首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2′,3′-Dideoxycytidine is a powerful in vitro inhibitor of human immunodeficiency virus and is currently used in the treatment of acquired immunodeficiency syndrome. A long-term exposure of U937 monoblastoid cells to dideoxycytidine induces the selection of drug-resistant cells (U937-R). In previous studies, we investigated some important biochemical properties and functional activities, such as basal respiration, protein kinase C activity, superoxide anion release, and the level of reduced glutathione, which were found to be higher in the drug-resistant cell line, compared to the parental one. In the present study, we evaluated the response of the two cell lines to the induction of apoptosis by treatment with staurosporine and okadaic acid, which interfere with the protein kinase and phosphatase pathways, respectively. Moreover, knowing that GSH plays a crucial role in the regulation of nitric oxide-dependent apoptosis, U937-R and parental lines have been treated with SIN-1, which is known to generate significant amounts of O2 and nitric oxide. Resistant and parental cells have been analysed by light and electron microscopy and agarose gel electrophoresis of isolated DNA has been performed. The obtained results demonstrate a different susceptibility of U937-R cell line to apoptosis induced with the three triggers. U937-R cells show more advanced apoptotic features if compared with parental cells, after staurosporine treatment. Differently, the okadaic acid does not induce a different behaviour in the two models. On the contrary, the agent SIN-1 determines an increased number of apoptotic cells in the U937 line. The results suggest that a higher level of protein kinase C and glutathione could prevent programmed cell death in U937-R.  相似文献   

2.
Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 (PP-1) and 2A (PP-2A). The phosphorylation and dephosphorylation at the serine/threonine residues on proteins play important roles in regulating gene expression, cell cycle progression, and apoptosis. In this study, phosphatase inhibitor okadaic acid induces apoptosis in U937 cells via a mechanism that appears to involve caspase 3 activation, but not modulation of Bcl-2, Bax, and Bcl-X(L) expression levels. Treatment with 20 or 40 nM okadaic acid for 24 h produced DNA fragmentation in U937 cells. This was associated with caspase 3 activation and PLC-gamma1 degradation. Okadaic acid-induced caspase 3 activation and PLC-gamma1 degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 40 nM. Moreover, PMA (phorbol myristate acetate), PKC (protein kinase C) activator, protected U937 cells from okadaic acid-induced apoptosis, abrogated okadaic acid-induced caspase 3 activation, and specifically inhibited downregulation of XIAP (X-linked inhibitor of apoptosis) by okadaic acid. PMA cotreated U937 cells exhibited less cytochrome c release and sustained expression levels of the IAP (inhibitor of apoptosis) proteins during okadaic acid-induced apoptosis. In addition, these findings indicate that PMA inhibits okadaic acid-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase 3 that is involved in the execution of apoptosis.  相似文献   

3.
A study was made of apoptotic cell shrinkage, which is generally believed to be a hallmark of apoptosis. The two conventional models of apoptosis were used for examination of changes in cell water balance--one is apoptosis caused in human lymphoma cell line U937 by staurosporine, and the other by etoposide. Intracellular water was determined by measuring buoyant density of cells in continuous Percoll gradient. Apoptosis was recognized by microscopy and flow cytometry. Apoptosis caused by staurosporine (1 microM, 4 h) was found to be associated with a decrease in cell water content by almost 24%. In contrast, no decrease in cell water content was observed in U937 cells incubated with etoposide (50 microM, 4 h), in spite of the number of features suggesting the presence of apoptosis, such as the appearance of apoptotic bodies, chromatin condensation and fragmentation and disappearance of S-phase cells in DNA histogram. It is concluded that definition of apoptosis as "shrinkage-necrosis" (Kerr, 1971) needs correcting: the distinction of apoptotic cells involves the absence of swelling, rather than cell shrinkage.  相似文献   

