首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I Pecht  E Ortega  T M Jovin 《Biochemistry》1991,30(14):3450-3458
The rotational motions of the type I receptor for the Fc epsilon domains (Fc epsilon RI) present on mast cells were investigated by measuring the phosphorescence emission and anisotropy decay kinetics of erythrosin (Er) covalently bound to several Fc epsilon RI-specific macromolecular ligands. The latter consisted of three murine monoclonal antibodies (IgG class) raised against the Fc epsilon RI of rat mast cells (RBL-2H3 line), their Fab fragments, and a murine monoclonal IgE. Different anisotropy decay patterns were observed for the three monovalent Er-Fab fragments bound to the Fc epsilon RI, reflecting the rotational motion of the Fe epsilon RI reported by each specific macromolecular probe bound to its particular epitope. Internal motions of the tethered Er-labeled ligands may also contribute to the observed anisotropy decay, particularly in the case of cell-bound IgE. The results corroborate an earlier study with rat Er-IgE in which the Fc epsilon RI-IgE complex was shown to be mobile throughout the temperature range examined (5-37 degrees C). The anisotropy decays of the three Er-labeled, Fc epsilon RI-specific intact mAbs bound to cells also differed markedly. Whereas the decay curves of one mAb (H10) were characterized by temperature-dependent positive amplitudes and rather short rotational correlation times, the decay of a second mAb (J17) showed complex qualitative variations with temperature, and in the case of the third antibody (F4), there was no apparent decay of anisotropy over the time and temperature ranges examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Three biologically active monoclonal antibodies (mAbs) specific for the monovalent, high-affinity membrane receptor for IgE (Fc epsilon R) were employed in analysing the secretory response of mast cells of the RBL-2H3 line to crosslinking of their Fc epsilon R. All three mAbs (designated F4, H10 and J17) compete with each other and with IgE for binding to the Fc epsilon R. Their stoichiometry of binding is 1 Fab:1 Fc epsilon R, hence, the intact mAbs can aggregate the Fc epsilon Rs to dimers only. Since all three mAbs induce secretion, we conclude that Fc epsilon R dimers constitute a sufficient 'signal element' for secretion of mediators for RBL-2H3 cells. The secretory dose-response of the cells to these three mAbs are, however, markedly different: F4 caused rather high secretion, reaching almost 80% of the cells' content, while J17 and H10 induced release of only 30-40% mediators content. Both the intrinsic affinities and equilibrium constants for the receptor dimerization were derived from analysis of binding data of the Fab fragments and intact mAbs. These parameters were used to compute the extent of Fc epsilon R dimerization caused by each of the antibodies. However, the different secretory responses to the three mAbs could not be rationalized simply in terms of the extent of Fc epsilon R dimerization which they produce. This suggests that it is not only the number of crosslinked Fc epsilon Rs which determines the magnitude of secretion-causing signal, but rather other constraints imposed by each individual mAb are also important.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Kinetics of ligand binding to the type 1 Fc epsilon receptor on mast cells   总被引:2,自引:0,他引:2  
Rates of association and dissociation of several specific monovalent ligands to and from the type I Fc epsilon receptor (Fc epsilon RI) were measured on live mucosal type mast cells of the rat line RBL-2H3. The ligands employed were a monoclonal murine IgE and Fab fragments prepared from three different, Fc epsilon RI-specific monoclonal IgG class antibodies. These monoclonals (designated H10, J17, and F4) were shown previously to trigger mediator secretion by RBL-2H3 mast cells upon binding to and dimerization of the Fc epsilon RI. Analysis of the kinetics shows that the minimal mechanism to which all data can be fitted involves two consecutive steps: namely, ligand binding to a low-affinity state of the receptor, followed by a conformational transition into a second, higher affinity state h of the receptor-ligand complex. These results resolve the recently noted discrepancy between the affinity of IgE binding to the Fc epsilon RI as determined by means of binding equilibrium measurements [Ortega et al. (1988) EMBO J. 7, 4101] and the respective parameter derived from the ratio of the rate constant of rat IgE dissociation and the initial rate of rat IgE association [Wank et al. (1983) Biochemistry 22, 954]. The probability of undergoing the conformational transition differs for the four different Fc epsilon RI-ligand complexes: while binding of Fab-H10 and IgE favors the h state, binding of Fab-J17 and Fab-F4 preferentially maintains the low-affinity 1 state (at 25 degrees C). The temperature dependence of the ligand interaction kinetics with the Fc epsilon RI shows that the activation barrier for ligand association is determined by positive enthalpic and entropic contributions. The activation barrier of the 1----h transition, however, has negative enthalpic contributions counteracted by a decrease in activation entropy. The h----1 transition encounters a barrier that is predominantly entropic and similar for all ligands employed, thus suggesting that the Fc epsilon RI undergoes a similar conformational transition upon binding any of the ligands.  相似文献   

