首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
1. The reaction of the pyruvate dehydrogenase multienzyme complex of Escherichia coli with maleimides was examined. In the absence of substrates, the complex showed little or no reaction with N-ethylmaleimide. However, in the presence of pyruvate and N-ethylmaleimide, inhibition of the pyruvate dehydrogenase complex was rapid. Modification of the enzyme was restricted to the transacetylase component and the inactivation was proportional to the extent of modification. The lipoamide dehydrogenase activity of the complex was unaffected by the treatment. The simplest explanation is that the lipoyl groups on the transacetylase are reductively acetylated by following the initial stages of the normal catalytic cycle, but are thereby made susceptible to modification. Attempts to characterize the reaction product strongly support this conclusion. 2. Similarly, in the presence of N-ethylmaleimide and NADH, much of the pyruvate dehydrogenase activity was lost within seconds, whereas the lipoamide dehydrogenase activity of the complex disappeared more slowly: the initial site of the reaction with the complex was found to be in the lipoyl transacetylase component. The simplest interpretation of these experiments is that NADH reduces the covalently bound lipoyl groups on the transacetylase by means of the associated lipoamide dehydrogenase component, thereby rendering them susceptible to modification. However, the dependence of the rate and extent of inactivation on NADH concentration was complex and it proved impossible to inhibit the pyruvate dehydrogenase activity completely without unacceptable modification of the other component enzymes. 3. The catalytic reduction of 5,5'-dithiobis-(2-nitrobenzoic acid) by NADH in the presence of the pyruvate dehydrogenase complex was demonstrated. A new mechanism for this reaction is proposed in which NADH causes reduction of the enzyme-bound lipoic acid by means of the associated lipoamide dehydrogenase component and the dihydrolipoamide is then oxidized back to the disulphide form by reaction with 5,5'-dithiobis-(2-nitrobenzoic acid). 4. A maleimide with a relatively bulky N-substituent, N-(4-diemthylamino-3,5-dinitrophenyl)maleimide, was an effective replacement for N-ethylmaleimide in these reactions with the pyruvate dehydrogenase complex. 5. The 2-oxoglutarate dehydrogenase complex of E. coli behaved very similarly to the pyruvate dehydrogenase complex, in accord with the generally accepted mechanisms of the two enzymes. 6. The treatment of the 2-oxo acid dehydrogenase complexes with maleimides in the presence of the appropriate 2-oxo acid substrate provides a simple method for selectively inhibiting the transacylase components and for introducing reporter groups on to the lipoyl groups covalently bound to those components.  相似文献   

2.
The proposal that the lipoate acetyltransferase component (E2) of the pyruvate dehydrogenase multienzyme (PD) complex from Escherichia coli contains three covalently bound lipoyl residues, one of which acts to pass reducing equivalents to lipoamide dehydrogenase (E3), has been tested. The PD complex was incubated with pyruvate and N-ethylmaleimide, to yield an inactive PD complex containing lipoyl groups on E2 with the S6 acetylated and the S8H irreversibly alkylated with N-ethylmaleimide. This chemically modified form would be expected to exist only on two of the three proposed lipoyl groups. The third nonacetylatable lipoyl group, which is proposed to interact with E3, would remain in its oxidized form. Reaction of the N-ethylmaleimide-modified PD complex with excess NADH should generate the reduced form of the proposed third nonacetylatable lipoyl group and thereby make it susceptible to cyclic dithioarsinite formation with bifunctional arsenicals (BrCH2CONHPhAsCl2; BrCH2[14C]CONHPhAsO). Once "anchored" to the reduced third lipoyl group via the--AsO moiety, these reagents would be delivered into the active site of E3 by the normal catalytic process of the PD complex where the BrCH2CONH--group inactivates E3. Whereas the E3 component of native PD complex is inactivated by the bifunctional reagents in the presence of excess NADH (owing to the above delivery process), the E3 component of the PD complex modified with N-ethylmaleimide in the presence of pyruvate is not inhibited. The results indicate that acetylatable lipoyl residues interact directly with E3 and do not support a functional role for a proposed third lipoyl residue.  相似文献   

