首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3′-Terminal uridylyl transferases (TUTases) selectively bind uridine 5′-triphosphate (UTP) and catalyze the addition of uridine 5′-monophosphate to the 3′-hydroxyl of RNA substrates in a template-independent manner. RNA editing TUTase 1 and RNA editing TUTase 2 (RET2) play central roles in uridine insertion/deletion RNA editing, which is an essential part of mitochondrial RNA processing in trypanosomes. Although the conserved N-terminal (catalytic) domain and C-terminal (nucleotide base recognition) domain are readily distinguished in all known TUTases, nucleotide specificity, RNA substrate preference, processivity, quaternary structures, and auxiliary domains vary significantly among enzymes of divergent biological functions. RET2 acts as a subunit of the RNA editing core complex to carry out guide-RNA-dependent U-insertion into mitochondrial mRNA. By correlating mutational effects on RET2 activity as recombinant protein and as RNA editing core complex subunit with RNAi-based knock-in phenotypes, we have assessed the UTP and RNA binding sites in RET2. Here we demonstrate functional conservation of key UTP-binding and metal-ion-coordinating residues and identify amino acids involved in RNA substrate recognition. Invariant arginine residues 144 and 435 positioned in the vicinity of the UTP binding site are critical for RET2 activity on single-stranded and double-stranded RNAs, as well as function in vivo. Recognition of a double-stranded RNA, which resembles a guide RNA/mRNA duplex, is further facilitated by multipoint contacts across the RET2-specific middle domain.  相似文献   

3.
RNA editing produces mature trypanosome mitochondrial mRNAs by uridylate (U) insertion and deletion. In insertion editing, Us are added to the pre-mRNA by a 3' terminal uridylyl transferase (TUTase) activity. We report the identification of a TUTase activity that copurifies with in vitro editing and is catalyzed by the integral editosome protein TbMP57. TbMP57 catalyzes the addition of primarily a single U to single-stranded (ss) RNA and adds the number of Us specified by a guide RNA to insertion editing-like substrates. TbMP57 is distinct from a previously identified TUTase that adds many Us to ssRNA and which we find is neither a stable editosome component nor does it add Us to editing-like substrates. Recombinant TbMP57 specifically interacts with the editosome protein TbMP81, and this interaction enhances the TUTase activity. These results suggest that TbMP57 catalyzes U addition to pre-mRNA during editing.  相似文献   

4.
RNA editing in Trypanosoma brucei inserts and deletes uridines in mitochondrial mRNAs by a series of enzymatic steps that are catalyzed by a multiprotein complex, the editosome. KREPB1 and two related editosome proteins KREPB2 and KREPB3 contain motifs that suggest endonuclease and RNA/protein interaction functions. Repression of KREPB1 expression in procyclic forms by RNAi inhibited growth, in vivo editing, and in vitro endoribonucleolytic cleavage of deletion substrates. However, cleavage of insertion substrates and the exoUase, TUTase, and ligase catalytic activities of editing were retained by 20S editosomes. Repression of expression of an ectopic KREPB1 allele in bloodstream forms lacking both endogenous alleles or exclusive expression of KREPB1 with point mutations in the putative RNase III catalytic domain also blocked growth, in vivo editing, and abolished cleavage of deletion substrates, without affecting the other editing steps. These data indicate that KREPB1 is an endoribonuclease that is specific for RNA editing deletion sites.  相似文献   

5.
6.
Terminal RNA uridylyltransferases of trypanosomes   总被引:1,自引:0,他引:1  
  相似文献   

7.
RNA editing in Trypanosomatids creates functional mitochondrial mRNAs by extensive uridylate (U) insertion and deletion as specified by small guide RNAs (gRNAs). Editing is catalysed by the multiprotein editosome. Over 20 of its protein components have been identified and additional proteins are likely to function in editing and its regulation. The functions of only a few editosome proteins have been determined. Surprisingly, there are related pairs or sets of editosome proteins, and insertion and deletion editing appear to be functionally and perhaps spatially separate. A model for the editosome is proposed, which has a catalysis domain with separate sectors for insertion and deletion editing. It also contains domains for anchor duplex and upstream RNA binding, which position the sequence to be edited in the catalysis domain.  相似文献   