4.
A monoclonal antibody (mAb), AD1, was isolated that recognized a cell surface protein on rat basophilic leukemia cells (RBL-2H3). At high concentration, this antibody inhibited IgE-mediated but not calcium ionophore-induced histamine release (49% inhibition at 100 micrograms/ml). The mAb AD1 did not inhibit the binding of IgE or of several antibodies directed to the high affinity IgE receptor (Fc epsilon RI). Likewise, IgE did not inhibit mAb AD1 binding. However, several anti-Fc epsilon RI antibodies did inhibit mAb AD1 binding as intact molecules but not as Fab fragments. Therefore, the sites on the cell surface to which mAb AD1 binds are close to Fc epsilon RI. The mAb AD1 immunoprecipitated a broad, 50-60-kDa band from 125I-surface-labeled RBL-2H3 cells that upon peptide N-glycosidase F treatment was transformed into a sharp 27-kDa band. A similar 27-kDa protein was immunoprecipitated from surface-radiolabeled cells after culture with tunicamycin. Thus, the protein recognized by mAb AD1 is highly glycosylated with predominantly N-linked oligosaccharides. The N-terminal sequence of 43 amino acids was found to be different from any subunit of Fc epsilon RI but nearly identical to that of the human melanoma-associated antigen ME491. Therefore, mAb AD1 binds to a surface glycoprotein on RBL-2H3 cells sterically close to the Fc epsilon RI but distinct from the recognized subunits of the receptor.  相似文献   

5.
A mAb was isolated (mAb BD6) that recognized a surface glycoprotein on rat basophilic leukemia cells (RBL-2H3). The antibody bound to 2 x 10(6) molecules/cell and specifically blocked IgE binding (50% inhibition with 3.48 +/- 0.51 micrograms/ml; mean +/- SEM), although neither IgE nor anti-high affinity IgE receptor (anti-Fc epsilon RI) mAb blocked mAb BD6 binding to the cells. mAb BD6 did not affect the rate of dissociation of cell-bound IgE, nor did it induce or inhibit the internalization of IgE. mAb BD6 did not release histamine. However, it did cause rapid spreading of the cells. By 1 h the cells had retracted to a spherical shape with their surface covered with membranous spikes, and they could easily be detached from the tissue culture plate. These changes differed from those observed after Fc epsilon RI activation. mAb BD6 immunoprecipitated a complex of two proteins, 38 to 50 kDa and 135 kDa from 125I-surface labeled rat basophilic leukemia cells that are not subunits of Fc epsilon RI. Chemical cross-linking studies showed that these molecules are associated on the cell surface. By immunoblotting, mAb BD6 reacted with a 40-kDa protein. Therefore, mAb BD6 binds to a surface protein that is close to the Fc epsilon RI and sterically inhibits 125I-IgE binding.  相似文献   

6.
Monoclonal antibodies that inhibit IgE binding   总被引:12,自引:0,他引:12  
Four monoclonal antibodies were produced that inhibit IgE binding to the high affinity IgE receptor (Fc epsilon R) on rat basophilic leukemia cells. The four monoclonal antibodies (mAb) fall into two groups. The first group was comprised of 3 antibodies (mAb BC4, mAb CD3, and mAb CA5) that reacted with the Fc epsilon R at epitopes close or identical to the IgE-binding site. With 125I-labeled antibodies there was reciprocal cross-inhibition between the antibodies and IgE. The antibodies activated both RBL-2H3 cells and normal rat mast cells for histamine release. The 3 antibodies immunoprecipitated the previously described alpha, beta, and gamma components of the receptor. The number of radiolabeled Fab fragments of 2 of these antibodies bound per cell was similar or equal to the number of IgE receptors. In contrast, the mAb BC4 Fab bound to 2.1 +/- 0.4 times the number of IgE receptor sites. Therefore, the portion of the Fc epsilon R exposed on the cell surface must have two identical epitopes and an axis of symmetry. These 3 monoclonal antibodies recognize different but closely related epitopes in the IgE-binding region of the Fc epsilon R. The fourth monoclonal antibody (mAb AA4) had different characteristics. In cross-inhibition studies, IgE and the other 3 monoclonals did not inhibit the binding of this 125I-labeled monoclonal antibody. The number of molecules of this antibody bound per cell was approximately 14-fold greater than the Fc epsilon R number. This monoclonal antibody caused the inhibition of histamine release and it appears to bind to several cell components.  相似文献   