3.
The reaction of two maleimides, N-ethylmaleimide and bis-(N-maleimidomethyl) ether, with the pyruvate dehydrogenase multienzyme complex of Escherichia coli in the presence of the substrate, pyruvate, was examined. In both cases, the reaction was demonstrated to be almost exclusively with the lipoate acetyltransferase component, and evidence is presented to show that the most likely sites of reaction are the lipoic acid residues covalently bound to this component. With both reagents the stoicheiometry of the reaction was measured: 2 mol of reagent reacted with each polypeptide chain of lipoate acetyltransferase, implying that each chain bears two functionally active lipolic acid residues. This observation can be reconciled with previous determinations of the lipoic acid content of the complex by allowing for the variability of the subunit polypeptide-chain ratio that can be demonstrated for this multimeric enzyme.  相似文献   

4.
Component X, the recently recognised subunit of mammalian pyruvate dehydrogenase complex, was shown by immune blotting to be present in all of nine tissues dissected from rat. This finding indicated that component X was not an isoenzyme of the lipoate acetyltransferase (E2) associated with one or a limited number of tissues. Native pyruvate dehydrogenase complex was shown to bind IgG raised to isolated component X, indicating that there were at least some regions of the X subunit exposed at the periphery of the complex. Lipoyl groups of ox heart pyruvate dehydrogenase complex were specifically cross-linked by reaction with phenylene-o-bismaleimide in the presence of pyruvate and the subunits contributing to the products of cross-linking were identified by immune blotting. Species with very high Mr containing both E2 and component X, were formed in high yield, as well as apparent E2/E2 and E2/X dimers and trimers and an X/X dimer. These results showed that acetylated lipoyl groups of different E2 and X subunits were able to interact in all possible combinations. The types of cross-linked E2 products formed suggested that two thiols, reactible with phenylene-o-bismaleimide, were rapidly generated in the presence of pyruvate. The results were most easily explained by the presence of two acetylatable lipoyl groups on each E2 polypeptide.  相似文献   

5.
The mammalian pyruvate dehydrogenase multi-enzyme complex contains a tightly-associated 50 000-Mr polypeptide of unknown function (component X) in addition to its three constituent enzymes, pyruvate dehydrogenase (E1), lipoate acetyltransferase (E2) and lipoamide dehydrogenase (E3) which are jointly responsible for production of CoASAc and NADH. The presence of component X is apparent on sodium dodecyl sulphate/polyacrylamide gel analysis of the complex, performed in Tris-glycine buffers although it co-migrates with the E3 subunit on standard phosphate gels run under denaturing conditions. Refined immunological techniques, employing subunit-specific antisera to individual components of the pyruvate dehydrogenase complex, have demonstrated that protein X is not a proteolytic fragment of E2 (or E3) as suggested previously. In addition, anti-X serum elicits no cross-reaction with either subunit of the intrinsic kinase of the pyruvate dehydrogenase complex. Immune-blotting analysis of SDS extracts of bovine, rat and pig cell lines and derived subcellular fractions have indicated that protein X is a normal cellular component with a specific mitochondrial location. It remains tightly-associated with the 'core' enzyme, E2, on dissociation of the complex at pH 9.5 or by treatment with 0.25 M MgCl2. This polypeptide is not released to any significant extent from E2 by p-hydroxymercuriphenyl sulphonate, a reagent which promotes dissociation of the specific kinase of the complex from the 'core' enzyme. Incubation of the complex with [2-14C]pyruvate in the absence of CoASH promotes the incorporation of radio-label, probably in the form of acetyl groups, into both E2 and component X.  相似文献   

