首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The incidence of somatic crossing over on the leaves ofGlycine max var L65-1237 is reduced when seeds are treated with 1 to 2×10-4M solutions of deoxyribose cytidine. The major effect is seen after about 16 hours of soaking the seeds in water followed by nucleoside treatment. Suggestion is made regarding the positioning of heterochromatic regions of homologous chromosomes adjacent to each other and joined with the annuli of nuclear membrane (see Comings, 1968). It is hypothesized that nucleosides degrade the connecting microtubular remnants of spindle fibers and hence reduce the chances of somatic crossing over by disturbing the inter-chromosomal arrangements.This work was supported by a grant from the Research Advisory Board of the University of Nevada at Reno.  相似文献   

2.
Seeds from varieties T219 and L65–1237 of Glycine max heterozygous for the gene combination Y11y11 controlling chlorophyll development were soaked in aqueous solutions of aminoazotoluene (AAT) for varying time periods. Analysis of the simple leaves and the first compound leaf for spots indicated that this drug did not increase the frequency of mutation or somatic crossing-over in this system.  相似文献   

3.
Summary We describe a method for obtaining and proliferating multiple, fertile plants from somatic embryos of several experimental and commercial soybean varieties. Shoot-bud cultures were initiated by placing cotyledonary and torpedo-stage somatic embryos derived from immature seedling cotyledons onto Cheng’s basal medium (CBO) containing 0.5 to 2.5 mg/liter 6-benzyladenine (6-BA). Prolific masses of adventitious shoots were produced within 6 to 18 wk. These cultures can be propagated indefinitely with regular subcultures to CBO containing 0.5 mg/liter 6-BA. Individual shoots were separated from the clusters and were rooted on CBO medium without exogenous growth regulators. By this method any number of plants can be produced from individual somatic embryos. The risk of losing valuable genotypes (e.g., derived from in vitro selection or transformation) due to inefficient embryo germination and embryo-to-plant conversion is thus greatly reduced. Plants were established in the greenhouse and progenies were field tested. Progenies from shoot-bud culture-derived plants showed no somaclonal variation for the seven recessive marker traits or quantitative agronomic characters evaluated under field conditions.  相似文献   

4.
Summary The frequency of mitomycin C induced somatic crossing over in variety L65-1237 of Glycine max is shown to be dependent upon the (physiological) age of the seed during post germination period. Effect of mitomycin C during the first four hr of germination is significantly lower than during later periods. This increase in the frequency of somatic crossing over is observed up to about 20–24 hr and is then followed by a decrease. These changes did not appear to be related to the onset and pattern of synthesis of DNA or/and proteins in the embryonic tissues. However, mitomycin C is effective even when no DNA synthesis is going on.  相似文献   

5.
The effects of sucrose on maturation and of plant growth regulators on germination of soybean somatic embryos were investigated for the purpose of developing an efficient culture method for plant recovery. Somatic embryos produced on medium with a low sucrose concentration (5 gl-1), less than 1 mm in length, 0.6 mg in fresh weight, and green in color, were grown for 2 weeks on MS medium containing 5 gl-1 or 30 gl-1 sucrose and then for another 5 weeks on MS medium containing 5–90 gl-1 sucrose. The highest increase in fresh weight of somatic embryos was obtained in the treatment of transferring from 30 gl-1 sucrose (2 weeks) to 60 gl-1 (5 weeks). With the increase in fresh weight, the somatic embryos gradually changed color from green to yellow, and finally to white, when they stopped growth. Soybean seed storage proteins (-conglycinin and glycinin) were accumulated in somatic embryos under tissue specific and stage specific control analogous to that in zygotic embryos. Exogenous gibberellic acid was effective in promoting precocious germination of premature soybean somatic embryos, but was not necessary for the germination of mature somatic embryos. The efficiency of somatic embryo germination was as high as 77% from semi-wild soybean and 60–64% from cultivated soybeans, showing that the plant regeneration system developed in this study was efficient and practical.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BR brassinolide - GA3 gibberellic acid - IBA indolebutyric acid - NAA -naphthaleneacetic acid - PAGE polyacrylamide gel electrophoresis - SDS Sodium Lauryl Sulfate  相似文献   