7.
Polymorphonuclear neutrophils (PMNs) are important effector cells in host defense and the inflammatory response to antigen. The involvement of PMNs in inflammation is mediated mainly by the Fc receptor family, including IgE receptors. Recently, PMNs were shown to express two IgE receptors (CD23/Fc epsilon RII and galectin-3). In allergic diseases, the dominant role of IgE has been mainly ascribed to its high-affinity receptor, Fc epsilon RI. We have examined the expression of Fc epsilon RI by PMNS: mRNA and cell surface expression of Fc epsilon RI alpha chain was identified on PMNs from asthmatic subjects. Furthermore, preincubation with human IgE Fc fragment blocks completely the binding of anti-Fc epsilon RI alpha chain (mAb15--1) to human PMNS: Conversely, preincubation of PMNs with mAb15--1 inhibits significantly the binding of IgE Fc fragment to PMNs, indicating that IgE bound to the cell surface of PMNs mainly via the Fc epsilon RI. Peripheral blood and bronchoalveolar lavage (BAL) PMNs from asthmatic subjects also express intracellular Fc epsilon RI alpha and beta chain immunoreactivity. Engagement of Fc epsilon RI induces the release of IL-8 by PMNS: Collectively, these observations provide new evidence that PMNs express the Fc epsilon RI and suggest that these cells may play a role in allergic inflammation through an IgE-dependent activation mechanism.  相似文献   

8.
The Mast cell Function-associated Antigen (MAFA) is a membrane glycoprotein on rat mast cells (RBL-2H3) expressed at a ratio of approximately 1:30 with respect to the Type I Fc epsilon receptor (Fc epsilon RI). Despite this stoichiometry, clustering MAFA by its specific mAb G63 substantially inhibits secretion of both granular and de novo synthesized mediators induced upon Fc epsilon RI aggregation. Since the Fc epsilon RIs apparently signal from within raft micro-environments, we investigated possible co-localization of MAFA within these membrane compartments containing aggregated Fc epsilon RI. We used cholera toxin B subunit (CTB) to cluster the raft component ganglioside GM1 and studied the effects of this perturbation on rotation of Fc epsilon RI and MAFA by time-resolved phosphorescence anisotropy of erythrosin-conjugated probes. CTB treatment would be expected to substantially inhibit rotation of raft-associated molecules. Experimentally, CTB has no effect on rotational parameters such as the long-time anisotropy (r(infinity)) of unperturbed Fc epsilon RI or MAFA. However, on cells where Fc epsilon RI-IgE has previously been clustered by antigen (DNP(14)-BSA), CTB treatment increases the Fc epsilon RI-IgE's r(infinity) by 0.010 and MAFA's by 0.014. Similarly, CTB treatment of cells where MAFA had been clustered by mAb G63 increases MAFA's r(infinity) by 0.010 but leaves Fc epsilon RI's unaffected. Evaluation of raft localization of Fc epsilon RI and MAFA using sucrose gradient ultracentrifugation of Triton X-100 treated membrane fragments demonstrates that a significant fraction of MAFA molecules sediments with rafts when Fc epsilon RI is clustered by antigen or when MAFA itself is clustered by mAb G63. The large excess of Fc epsilon RI over MAFA explains why clustering MAFA does not substantively affect Fc epsilon RI dynamics. Moreover, in single-particle tracking studies of individual Fc epsilon RI-IgE or MAFA molecules, these proteins, upon clustering by antigen, move into small membrane compartments of reduced, but similar, dimensions. This provides additional indication of constitutive interactions between Fc epsilon RI and MAFA. Taken together, these results of distinct methodologies suggest that MAFA functions within raft microdomains of the RBL-2H3 cell membrane and thus in close proximity to the Fc epsilon RI which themselves signal from within the raft environment.  相似文献   

