilepsy and deafness.  相似文献   

18.
An In vivo electroretinogram (ERG) signal is composed of several overlapping components originating from different retinal cell types, as well as noise from extra-retinal sources. Ex vivo ERG provides an efficient method to dissect the function of retinal cells directly from an intact isolated retina of animals or donor eyes. In addition, ex vivo ERG can be used to test the efficacy and safety of potential therapeutic agents on retina tissue from animals or humans. We show here how commercially available in vivo ERG systems can be used to conduct ex vivo ERG recordings from isolated mouse retinas. We combine the light stimulation, electronic and heating units of a standard in vivo system with custom-designed specimen holder, gravity-controlled perfusion system and electromagnetic noise shielding to record low-noise ex vivo ERG signals simultaneously from two retinas with the acquisition software included in commercial in vivo systems. Further, we demonstrate how to use this method in combination with pharmacological treatments that remove specific ERG components in order to dissect the function of certain retinal cell types.  相似文献   

19.
20.
Whole cell patch-clamp experiments were performed in clonal rat pituitary cells (GH3/B6 cells) to further analyze an inward-rectifying K current (IK, IR) which is suggested to be involved in the thyrotropin-releasing hormone (TRH)-induced increase in prolactin secretion from these cells. Using the class III antiarrhythmic agent E-4031 which is known as specific blocker of ether-á-go-go-related gene (ERG) K channels, the inward-rectifying K current could be isolated as the drug-sensitive current. To elucidate in molecular basis of this current, comparative experiments were performed in CHO cells which served as heterologous expression system for RERG, the rat homologue of the human ERG (HERG). It is shown that the inward-rectifying K current has properties identical to those mediated by channels encoded by RERG. In external 5 mM K+ solution, the ERG-like current IK, IR was an outward current in the physiological potential range, and this outward current could be strongly reduced by TRH. A specific block of IK, IR was able to mimick the second phase of the TRH-response which is characterized by a depolarization and/or by an increase in the frequency of Ca action potentials. These data show, that the ERG-like current in GH3/B6 cells contributes to the maintainance of the resting membrane potential and that it plays an important part in the mechanisms of the effects of TRH leading to an increase in prolactin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号