4.
Human monoblastoid cells (U937) grown in the presence of therapeutically relevant dideoxycytidine concentrations (0.1 M) become resistant to the drug thanks to an altered deoxycytidine kinase. In this paper we show that deoxycytidine kinase mRNA is significally reduced in drug-resistant U937 cells (U937-R) although the deoxycytidine kinase promoter is normal. A number of nucleotide deletions, insertions and substitutions was found in the coding region of deoxycytidine kinase gene. Several identified mutations result in truncated forms of the enzyme or in the introduction of stop codons: in one case a complete lack of exon 4 was found. Thus, the deoxycytidine kinase gene accumulates mutations at a very high rate, as already reported for other cytidine analogues (i.e. Ara C ) suggesting that the design of new antiviral or anticancer drugs of the cytidine family should take into account the potential development of cell resistance as a critical factor in drug failure.  相似文献   

5.
Exposure of the two related human leukemic cell lines U937 and TUR to chemotherapeutic compounds resulted in opposite effects on induction and resistance to apoptosis. Incubation of U937 cells with 1-β- -arabinofuranosylcytosine or the etoposide VP-16 was accompanied by growth arrest in G0/G1of the cell cycle and an accumulation of a population in the sub-G1phase which exhibited characteristics typical for the apoptotic pathway. In contrast, human TUR leukemia cells demonstrated no significant effects after a similar treatment with Ara-C and VP-16. Thus, TUR cells continued to proliferate in the presence of these anti-cancer drugs and the number of apoptotic cells as evaluated by propidium iodide staining and the detection of internucleosomal DNA fragmentation was significantly reduced when compared to the parental U937 cells. Similar effects were observed upon serum-starvation demonstrating resistance to apoptosis in TUR cells. Whereas induction of apoptosis is regulated by a network of distinct factors including the activation of proteolytically active caspases, we investigated these pathways in both cell lines. U937 cells demonstrated activation of the 32-kDa caspase-3 upon drug treatment by cleavage into the 20-kDa activated form. However, there was no 20-kDa caspase-3 fragment detectable in TUR cells. Simultaneously, the enzymatic activity of caspase-3 was significantly increased in drug-treated U937 cells as measuredin vitroby enhanced metabolization of a fluorescence substrate andin vivoby cleavage of an appropriate substrate for caspase-3, namely, protein kinase Cδ. In contrast, there was little if any caspase-3 activation detectable in drug-treated TUR cells. Taken together, these data suggest a signaling defect in the activation of the caspase-3 proteolytic system in TUR cells upon treatment with chemotherapeutic compounds which is associated with resistance to apoptosis in these human leukemia cells.  相似文献   

6.
A variety of chemotherapeutic agents induce cell death via apoptosis. We had shown previously that gemcitabine (2,2-difluorodeoxycytidine) induced an atypical apoptosis in BG-1 human ovarian cancer cells; therefore, further studies were conducted to characterize more precisely gemcitabine-induced apoptosis in BG-1 cells compared to a general inducer of apoptosis, staurosporine. BG-1 cells exposed to 0.5, 1.0 and 10 M gemcitabine for 8 h, or staurosporine (1.0 M) for 6 h, exhibited high molecular weight DNA fragmentation (50 kbp); however, only staurosporine treatment produced internucleosomal DNA fragments (200 bp) in a laddered pattern on the agarose gel. Staurosporine (1.0 M) rapidly induced phosphatidylserine plasma membrane translocation that increased linearly with time as measured by annexin V-FITC binding, and similar kinetics were observed for caspase activation by staurosporine in BG-1 cells. In contrast, 10 M gemcitabine increased phosphatidylserine expression in a small fraction of cells (5–10%) vs. untreated controls over the course of 48 h and significant caspase activity was detected within 12 h of drug exposure. Time-lapse video microscopy of BG-1 cells exposed to 1.0 M staurosporine or 10 M gemcitabine for up to 72 h showed that the morphologic changes and kinetics of cell death induced by these agents differed significantly. We also evaluated the apoptosis induced by paclitaxel (a mitotic poison) and cisplatin (an agent not dependent on cell cycle functions) in BG-1 cells by these methods because these drugs are used clinically to treat ovarian cancer. Our findings demonstrate that the kinetics of apoptotic cell death induced by gemcitabine and other chemotherapeutic agents should be taken into account when designing treatment strategies for ovarian cancer.  相似文献   