8.
9.
Most mitochondrial mRNAs in trypanosomes undergo uridine insertion/deletion editing that is catalyzed by ∼20S editosomes. The editosome component KREPA3 is essential for editosome structural integrity and its two zinc finger (ZF) motifs are essential for editing in vivo but not in vitro. KREPA3 function was further explored by examining the consequence of mutation of its N- and C- terminal ZFs (ZF1 and ZF2, respectively). Exclusively expressed myc-tagged KREPA3 with ZF2 mutation resulted in lower KREPA3 abundance and a relative increase in KREPA2 and KREL1 proteins. Detailed analysis of edited RNA products revealed the accumulation of partially edited mRNAs with less insertion editing compared to the partially edited mRNAs found in the cells with wild type KREPA3 expression. Mutation of ZF1 in TAP-tagged KREPA3 also resulted in accumulation of partially edited mRNAs that were shorter and only edited in the 3′-terminal editing region. Mutation of both ZFs essentially eliminated partially edited mRNA. The mutations did not affect gRNA abundance. These data indicate that both ZFs are essential for the progression of editing and perhaps its accuracy, which suggests that KREPA3 plays roles in the editing process via its ZFs interaction with editosome proteins and/or RNA substrates.  相似文献   

10.
Three types of editosomes, each with an identical core containing six related KREPA proteins, catalyze the U insertion and deletion RNA editing of mitochondrial mRNAs in trypanosomes. Repression of expression of one of these, KREPA3 (also known as TbMP42), shows that it is essential for growth and in vivo editing in both procyclic (PF) and bloodstream (BF) life cycle stages of Trypanosoma brucei. RNA interference knockdown results in editosome disruption and altered in vitro editing in PFs, while repression by regulatable double knockout results in almost complete loss of editosomes in BFs. Mutational analysis shows that the KREPA3 zinc fingers and OB-fold domain are each essential for growth and in vivo editing. Nevertheless, KREPA3 with mutated zinc fingers incorporates into editosomes that catalyze in vitro editing and thus is not essential for editosome integrity, although stability is affected. In contrast, the OB-fold domain is essential for editosome integrity. Overall, KREPA3, especially its OB-fold, functions in editosome integrity, and its zinc fingers are essential for editing in vivo but not for the central catalytic steps. KREPA3 may function in editosome organization and/or RNA positioning.  相似文献   

11.
Expression of the trypanosomal mitochondrial genome requires the insertion and deletion of uridylyl residues at specific sites in pre-mRNAs. RET2 terminal uridylyl transferase is an integral component of the RNA editing core complex (RECC) and is responsible for the guide-RNA-dependent U insertion reaction. By analyzing RNA-interference-based knock-in Trypanosoma brucei cell lines, purified editing complex, and individual protein, we have investigated RET2's association with the RECC. In addition, the U insertion activity exhibited by RET2 as an RECC subunit was compared with characteristics of the monomeric protein. We show that interaction of RET2 with RECC is accomplished via a protein-protein contact between its middle domain and a structural subunit, MP81. The recombinant RET2 catalyzes a faithful editing on gapped (precleaved) double-stranded RNA substrates, and this reaction requires an internal monophosphate group at the 5′ end of the mRNA 3′ cleavage fragment. However, RET2 processivity is limited to insertion of three Us. Incorporation into the RECC voids the internal phosphate requirement and allows filling of longer gaps similar to those observed in vivo. Remarkably, monomeric and RECC-embedded enzymes display a similar bimodal activity: the distributive insertion of a single uracil is followed by a processive extension limited by the number of guiding nucleotides. Based on the RNA substrate specificity of RET2 and the purine-rich nature of U insertion sites, we propose that the distributive + 1 insertion creates a substrate for the processive gap-filling reaction. Upon base-pairing of the + 1 extended 5′ cleavage fragment with a guiding nucleotide, this substrate is recognized by RET2 in a different mode compared to the product of the initial nucleolytic cleavage. Therefore, RET2 distinguishes base pairs in gapped RNA substrates which may constitute an additional checkpoint contributing to overall fidelity of the editing process.  相似文献   