9.
Several recent reports have suggested that binding monomeric IgE (mIgE) to its type 1 receptor, Fc epsilon RI, on mast cells induces important responses. These observations contradict the notion that it is the aggregation of this receptor that is essential for initiating mast cell response. In the present study, we suggest that the most probable causes for the reported observations are the experimental protocol used combined with the high expression levels of the Fc epsilon RI by mast cells. Specifically, we suggest using the published data and physicochemical calculations that the exceptionally high number of cell surface Fc epsilon RI-bound monoclonal IgE yields, in the two-dimensions of the cells' membranes, a situation where even a low affinity of these mIgE for epitopes on their own structure or on another cell surface component may lead to their aggregation. Hence, we hypothesize that the reported response to mIgE binding is a result of such an Fc epsilon RI-IgE induced aggregation.  相似文献   

10.
Cross-linking of the high affinity Fc receptor for human immunoglobulin G1 (Fc gamma RI) on U937 cells triggered superoxide anion (O-2) release. This was accomplished by the binding of an Fc gamma RI-specific monoclonal antibody, mAb 32, followed by cross-linking of the mAb on the cell with anti-mouse IgG F(ab')2 by Fc gamma RI-specific mAbs 32 and 22 used as an equimolar mixture or by Fc gamma RI-specific mAb 197 (a murine IgG2a and thus a multivalent ligand for Fc gamma RI) alone. At subsaturating concentrations of the Fc gamma RI-cross-linking ligands, O2- generation was continuous over relatively long intervals. However, saturating concentrations triggered an often substantial but always transient O2- burst. This transient burst of oxidase activity ceased with maximal ligand accumulation on the cell. Cells in which oxidase activity had ceased could be restimulated using phorbol 12-myristate 13-acetate or aggregated human IgG1, indicating that cessation of O2- generation was not due to a generalized exhaustion or inhibition of the NADPH oxidase pathway. Cells incubated in subsaturating concentrations of cross-linking antibodies continued to release O2- until binding of the ligand ceased. In addition, the rates of O2- production and ligand accumulation were the same. Thus, continuous O2- production appeared to be dependent upon continuous de novo formation of cross-linked and activated Fc gamma RI. Furthermore, the mol of O2- released in response to Fc gamma RI cross-linking by the multivalent ligand mAb 197 were directly proportional to the mol of mAb bound over a range of saturating and subsaturating concentrations. This evidence suggests a quantal relationship between each Fc gamma RI activated (cross-linked) and the resultant oxidase activity and supports a "rate" model for the activation of this response. Thus, each Fc gamma RI entering the pool of activated receptors probably makes a unitary contribution to the signal. An additional finding showed that cross-linked Fc gamma RI became associated with the cell cytoskeleton and that this association was also transient. Dissociation of Fc gamma RI from its cytoskeletal attachment occurred well after cessation of O2- production.  相似文献   

11.
Anti-human IgE monoclonal antibodies (mAbs) were produced and eight clones recognizing epitopes on native IgE were selected. Epitopes were mapped by a competitive inhibition enzyme-linked immunosorbent assay, Western blotting and a multi-pin peptide technology. Four sites (one each in the Cε1, Cε2, Cε2/Cε3 junction and Cε3) were recognized by the mAbs. The relationship between the four epitopes and the binding sites of high and low affinity IgE receptors (FcεRI and FcεRII, respectively) was studied using a monovalent Fab fragment of each mAb as a binding inhibitor. The IgE-FcεRII binding was clearly inhibited by the mAb recognizing the Cε2/Cε3 junction, suggesting that FcεRII binds to a rather limited area around the Cε2/Cε3 junction. The IgE-FcεRI binding, on the other hand, was scarcely inhibited by any single mAb. However, the binding was inhibited when the epitope in Cε2 was blocked simultaneously with that at the Cε2/Cε3 junction or with that in Cε3, indicating that these three distinct epitopes are related to the FcεRI binding sites. When these three epitopes were shown in the stereograph of human IgE, the FcεRI binding area was spread largely on the groove side between Cε2 and Cε3 domains. These results suggest that FcεRI acquires the high affinity through multiple bindings.  相似文献   