7.
Peroxynitrite, a potent physiological inorganic toxin, is known to play a critical role in cellular oxidative damage. The protective role of antioxidant enzymes against peroxynitrite-induced oxidative damage in U937 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole, and oxlalomalate, specific inhibitors of superoxide dismutase, catalase, and NADP+-dependent isocitrate dehydrogenase, respectively. Upon exposure to 1 mM 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a generator of peroxynitrite through the reaction between nitric oxide and superoxide anion, to U937 cells, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage reflected by an increase in 8-hydroxy-2′-deoxyguanosine, were higher in the inhibitor-treated cells as compared to the control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2′7′-dichlorodihydrofluorescin as well as the significant decrease in the intracellular GSH level in the inhibitor-treated U937 cells upon exposure to SIN-1. These results suggest that antioxidant enzymes play an important role in cellular defense against peroxynitrite-induced cell death.  相似文献   

8.
Kang SH  Jeong SJ  Kim SH  Kim JH  Jung JH  Koh W  Kim JH  Kim DK  Chen CY  Kim SH 《PloS one》2012,7(4):e28706

Background

The aim of this study is to determine anti-cancer effect of Icariside II purified from the root of Epimedium koreanum Nakai on human acute myeloid leukemia (AML) cell line U937.

Methodology/Principal Findings

Icariside II blocked the growth U937 cells in a dose- and time-dependent manner. In this anti-proliferation process, this herb compound rendered the cells susceptible to apoptosis, manifested by enhanced accumulation of sub-G1 cell population and increased the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. Icariside II was able to activate caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP) in a time-dependent manner. Concurrently, the anti-apoptotic proteins, such as bcl-xL and survivin in U937 cells, were downregulated by Icariside II. In addition, Icariside II could inhibit STAT3 phosphorylation and function and subsequently suppress the activation of Janus activated kinase 2 (JAK2), the upstream activators of STAT3, in a dose- and time-dependent manner. Icariside II also enhanced the expression of protein tyrosine phosphatase (PTP) SH2 domain-containing phosphatase (SHP)-1, and the addition of sodium pervanadate (a PTP inhibitor) prevented Icariside II-induced apoptosis as well as STAT3 inactivation in STAT3 positive U937 cells. Furthermore, silencing SHP-1 using its specific siRNA significantly blocked STAT3 inactivation and apoptosis induced by Icariside II in U937 cells.

Conclusions/Significance

Our results demonstrated that via targeting STAT3-related signaling, Icariside II sensitizes U937 cells to apoptosis and perhaps serves as a potent chemotherapeutic agent for AML.  相似文献   

9.
This study examined the role of protein phosphorylation in TNF induction of apoptosis in several tumor cell lines by testing the effects of agents that either stimulate or inhibit protein phosphorylation. The serine-threonine phosphatase inhibitors, okadaic acid (OKA) and calyculin A (CLA), synergistically augmented TNF-induced apoptosis in several TNF-sensitive tumor cell lines including the U937 histiocytic lymphoma, the BT-20 mammary carcinoma, and the LNCap prostatic tumor cell line. Furthermore, the phosphatase inhibitors completely reversed the TNF resistance of a variant (U9-TR) derived from U937. CLA also inhibited phosphatase activity in cell-free extracts from both U937 and U9-TR at the same concentrations (0.4–2.0 nM) that it synergized with TNF. In contrast, TNF treatment of U937 cells did not result in inhibition of phosphatase activity mediated by protein phosphatase 1 (PP1) and PP2A in cell extracts. Since the phosphatase inhibitors are known to increase the overall levels of protein phosphorylation in cells, this suggested that TNF may act by stimulating protein kinase (PK) activity. This hypothesis was supported by the results of testing a panel of relatively specific protein kinase inhibitors. TNF activation of DNA fragmentation was blocked by a potent inhibitor of myosin light chain kinase (MLCK) but was unaffected by inhibitors of cAMP or cGMP-dependent PKs. We postulate that a defect in the activation of MLCK or possibly some other as yet unknown PK may be responsible for the TNF resistance of U9-TR. Furthermore, this resistance may be circumvented by promoting protein phosphorylation with the serine-threonine-dependent phosphatase inhibitors.  相似文献   