12.
3'-Uridylylation of RNA is emerging as a phylogenetically widespread phenomenon involved in processing events as diverse as uridine insertion/deletion RNA editing in mitochondria of trypanosomes and small nuclear RNA (snRNA) maturation in humans. This reaction is catalyzed by terminal uridylyltransferases (TUTases), which are template-independent RNA nucleotidyltransferases that specifically recognize UTP and belong to a large enzyme superfamily typified by DNA polymerase beta. Multiple TUTases, recently identified in trypanosomes, as well as a U6 snRNA-specific TUTase enzyme in humans, are highly divergent at the protein sequence level. However, they all possess conserved catalytic and UTP recognition domains, often accompanied by various auxiliary modules present at the termini or between conserved domains. Here we report identification, structural and biochemical analyses of a novel trypanosomal TUTase, TbTUT4, which represents a minimal catalytically active RNA uridylyltransferase. The TbTUT4 consists of only two domains that define the catalytic center at the bottom of the nucleoside triphosphate and RNA substrate binding cleft. The 2.0 Angstroms crystal structure reveals two significantly different conformations of this TUTase: one molecule is in a relatively open apo conformation, whereas the other displays a more compact TUTase-UTP complex. A single nucleoside triphosphate is bound in the active site by a complex network of interactions between amino acid residues, a magnesium ion and highly ordered water molecules with the UTP's base, ribose and phosphate moieties. The structure-guided mutagenesis and cross-linking studies define the amino acids essential for catalysis, uracil base recognition, ribose binding and phosphate coordination by uridylyltransferases. In addition, the cluster of positively charged residues involved in RNA binding is identified. We also report a 2.4 Angstroms crystal structure of TbTUT4 with the bound 2' deoxyribonucleoside, which provides the structural basis of the enzyme's preference toward ribonucleotides.  相似文献   

13.
The 20S editosome, a multiprotein complex, catalyzes the editing of most mitochondrial mRNAs in trypanosomatids by uridylate insertion and deletion. RNAi mediated inactivation of expression of KREPA4 (previously TbMP24), a component of the 20S editosome, in procyclic form Trypanosoma brucei resulted in inhibition of cell growth, loss of RNA editing, and disappearance of 20S editosomes. Levels of MRP1 and REAP-1 proteins, which may have roles in editing but are not editosome components, were unaffected. Tagged KREPA4 protein is incorporated into 20S editosomes in vivo with no preference for either insertion or deletion subcomplexes. Consistent with its S1-like motif, recombinant KREPA4 protein binds synthetic gRNA with a preference for the 3' oligo (U) tail. These data suggest that KREPA4 is an RNA binding protein that may be specific for the gRNA Utail and also is important for 20S editosome stability.  相似文献   

14.
Trypanosomatids, such as the sleeping sickness parasite Trypanosoma brucei, contain a ~ 20S RNA-editing complex, also called the editosome, which is required for U-insertion/deletion editing of mitochondrial mRNAs. The editosome contains a core of 12 proteins including the large interaction protein A1, the small interaction protein A6, and the editing RNA ligase L2. Using biochemical and structural data, we identified distinct domains of T. brucei A1 which specifically recognize A6 and L2. We provide evidence that an N-terminal domain of A1 interacts with the C-terminal domain of L2. The C-terminal domain of A1 appears to be required for the interaction with A6 and also plays a key role in RNA binding by the RNA-editing ligase L2 in trans. Three crystal structures of the C-terminal domain of A1 have been elucidated, each in complex with a nanobody as a crystallization chaperone. These structures permitted the identification of putative dsRNA recognition sites. Mutational analysis of conserved residues of the C-terminal domain identified Arg703, Arg731 and Arg734 as key requirements for RNA binding. The data show that the editing RNA ligase activity is modulated by a novel mechanism, i.e. by the trans-acting RNA binding C-terminal domain of A1.  相似文献   

15.
T. brucei survival relies on the expression of mitochondrial genes, most of which require RNA editing to become translatable. In trypanosomes, RNA editing involves the insertion and deletion of uridylates, a developmentally regulated process directed by guide RNAs (gRNAs) and catalyzed by the editosome, a complex of proteins. The pathway for mRNA/gRNA complex formation and assembly with the editosome is still unknown. Work from our laboratory has suggested that distinct mRNA/gRNA complexes anneal to form a conserved core structure that may be important for editosome assembly. The secondary structure for the apocytochrome b (CYb) pair has been previously determined and is consistant with our model of a three-helical structure. Here, we used cross-linking and solution structure probing experiments to determine the structure of the ATPase subunit 6 (A6) mRNA hybridized to its cognate gA6-14 gRNA in different stages of editing. Our results indicate that both unedited and partially edited A6/gA6-14 pairs fold into a three-helical structure similar to the previously characterized CYb/gCYb-558 pair. These results lead us to conclude that at least two mRNA/gRNA pairs with distinct editing sites and distinct primary sequences fold to a three-helical secondary configuration that persists through the first few editing events.  相似文献   