6.
Summary To improve proliferation of soybean cultures in liquid medium, the effects of sucrose; total inorganic nitrogen; content of No3 , NH4 +, Ca2+, PO4 3−, K+; NH4 +/NO3 ratio; and medium osmotic pressure were studied using cv. Jack. Sucrose concentration, osmotic pressure, total nitrogen content, and ammonium to nitrate ratio were found to be the major factors controlling proliferation of soybean embryogenic cultures. Growth decreased linearly as sucrose concentration increased from 29.7 mM to 175.3 mM. A sucrose concentration of 29.2 mM, a nitrogen content of 34.9 mM, at 1 to 4 ammonium to nitrate ratio were found to be optimal for the fastest proliferation of soybean embryogenic cultures. There was no significant effect on proliferation of cultures when concentrations of NH4 +, Ca2+, PO4 3−, and K+ were tested in the range of 3.50 to 10.50, 1.02 to 3.06, 0.68 to 2.04, and 22.30 to 36.70 mM, respectively. The relative proliferation of embryogenic cultures of four soybean genotypes was evaluated in Finer and Nagasawa medium and in the new medium formulation. Despite genotype-specific differences in growth, the genotypes tested showed a biomass increase in the new formulation equal to 278, 269, 170, and 251% for Chapman, F138, Jack, and Williams 82, respectively, relative to their growth on standard FN medium. Due to its lowered sucrose and nitrogen content, we are referring to the new medium as FN Lite.  相似文献   

7.
Glycine max is one of the major sources of phytochemicals, in particular of isoflavones, a class of phytoestrogens with ascertained beneficial effects on human health. In the present study, in vitro callus production from soybean hypocotyl seedling explants and cell suspensions were optimized. Time-courses having 20, 40 and 60 g/L of initial cell inoculum were performed to determine the concentration most suitable for isoflavone production. The amount of total polyphenols and total flavonoids as well as the antioxidant capacity of both cell and culture media fractions were measured by means of spectrophotometric methods. The levels of aglycone and glycosylated isoflavones (didzein, genistein, glycitein, didzin, genistin, glycitin), as well as of ferulic acid, vanillic acid and vanillin, were determined by HPLC–DAD. On average, 93.5 % of the total (cells plus media) isoflavones in soybean cell suspensions were detected as aglycones. Concentrated cell cultures as well as industrial soybean seed extracts were enzymatically hydrolyzed to release the aglycones and their metabolic profiles were analysed by HPLC–DAD. In contrast to cell suspensions, in undigested seed extract the aglycon form represented only 16.8 % of the total isoflavones amount. After enzymatic treatment, the antioxidant capacity increased by 30 and 33 %, respectively, in concentrated cell and seed extracts, demonstrating the presence of a larger amount of bioactive metabolites after digestion. At the present extraction conditions, soybean concentrated cell suspensions yielded 5.8-fold more total isoflavones (mostly in the free form) than seed extracts, leading to hypothesise their possible use as ingredients for cosmetic and nutraceutical applications.  相似文献   

8.
This investigation demonstrated potential detrimental side effects of glyphosate on plant growth and micronutrient (Mn, Zn) status of a glyphosate-resistant (GR) soybean variety (Glycine max cv. Valiosa), which were found to be highly dependent on the selected growth conditions. In hydroponic experiments with sufficient Mn supply [0.5 μM], the GR cv. Valiosa produced similar plant biomass, root length and number of lateral roots in the control treatment without glyphosate as compared to its non-GR parental line cv. Conquista. However, this was associated with 50% lower Mn shoot concentrations in cv. Conquista, suggesting a higher Mn demand of the transgenic cv. Valiosa under the selected growth conditions. Glyphosate application significantly inhibited root biomass production, root elongation, and lateral root formation of the GR line, associated with a 50% reduction of Mn shoot concentrations. Interestingly, no comparable effects were detectable at low Mn supply [0.1 μM]. This may indicate Mn-dependent differences in the intracellular transformation of glyphosate to the toxic metabolite aminomethylphosphonic acid (AMPA) in the two isolines. In soil culture experiments conducted on a calcareous loess sub-soil of a Luvisol (pH 7.6) and a highly weathered Arenosol (pH 4.5), shoot biomass production and Zn leaf concentrations of the GR-variety were affected by glyphosate applications on the Arenosol but not on the calcareous Loess sub-soil. Analysis of micronutrient levels in high and low molecular weight (LMW) fractions (80% ethanol extracts) of young leaves revealed no indications for internal immobilization of micronutrients (Mn, Zn, Fe) by excessive complexation with glyphosate in the LMW phase.  相似文献   