10.
Tumour necrosis factor- (TNF) is a cytokine that induces apoptosis in various cell systems by binding to a TNF receptor (TNFR). To study TNF-induced apoptosis, we isolated and characterized a novel TNF resistant variant, U937/TNF clone II-5, from human monocytic leukaemia U937 cells. The II-5 cells resist apoptosis by TNF and anti-Fas antibody but not by anticancer drugs, such as VP-16 and Ara-C. Somatic cell hybridization between U937 and II-5 showed that the apoptosis resistance to TNF in II-5 was genetically dominant. This dominant mutation in II-5 cells blocks TNF-induced disruption of mitochondrial membrane potential and caspase-3 activation. Expression of TNFR, Fas and Bcl-2 family proteins were not changed in II-5 cells. These results suggest that the apoptosis-resistant II-5 cells could have a functional defect in apoptosis signalling from TNFR to mitochondria and caspase activation. The II-5 cells could be useful in studying the signa lling linkage between TNFR and mitochondria.  相似文献   

11.
12-O-tetradecanoylphorbol-13-acetate (TPA), a phorbol ester that is known as a tumor promoter, induces differentiation of myeloid cells and suppresses their proliferation. We studied the regulation of apoptosis by TPA in human monocytic cell line U937 cells that lack p53. Untreated U937 cells constitutively underwent apoptosis, and TPA enhanced apoptosis in these cells. Further studies showed that TPA increased production of tumor necrosis factor-alpha (TNFalpha) in U937 cells, and exogenously added TNFalpha induced apoptosis. Moreover, the induction of apoptosis by TPA was blocked by anti-TNFalpha antibody. Similar results were obtained in the myeloblastic cell line KY821 cells. We also found that the induction of apoptosis by TPA was increased in cells overexpressed with TNF receptor 1 but not in control cells. Furthermore, TPA failed to induce the production of TNFalpha and apoptosis in cells with either their protein kinase C or mitogen-activated protein kinase pathway blocked. Our results indicate that TPA induces apoptosis, at least in part, through a pathway that requires endogenous production of TNFalpha in U937 cells. Our data also suggest that the induction of apoptosis by TPA occurs through activation of protein kinase C and mitogen-activated protein kinase and TNFalpha is an autocrine-stimulating factor for the induction of apoptosis in these cells.  相似文献   

12.
Summary In view of cellular adoptive immunotherapy we have studied monocyte-mediated cytostasis and cytotoxicity against U 937 cells, a human histiocytic lymphoma cell line. Highly purified human monocytes and monocytederived macrophages were activated with interferon (IFN) or tumour necrosis factor (TNF) to antileukemic immune effector cells. Antileukemic activity of human monocytes was dependent on monocyte differentiation into macrophages and on a dose- and time-dependent activation with IFN or TNF. Maximum cytostasis of 97.0±0.7% (mean ± SEM) (conventional [3H]dT uptake assay) and 81.9±5.3% cytotoxicity (modified MTT assay) of U 937 cells was obtained by monocytes activated with 100 U/ml IFN for at least 24 h at an effector-to-target-cell ratio of 10. U 937 cells premodified with IFN showed an increase in susceptibility to monocyte-mediated cytotoxicity. U 937 cells premodified with TNF were almost resistant to monocyte-mediated cytotoxicity while activated monocytes maintained their cytotoxic potential. These data show that IFN and TNF are potent activators of monocyte-mediated cytotoxicity. Furthermore, IFN and TNF might be involved in the regulation of the susceptibility of leukemic cells to lysis by interactions with monocytes or macrophages.  相似文献   