16.
17.
Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei. The mRNAs are differentially edited in bloodstream form (BF) and procyclic form (PF) life cycle stages, and this correlates with the differential utilization of glycolysis and oxidative phosphorylation between the stages. The mechanism that controls this differential editing is unknown. Editing is catalyzed by multiprotein ∼20S editosomes that contain endonuclease, 3′-terminal uridylyltransferase, exonuclease, and ligase activities. These editosomes also contain KREPB5 and KREPA3 proteins, which have no functional catalytic motifs, but they are essential for parasite viability, editing, and editosome integrity in BF cells. We show here that repression of KREPB5 or KREPA3 is also lethal in PF, but the effects on editosome structure differ from those in BF. In addition, we found that point mutations in KREPB5 or KREPA3 differentially affect cell growth, editosome integrity, and RNA editing between BF and PF stages. These results indicate that the functions of KREPB5 and KREPA3 editosome proteins are adjusted between the life cycle stages. This implies that these proteins are involved in the processes that control differential editing and that the 20S editosomes differ between the life cycle stages.  相似文献   

18.
Three distinct editosomes, typified by mutually exclusive KREN1, KREN2, or KREN3 endonucleases, are essential for mitochondrial RNA editing in Trypanosoma brucei. The three editosomes differ in substrate endoribonucleolytic cleavage specificity, which may reflect the vast number of editing sites that need insertion or deletion of uridine nucleotides (Us). Each editosome requires the single RNase III domain in each endonuclease for catalysis. Studies reported here show that the editing endonucleases do not form homodimeric domains, and may therefore function as intermolecular heterodimers, perhaps with KREPB4 and/or KREPB5. Editosomes isolated via TAP tag fused to KREPB6, KREPB7, or KREPB8 have a common set of 12 proteins. In addition, KREN3 is only found in KREPB6 editosomes, KREN2 is only found in KREPB7 editosomes, and KREN1 is only found in KREPB8 editosomes. These are the same associations previously found in editosomes isolated via the TAP-tagged endonucleases KREN1, KREN2, or KREN3. Furthermore, TAP-tagged KREPB6, KREPB7, and KREPB8 complexes isolated from cells in which expression of their respective endonuclease were knocked down were disrupted and lacked the heterotrimeric insertion subcomplex (KRET2, KREPA1, and KREL2). These results and published data suggest that KREPB6, KREPB7, and KREPB8 associate with the deletion subcomplex, whereas the KREN1, KREN2, and KREN3 endonucleases associate with the insertion subcomplex.  相似文献   

19.
RNA editing produces mature mitochondrial mRNAs in trypanosomatids by the insertion and deletion of uridylates. It is catalyzed by a multiprotein complex, the editosome. We identified TbMP44 among the components of enriched editosomes by a combination of mass spectrometry and DNA sequence database analysis. Inactivation of an ectopic TbMP44 allele in cells in which the endogenous alleles were disrupted abolished RNA editing, inhibited cell growth, and was eventually lethal to bloodstream form trypanosomes. Loss of TbMP44 mRNA was followed initially by a reduction in the editosome sedimentation coefficient and then by the absence of other editosome proteins despite the presence of the mRNA. Reactivation of TbMP44 gene expression resulted in the resumption of cell growth and the reappearance of editosomes. These data indicate that TbMP44 is a component of the editosome that is essential for editing and critical for the structural integrity of the editosome.  相似文献   

20.
Guide RNAs (gRNAs) are small RNAs that provide specificity for uridine addition and deletion during mRNA editing in trypanosomes. Terminal uridylyl transferase (TUTase) adds uridines to pre-mRNAs during RNA editing and adds a poly(U) tail to the 3' end of gRNAs. The poly(U) tail may stabilize the association of gRNAs with cognate mRNA during editing. Both TUTase and gRNAs associate with two ribonucleoprotein complexes, I (19S) and II (35S to 40S). Complex II is believed to be the fully assembled active editing complex, since it contains pre-edited mRNA and enzymes thought necessary for editing. Purification of TUTase from mitochondrial extracts resulted in the identification of two chromatographically distinct TUTase activities. Stable single-uridine addition to different substrate RNAs is performed by the 19S complex, despite the presence of a uridine-specific 3' exonuclease within this complex. Multiple uridines are added to substrate RNAs by a 10S particle that may be an unstable subunit of complex I lacking the uridine-specific 3' exonuclease. Multiple uridines could be stably added onto gRNAs by complex I when the cognate mRNA is present. We propose a model in which the purine-rich region of the cognate mRNA protects the uridine tail from a uridine exonuclease activity that is present within the complex. To test this model, we have mutated the purine-rich region of the pre-mRNA to abolish base-pairing interaction with the poly(U) tail of the gRNA. This RNA fails to protect the uridine tail of the gRNA from exoribonucleolytic trimming and is consistent with a role for the purine-rich region of the mRNA in gRNA maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号