12.
Y Zheng  B Shopes  D Holowka  B Baird 《Biochemistry》1992,31(33):7446-7456
Dynamic conformations of two distinct immunoglobulin (Ig) isotypes, murine IgE and human IgG1, were examined with fluorescence resonance energy transfer measurements. The IgE mutant epsilon/C gamma 3* and the IgG1 mutant gamma/C gamma 3* each bind [5-(dimethylamino)naphthalen-1-yl]sulfonyl (DNS) in two identical antigen binding sites at the amino (N)-terminal ends of the Ig in the Fab segments. Eosin-DNS bound in these Fab sites served as the acceptor probe in these studies. Both Ig have a carboxy (C)-terminal domain (C gamma 3*) which contains genetically introduced cysteine residues. Modification of these cysteine sulfhydryls with fluorescein maleimide provided donor probes near the C-terminal ends of the Ig in the Fc segment. Energy transfer between the C-terminal and N-terminal ends was compared for these two Ig in solution and when they were found to their respective high-affinity receptors on plasma membranes: IgE-Fc epsilon RI on RBL cell membranes and IgG1-Fc gamma RI on U937 cell membranes. Previous energy-transfer measurements with these probes yielded an average end-to-end distance of 71 A for IgE in solution and 69 A for IgE bound to Fc epsilon RI, indicating that in both situations IgE is bent such that the axes of the Fab segments and the axis of the Fc segment do not form a planar Y-shape [Zheng, Shopes, Holowka, & Baird (1991) Biochemistry 30, 9125]. In the current study we found the average end-to-end distance for IgG1 in solution is 75 A and greater than or equal to 85 A for IgG1 bound to Fc gamma RI, suggesting an average bend conformation for IgG1 as well. The contributions of segmental flexibility to the average distances were assessed directly by measuring the efficiency of energy transfer as a function of variations in donor quantum yield caused by a collisional quencher and using these data to extract a Gaussian distribution of end-to-end distances. The distribution average (rho) and half-width (hw) were determined to be as follows: rho = 75 A, hw = 24 A for IgE in solution; rho = 71 A, hw = 12 A for IgE bound to Fc epsilon RI; and rho = 100 A, hw = 88 A for IgG in solution.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Rat basophilic leukemia (RBL-2H3) cells, like mast cells and basophils, carry monovalent membrane receptors with high affinity for IgE (Fc epsilon R). Cross-linking of these receptors provides the immunologic stimulus which initiates a series of biochemical events, culminating in secretion of inflammatory mediators. In an attempt to identify membrane components involved in the stimulus-secretion coupling of these cells, hybridomas were produced from splenocytes of mice immunized with intact RBL-2H3 cells. Here we report the production of a mAb (designated G63) that inhibits the Fc epsilon R-mediated secretion from RBL cells. At low degrees of Fc epsilon R aggregation, the mAb G63-induced inhibition may be complete, whereas at the maximum of secretion the inhibition is in the range of 30 to 40%. The relative degree of inhibition of secretion is dependent on the dose of mAb G63. Furthermore, inhibition requires the bivalency of G63, as the Fab fragments are inactive. The number of antigenic epitopes recognized by G63 per RBL-2H3 cell is 1.8 x 10(4) epitopes/cell, as determined by direct binding studies of 125I-labeled Fab fragments of G63. This number is 20 to 30 times smaller than that of Fc epsilon R on the same cells. The membrane component to which G63 binds has been identified by immunoprecipitation as a glycoprotein with an apparent Mr of 58 to 70 kDa. All of these results, and the fact that no competition for binding to RBL cells between mAb G63 and IgE can be resolved, indicate that mAb G63 binds to a membrane component which is distinct from the Fc epsilon R. mAb G63 suppresses the Fc epsilon R-mediated rise in cytoplasmic concentration of free Ca2+ ions, known to be one of the biochemical signals involved in the stimulus-secretion coupling in RBL-2H3 cells. G63 does not affect, however, the degranulation induced by the Ca2+ ionophore A23187. Therefore, mAb G63 probably exerts its inhibitory effect on a step preceding the rise in cytoplasmic free Ca2+. Thus, mAb G63 defines a previously unidentified membrane component that is involved in one of the early steps of the RBL-2H3 activation mediated by their Fc epsilon R.  相似文献   