9.
10.
During germination and early growth of the seedling, storage proteins are degraded by proteases. Currently, limited information is available on the degradation of storage proteins in the soybean during germination. In this study, a combined two-dimensional gel electrophoresis and mass spectrometry approach was utilized to determine the proteome profile of soybean seeds (Glycine max L.; Eunhakong). Comparative analysis showed that the temporal profiles of protein expression are dramatically changed during the seed germination and seedling growth. More than 80% of the proteins identified were subunits of glycinin and β-conglycinin, two major storage proteins. Most subunits of these proteins were degraded almost completely at a different rate by 120h, and the degradation products were accumulated or degraded further. Interestingly, the acidic subunits of glycinin were rapidly degraded, but no obvious change in the basic chains. Of the five acidic subunits, the degradation of G2 subunit was not apparently affected by at least 96h but the levels decreased rapidly after that, while no newly appearing intermediate was detected upon the degradation of G4 subunit. On the other hand, the degradation of β-conglycinin during storage protein mobilization appeared to be similar to that of glycinin but at a faster rate. Both α and α' subunits of β-conglycinin largely disappeared by 96h, while the β subunits degraded at the slowest rate. These results suggest that mobilization of subunits of the storage proteins is differentially regulated for seed germination and seedling growth. The present proteomic analysis will facilitate future studies addressing the complex biochemical events taking place during soybean seed germination.  相似文献   

11.
Summary Regeneration of several varieties of soybean [Glycine max (L.) Merrill] by somatic embryogenesis from cultured epicotyls and primary leaves has been demonstrated. Somatic embryogenesis was induced from epicotyls and primary leaves when cotyledon halves with the intact zygotic embryo axes were cultured on Murashige and Skoog (MS) medium supplemented with 10 mg 1−1 (45.2 μM) 2,4-D. Stable, continuously proliferating globular embryo cultures (GEC) were established from small groups of somatic embryos on MS medium supplemented with 20 mg 1−1 (90.5 μM) 2,4-dichlorophenoxyacetic acid (2,4-D). Rapid multiplication of shoot tips from germinating somatic embryos was achieved on Cheng’s basal medium (CBO) containing 2.5 mg 1−1 (11.3 μM) 6-benzyladenine. Fertile plants were obtained from individual somatic embryos and in vitro propagated adventitious shoot bud cultures.  相似文献   

12.
Summary In this study 23.9 per cent of the Zn65 and 3.4 per cent of the Cs134 contained in the first generation seeds was translocated to the second generation. The advisability of using Zn65 or Cs134 (and presumably Cs137) contaminated soybean seed for crop production, even in uncontaminated soil, is questioned.Paper number 7851 Scientific Journal Series, University of Minnesota Agricultural Experiment Station, St. Paul, Minnesota.  相似文献   