13.
14.
15.
Summary Template-directed oligomerization of an activated derivative of 3-isoadenosine 5-phosphate (piA) on polyuridylic acid [poly(U)] was studied. The reaction of ImpiA is more efficient than the corresponding reaction of ImpA, and produces 3–5-linked oligomers while the reaction of ImpA gives only 2–5-linked oligomers. The base pairing between piA and poly(U) in this system is probably of the Hoogsteen type (involving the 6-amino group and N7 of 3-isoadenosine) rather than of the Watson-Crick type.  相似文献   

16.
Activation of protein kinase C (PKC) by TPA in human U937 myeloid leukemia cells is associated with induction of adherence, differentiation, and G0/G1 cell cycle arrest. In this study, we demonstrate that in addition to these differentiating cells about 25% of U937 cells accumulated in the subG1 phase after TPA treatment. This effect proved to be phorbol ester-specific, since other compounds such as retinoic acid or vitamin D3 failed to induce apoptosis in conjunction with differentiation. Only a specific inhibitor of PKC, GF109203X, but not the broad-spectrum kinase inhibitor staurosporine or a tyrosine kinase inhibitor genistein could reverse the induction of apoptosis. Bryostatin-1, another specific PKC activator with distinct biochemical activity failed to induce apoptosis. Moreover, bryostatin-1 completely abolished the induction of apoptosis in U937 cells even if added 8 hours after TPA treatment. Apart from apoptosis induced by various chemotherapeutic drugs, TPA-related cell death is not mediated by an autocrine Fas-FasL loop and could not be prevented by a blocking antibody to the Fas receptor. However, a 75% reduction in the number of apoptotic cells after TPA stimulation was achieved by preincubation with a blocking antibody to the TNFalpha receptor. Tetrapeptide cleavage assays revealed a four-fold increase in the DEVD-cleavage activity in U937 cells compared to a three-fold increase in TUR cells. Immunoblotting demonstrated that TUR cells did not activate significant levels of caspase-3 or -7, whereas in U937 cells a 20-kDa cleavage product corresponding to activated caspase-3 was detectable after 3 d TPA exposure. Moreover, immunoblots revealed a strongly reduced expression of the adaptor molecule APAF-1, which is required for cytochrome c-dependent activation of caspase-9 and subsequently caspase-3. APAF-1 proved to be inducible after PKC activation with phorbol ester in U937, but not in TUR cells. Thus, APAF-1 expression may, at least in part, be regulated by PKC activity and reduced APAF-1 levels are associated with resistance to various inducers of apoptosis. Furthermore, TPA exposure of U937 cells is associated with increased levels of the pro-apoptotic proteins Bak and Bcl-xs, whereas simultaneously a decline in the Bcl-2 expression was noticable.  相似文献   

17.
蛋白激酶C抑制剂对U937细胞清道夫受体功能的影响   总被引:8,自引:0,他引:8  
为了解细胞内蛋白质磷酸化水平对清道夫受体功能的影响,用蛋白激酶C抑掉剂形孢菌素(staurosporine,STA)处理人U937细胞,分别测定对照组和处理组细胞对碘标记的氧化低密度脂蛋白(^125I)ox-LDL的降解,结合,细胞表面受体复合物的内移以及细胞内脂质蓄积的程度,并利用放射自显影方法观察药物对细胞表面受体表达的影响,结果发现STA可以促进细胞结合(^125I)ox-LDL增加细胞表面  相似文献   