14.
Although Fc epsilon R have been detected on human eosinophils, levels varied from moderate to extremely low or undetectable depending on the donor and methods used. We have attempted to resolve the conflicting data by measuring levels of IgE, Fc epsilon RI, and Fc epsilon RII in or on human eosinophils from a variety of donors (n = 26) and late-phase bronchoalveolar lavage fluids (n = 5). Our results demonstrated little or no cell surface IgE or IgE receptors as analyzed by immunofluorescence and flow cytometry. Culture of eosinophils for up to 11 days in the presence or absence of IgE and/or IL-4 (conditions that enhance Fc epsilon R on other cells) failed to induce any detectable surface Fc epsilon R. However, immunoprecipitation and Western blot analysis of eosinophil lysates using mAb specific for Fc epsilon RI alpha showed a distinct band of approximately 50 kDa, similar to that found in basophils. Western blotting also showed the presence of FcR gamma-chain, but no Fc epsilon RI beta. Surface biotinylation followed by immunoprecipitation again failed to detect surface Fc epsilon RI alpha, although surface FcR gamma was easily detected. Since we were able to detect intracellular Fc epsilon RI alpha, we examined its release from eosinophils. Immunoprecipitation and Western blotting demonstrated the release of Fc epsilon RI alpha into the supernatant of cultured eosinophils, peaking at approximately 48 h. We conclude that eosinophils possess a sizable intracellular pool of Fc epsilon RI alpha that is available for release, with undetectable surface levels in a variety of subjects, including those with eosinophilia and elevated serum IgE. The biological relevance of this soluble form of Fc epsilon RI alpha remains to be determined.  相似文献   

15.
Monoclonal antibodies (mAbs) have become an important class of therapeutics, particularly in the realm of anticancer immunotherapy. While the two antigen-binding fragments (Fabs) of an mAb allow for high-avidity binding to molecular targets, the crystallizable fragment (Fc) engages immune effector elements. mAbs of the IgG class are used for the treatment of autoimmune diseases and can elicit antitumor immune functions not only by several mechanisms including direct antigen engagement via their Fab arms but also by Fab binding to tumors combined with Fc engagement of complement component C1q and Fcγ receptors. Additionally, IgG binding to the neonatal Fc receptor (FcRn) allows for endosomal recycling and prolonged serum half-life. To augment the effector functions or half-life of an IgG1 mAb, we constructed a novel “2Fc” mAb containing two Fc domains in addition to the normal two Fab domains. Structural and functional characterization of this 2Fc mAb demonstrated that it exists in a tetrahedral-like geometry and retains binding capacity via the Fab domains. Furthermore, duplication of the Fc region significantly enhanced avidity for Fc receptors FcγRI, FcγRIIIa, and FcRn, which manifested as a decrease in complex dissociation rate that was more pronounced at higher densities of receptor. At intermediate receptor density, the dissociation rate for Fc receptors was decreased 6- to 130-fold, resulting in apparent affinity increases of 7- to 42-fold. Stoichiometric analysis confirmed that each 2Fc mAb may simultaneously bind two molecules of FcγRI or four molecules of FcRn, which is double the stoichiometry of a wild-type mAb. In summary, duplication of the IgG Fc region allows for increased avidity to Fc receptors that could translate into clinically relevant enhancement of effector functions or pharmacokinetics.  相似文献   

16.
Conformations of IgE bound to its receptor Fc epsilon RI and in solution.   总被引:2,自引:0,他引:2  
Y Zheng  B Shopes  D Holowka  B Baird 《Biochemistry》1991,30(38):9125-9132
  相似文献   

17.
IgE binding to its high affinity receptor FcεRI on mast cells and basophils is a key step in the mechanism of allergic disease and a target for therapeutic intervention. Early indications that IgE adopts a bent structure in solution have been confirmed by recent x-ray crystallographic studies of IgEFc, which further showed that the bend, contrary to expectation, is enhanced in the crystal structure of the complex with receptor. To investigate the structure of IgEFc and its conformational changes that accompany receptor binding in solution, we created a F?rster resonance energy transfer (FRET) biosensor using biologically encoded fluorescent proteins fused to the N- and C-terminal IgEFc domains (Cε2 and Cε4, respectively) together with the theoretical basis for quantitating its behavior. This revealed not only that the IgEFc exists in a bent conformation in solution but also that the bend is indeed enhanced upon FcεRI binding. No change in the degree of bending was seen upon binding to the B cell receptor for IgE, CD23 (FcεRII), but in contrast, binding of the anti-IgE therapeutic antibody omalizumab decreases the extent of the bend, implying a conformational change that opposes FcεRI engagement. HomoFRET measurements further revealed that the (Cε2)(2) and (Cε4)(2) domain pairs behave as rigid units flanking the conformational change in the Cε3 domains. Finally, modeling of the accessible conformations of the two Fab arms in FcεRI-bound IgE revealed a mutual exclusion not seen in IgG and Fab orientations relative to the membrane that may predispose receptor-bound IgE to cross-linking by allergens.  相似文献   