13.
Experiments were conducted to study the influence of sowing seasons and drying methods on the seed vigour of two spring soybean (Glycine max (L.) Merr.) cultivars. Two cultivars, ‘Huachun18’ and ‘Huachun 14’, were sown in three seasons viz., spring, summer and autumn and the harvested seeds were dried using three different methods. The results showed that soybean sown in spring had a higher number of branches per plant, pods per branch and seed weight, and consequently resulted in higher seed yields than that of soybean sown in autumn or summer seasons. Seeds sown in the autumn season had the lowest values of electrical conductivity during seed imbibitions, higher peroxidase (POD) activity in germinated seedlings and lower contamination by the seed-borne fungi on the MS medium, which indirectly improved the seed vigour, which was followed by summer sown seeds. Seeds sown during the spring season resulted in poor seed vigour. In addition, the effect of drying methods on the seed vigour was also clarified. Seeds that hung for four days before threshing and then air-dried had the poorest seed vigour which was determined by germination, electrical conductivity, POD activity and seed borne fungal growth. There was no difference in seed vigour between other methods, i.e. seeds threshed directly at harvest and then air-dried on a bamboo sifter or concrete floor. These results indicated that autumn sowing soybean and the drying method in which seeds were threshed directly at harvest and then air-dried on a bamboo sifter resulted in higher seed vigour.  相似文献   

14.
The effects of three rhizobacterial isolates namely Pseudomonas fluorescens (M1), Pseudomonas putida (M2) and Bacillus subtilis (M3) were examined to enhance growth and chemical components such as chlorophyll and proline of three cultivars of soybean (Glycine max L.) under two levels of salinity stress (S1 = 200 mM and S2 = 400 mM of NaCl salt). Several morphological and physiological parameters were investigated. The highest mean values of final germination percent (FGP) were registered in cultivar Crawford (95%) followed by Giza111 cultivar (93%) in the presence of P. fluorescens, while, FGP of Clark was 85%. Mean germination time was decreased by the application of P. fluorescens or P. putida in both salt stressed and unstressed traits. All growth parameters were significantly decreased by salinity treatments, particularly at S2. A significant increase in stem length and shoot fresh weight was recorded in plants treated with P. fluorescens. This enhancing trend was followed by the application of P. putida then B. subtilis. Chlorophyll contents and plant soluble proteins were decreased, while proline content was increased as compared with control treatment. Results showed that the salt tolerant cultivar, Crawford, may have a better tolerance strategy against oxidative damages by increasing antioxidant enzymes activities under high salinity stress. These results suggest that salt induced oxidative stress in soybean is generally counteracted by enzymatic defense systems stimulated under harsh conditions. Our results showed that inoculation with plant growth-promoting rhizobacterial (PGPR) alleviated the harmful effects of salinity stress on soybean cultivars. The diversity in the phylogenetic relationship and in the level of genetic among cultivars was assessed by SDS-PAGE and RAPD markers. Among the polymorphism bands, only few were found to be useful as positive or negative markers associated with salt stress. The maximum number of bands (17) was recorded in Crawford, while the minimum number of bands (11) was recorded in Clark. Therefore, the ISSR can be used to identify alleles associated with the salt stress in soybean germplasm.  相似文献   

15.
Summary Somatic and zygotic embryos of soybean cv. Jack were analyzed for soluble carbohydrate, total lipids, and protein during development. Zygotic embryos accumulated trace amounts of fructose, galactose, and galactinol., whereas somatic embryos contained only trace amounts of galactose. Somatic embryos accumulated much higher glucose levels than zygotic embryos. Both somatic and zygotic embryos contain low levels of sucrose, myoinositol, and pinitol. Raffinose and stachyose accumulated in the late developmental stages of zygotic embryos, but only stachyose was found to accumulate in the late stage somatic embryos. Zygotic embryos contained low total lipid levels up to 50 d after flowering (DAF) and then the levels increased to 16% by 55 DAF and 21% at 65 DAF. Somatic embryos had low levels of total lipids throughout development with the maximum of only 4.7%. Soybean zygotic embryos contained about 40% protein throughout development, while the protein concentration of somatic embryos decreased from 44% to 25% as maturation approached. These studies demonstrate that the composition of Jack zygotic embryos is similar to that described for other cultivars during development while the somatic embryo composition and size is markedly different. The low somatic embryo germination often noted might be due to the abnormal development as shown by a composition different from that of mature zygotic embryos. The low concentration of the raffinose series sugars might be especially important factors.  相似文献   