18.
Apoptotic death of CD4+ T lymphocytes is a major cause of the immunodeficiency caused by human immunodeficiency virus (HIV), but it is still unclear how this process precisely occurs. To characterize a potentially useful cellular model, we have analyzed the tendency of chronically HIV-infected CD4+ human cell lines of different origin to undergo apoptosis. We studied ACH-2 and U1 lines, derived from the CD4+ T-cell A301 and the promonocytic U937 cell lines, respectively, and induced apoptosis via several stimuli that trigger different pathways. Their capacity to regulate plasma membrane CD95 expression and to produce soluble CD95 was also analyzed. Using staurosporine, TNF-alpha plus cycloheximide, and gamma-radiations, we observed that ACH-2 were more sensitive to programmed cell death than A301, while U1 were less sensitive than U937. Both infected cell types had a lower sensitivity to CD95-induced apoptosis; the analysis of changes in mitochondrial membrane potential corroborated these observations. Plasma membrane CD95 was similarly regulated in all cell types, which, however, presented a different capacity to produce soluble CD95 molecules. Our in vitro results may offer a new perspective for developing further studies on the pathogenesis of HIV infection. A chronically infected cell line of lymphocytic origin is more susceptible to apoptosis than its parental cell type, while infected monocytic cells are less sensitive than their uninfected counterpart. Thus, it is possible to hypothesize that one of the reasons by which circulating monocytes survive and represent a viral reservoir is the capacity of HIV to decrease the sensitivity to apoptosis of this cell type. However, further studies on ex-vivo collected fresh cells, as well as on other cell lines, are urgently needed to confirm such hypothesis.  相似文献   

19.
Effects of phenethyl isothiocyanate (PEITC) have been investigated in human leukemia cells (U937, Jurkat, and HL-60) as well as in primary human acute myeloid leukemia (AML) cells in relation to apoptosis and cell signaling events. Exposure of cells to PEITC resulted in pronounced increase in the activation of caspase-3, -8, -9, cleavage/degradation of PARP, and apoptosis in dose- and time-dependent manners. These events were accompanied by the caspase-independent downregulation of Mcl-1, inactivation of Akt, as well as activation of Jun N-terminal kinase (JNK). Inhibition of PI3K/Akt by LY294002 significantly enhanced PEITC-induced apoptosis. Conversely, enforced activation of Akt by a constitutively active Akt construct markedly abrogated PEITC-mediated JNK activation, Mcl-1 downregulation, caspase activation, and apoptosis, and also interruption of the JNK pathway by pharmacological or genetically (e.g., siRNA) attenuated PEITC-induced apoptosis. Finally, administration of PEITC markedly inhibited tumor growth and induced apoptosis in U937 xenograft model in association with inactivation of Akt, activation of JNK, as well as downregulation of Mcl-1. Taken together, these findings represent a novel mechanism by which agents targeting Akt/JNK/Mcl-1 pathway potentiate PEITC lethality in transformed and primary human leukemia cells and inhibitory activity of tumor growth of U937 xenograft model.  相似文献   

20.
目的探讨PI3K/AKT信号转导通路在大肠埃希菌(Escherichia coli,E.coli)诱导的人巨噬细胞系U937细胞凋亡中的作用。方法利用Western blot分析检测E.coli感染不同时间后磷酸化及非磷酸化AKT的表达;预先用不同浓度的LY294002(PI3K途径抑制剂)处理U937细胞60min,观察E.coli感染30min后U937细胞的凋亡情况。结果随着感染时间的延长,磷酸化AKT的表达逐渐下降。加入PI3K的抑制剂LY294002后,U937细胞的凋亡率逐渐升高。结论PI3K/AKT信号转导通路参与了E. coli诱导的U937细胞凋亡过程。LY294002通过特异性地抑制PI3K/AKT活性增加E.coli诱导的U937细胞凋亡率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号