18.
The present study investigated whether the sites on the FC region of the IgE molecule, recognized by different anti-IgE monoclonal antibodies (mAb), are identical to those recognized by the Fc receptor (Fc epsilon R). The anti-IgE mAb recognize different clusters of epitopes on the Fc region of IgE and could interfere to different degrees with the binding of IgE to mast cells and basophils, but still recognized cell-bound IgE. Analysis of the stoichiometry and affinity binding of 125I anti-IgE mAb Fab' to free IgE have revealed that anti-IgE mAb of one group (51.3) recognized three repetitive determinants on the IgE Fc portion, and another group (95.3) recognized only one determinant. When these stoichiometric studies were performed with cell-bound IgE, it was found that only one of the sites recognized by 51.3 mAb was involved in the Fc epsilon R binding site. On the other hand, the site recognized by 95.3 mAb was not the Fc epsilon R binding site. Such findings establish mAb 51.3 as a useful tool for isolating the IgE peptides involved in the binding site to the receptor.  相似文献   

19.
The mAb AA4 binds to novel derivatives of the ganglioside Gd1b on rat basophilic leukemia (RBL-2H3) cells. Some of the gangliosides are located close to the high affinity IgE receptor (Fc epsilon RI), and binding of mAb AA4 inhibits Fc epsilon RI-mediated histamine release. In the present study, mAb AA4 was found to bind exclusively to mast cells in all rat tissues examined. In vitro, within 1 min of mAb AA4 binding, the cells underwent striking morphologic changes. They lost their normal spindle shaped appearance, increased their ruffling, and spread over the surface of the culture dish. These changes were accompanied by a redistribution of the cytoskeletal elements, actin, tubulin, and vimentin, but only the actin was associated with the membrane ruffles. Binding of mAb AA4 also induces a rise in intracellular calcium, stimulates phosphatidyl inositol breakdown, and activates PKC. However, the extent of these changes was less than that observed when the cells were stimulated with antigen or antibody directed against the Fc epsilon RI. None of these changes associated with mAb AA4 binding were seen when the cells were exposed to nonspecific IgG, IgE, or four other anti-cell surface antibodies, nor were the changes induced by binding mAb AA4 at 4 degrees C or in the absence of extracellular calcium. Although mAb AA4 does not stimulate histamine release, it enhances the effect of the calcium ionophore A23187 mediated release. The morphological and biochemical effects produced by mAb AA4 are similar to those seen following activation of the cell through the IgE receptor. Therefore, the surface gangliosides which bind mAb AA4 may function in modulating secretory events.  相似文献   

20.
The aggregation state of type I Fc epsilon-receptors (Fc epsilon RI) on the surface of single living mast cells was investigated by resonance fluorescence energy transfer. Derivatization of Fc epsilon RI specific ligands, i.e., immunoglobulin E or Fab fragments of a Fc epsilon RI specific monoclonal antibody, with donor and acceptor fluorophores provided a means for measuring receptor clustering through energy transfer between the receptor probes. The efficiency of energy transfer between the ligands carrying distinct fluorophores was determined on single cells in a microscope by analyzing the photobleaching kinetics of the donor fluorophore in the presence and absence of receptor ligands labeled with acceptor fluorophores. To rationalize the energy transfer data, we developed a theoretical model describing the dependence of the energy transfer efficiency on the geometry of the fluorescently labeled macromolecular ligands and their aggregation state on the cell surface. To this end, the transfer process was numerically calculated first for one pair and then for an ensemble of Fc epsilon RI bound ligands on the cell surface. The model stipulates that the aggregation state of the Fc epsilon RI is governed by an attractive lipid-protein mediated interaction potential. The corresponding pair-distribution function characterizes the spatial distribution of the ensemble. Using this approach, the energy transfer efficiency of the ensemble was calculated for different degrees of receptor aggregation. Comparison of the theoretical modeling results with the experimental energy transfer data clearly suggests that the Fc epsilon RI are monovalent, randomly distributed plasma membrane proteins. The method provides a novel approach for determining the aggregation state of cell surface components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号