16.
Drought stress has long been a major constraint in maintaining yield stability of soybean (Glycine max (L.) Merr.) in rainfed ecosystems. The identification of consistent quantitative trait loci (QTL) involving seed yield per plant (YP) and drought susceptibility index (DSI) in a population across different environments would therefore be important in molecular marker-assisted breeding of soybean cultivars suitable for rainfed regions. The YP of a recombinant line population of 184 F2:7:11 lines from a cross of Kefengl and Nannong1138-2 was studied under water-stressed (WS) and well-watered (WW) conditions in field (F) and greenhouse (G) trials, and DSI for yield was calculated in two trials. Nineteen QTLs associated with YP-WS and YP-WW, and 10 QTLs associated with DSI, were identi- fied. Comparison of these QTL locations with previous findings showed that the majority of these regions control one or more traits re- lated to yield and other agronomic traits. One QTL on molecular linkage group (MLG) K for YP-F, and two QTLs on MLG C2 for YP-G, remained constant across different water regimes. The regions on MLG C2 for YP-WW-F and MLG H for YP-WS-F had a pleiotropic effect on DSI-F, and MLG A1 for YP-WS-G had a pleiotropic effect on DSI-G. The identification of consistent QTLs for YP and DSI across different environments will significantly improve the efficiency of selecting for drought tolerance in soybean.  相似文献   

17.
Nitrogen fixation and assimilation in nodules and roots were studied in soybean (Glycine max L.) exposed to different levels of aluminium (Al) stress (0, 50, 200 and 500 μM). Al at 500 μM induced oxidative stress, which became evident from an increase in lipid peroxidation accompanied by a concomitant decline in antioxidant enzyme activities and leghaemoglobin breakdown. Consequently, there was also a reduction in nitrogenase activity. However, the leghaemoglobin levels and nitrogenase activity were unexpectedly found to be higher in nodules when the plants were treated with 200 μM Al. Of the enzymes involved in nitrogen assimilation, the activity of glutamate dehydrogenase-NADH was reduced in nodules under Al stress, but it was significantly higher in roots at 500 μM Al as compared to that in the control. In nodules, the glutamine synthetase/glutamate synthase-NADH pathway, assayed in terms of activity and expression of both the enzymes, was inhibited at >50 μM Al; but in roots this inhibitory effect was apparent only at 500 μM Al. No significant changes in ammonium and protein contents were recorded in the nodules or roots when the plants were treated with 50 μM Al. However, Al at ≥200 μM significantly increased the ammonium levels and decreased the protein content in the nodules. But these contrasting effects on ammonium and protein contents due to Al stress were observed in the roots only at 500 μM Al. The results suggest that the effect of Al stress on nitrogen assimilation is more conspicuous in nodules than that in the roots of soybean plants.  相似文献   

18.
Oligosaccharides and sucrose are very important nutritional components in soybean seeds. However, little information is available about their inheritance. We used molecular markers to identify the genomic regions significantly associated with the quantitative trait locus (QTL) that controls oligosaccharide and sucrose contents in segregating F2:10 Rl lines. Two related, but independent, QTLs were identified for oligosaccharides — near marker satt546 on linkage group (LG) D1b+W and satt278 on LG L. Four others, for sucrose content, were located at LG B1 (satt197), D1b+W (satt546), and L (satt523 and satt278). Finally, we found two common QTLs, on LG D1b+W and L, that are associated with both oligosaccharides and sucrose.  相似文献   

19.
20.
Summary The seasonal and diurnal variations in nitrate reductase (NR) activity of field grown Altona soybean, with and without applied nitrogen, were determined. The NR activity in the fortnightly collected leaf samples was, on the average, 20 percent higher throughout the season in N-treated plants, the highest being early in the season and declining gradually in the samples of subsequent dates. Diurnal variations were marked by increase in the NR activity from 7 a.m. to 7 p.m. and then declining gradually to a minimum at 7 a.m. the next morning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号