6.
Two lipoic acid residues on each dihydrolipoamide acetyltransferase (E2) chain of the pyruvate dehydrogenase multienzyme complex of Escherichia coli were found to undergo oxidoreduction reactions with NAD+ catalysed by the lipoamide dehydrogenase component. It was observed that: (a) 2 mol of reagent/mol of E2 chain was incorporated when the complex was incubated with N-ethylmaleimide in the presence of acetyl-SCoA and NADH; (b) 4 mol of reagent/mol of E2 chain was incorporated when the complex was incubated with N-ethylmaleimide in the presence of NADH; (c) between 1 and 2 mol of acetyl groups/mol of E2 chain was incorporated when the complex was incubated with acetyl-SCoA plus NADH; (d) 2 mol of acetyl groups/mol of E2 chain was incorporated when the complex was incubated with pyruvate either before or after many catalytic turnovers through the overall reaction. There was no evidence to support the view that only half of the dihydrolipoic acid residues can be reoxidized by NAD+. However, chemical modification of lipoic acid residues with N-ethylmaleimide was shown to proceed faster than the accompanying loss of enzymic activity under all conditions tested, which indicates that not all the lipoyl groups are essential for activity. The most likely explanation for this result is an enzymic mechanism in which one lipoic acid residue can take over the function of another.  相似文献   

7.
Bromopyruvate behaves as an active-site-directed inhibitor of the pyruvate decarboxylase (E1) component of the pyruvate dehydrogenase complex of Escherichia coli. It requires the cofactor thiamin pyrophosphate (TPP) and acts initially as an inhibitor competitive with pyruvate (Ki ca. 90 microM) but then proceeds to react irreversibly with the enzyme, probably with the thiol group of a cysteine residue. E1 catalyzes the decomposition of bromopyruvate, the enzyme becoming inactivated once every 40-60 turnovers. Bromopyruvate also inactivates the intact pyruvate dehydrogenase complex in a TPP-dependent process, but the inhibition is more rapid and is mechanistically different. Under these conditions, bromopyruvate is decarboxylated, and the lipoic acid residues in the lipoate acetyltransferase (E2) component become reductively bromoacetylated. Further bromopyruvate then reacts with the new thiol groups thus generated in the lipoic acid residues, inactivating the complex. If reaction with the lipoic acid residues is prevented by prior treatment of the complex with N-ethylmaleimide in the presence of pyruvate, the mode of inhibition reverts to irreversible reaction with the E1 component. In both types of inhibition of E1, reaction of 1 mol of bromopyruvate/mol of E1 chain is required for complete inactivation, and all the evidence is consistent with reaction taking place at or near the pyruvate binding site.  相似文献   

8.
Bovine heart pyruvate dehydrogenase complex was acetylated by using [3-14C]pyruvate in the presence of N-ethylmaleimide, with approx. 1 mol of acetyl groups being incorporated per mol of E2 polypeptide. After peptic digestion, lipoate-containing peptides were purified by high-voltage electrophoresis and ion-exchange and reverse-phase h.p.l.c. The amino acid sequence around the lipoic acid-attachment site of E2 was determined by automated Edman degradation. Acetylation of a lipoate cofactor bound to a lysine residue was verified by fast-atom-bombardment m.s.  相似文献   

9.
The pyruvate dehydrogenase multienzyme complex was isolated from Escherichia coli grown in the presence of [35S]sulphate. The three component enzymes were separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the molar ratios of the three polypeptide chains were determined by measurement of the radioactivity in each band. The chain ratio of lipoamide dehydrogenase to lipoate acetyltransferase approached unity, but there was a molar excess of chains of the pyruvate decarboxylase component. The 35S-labelled complex was also used in a new determination of the total lipoic acid content. It was found that each polypeptide chain of the lipoate acetyltransferase component appears to bear at least three lipoyl groups.  相似文献   

10.
The pigeon breast muscle pyruvate dehydrogenase complex was resolved into three component enzymes: lipoate acetyltransferase, pyruvate dehydrogenase, and lipoamide dehydrogenase. The antibodies against each component enzyme were prepared. All of the antibodies against component enzymes precipitated the pyruvate dehydrogenase complex. The enzyme complex was recovered as the immunoprecipitate from the extract of breast muscle of a pigeon that had received a single injection of L-[4,5-3H]leucine. The immunoprecipitate was separated into each component enzyme by SDS-polyacrylamide gel electrophoresis. The relative isotopic leucine incorporations per mg of protein into each component enzyme 4 h after the injection were 1.0 : 0.9 : 1.4 : 2.7 for lipoate acetyltransferase, alpha- and beta-subunit of pyruvate dehydrogenase, and lipoamide dehydrogenase, respectively. The half-lives of lipoate acetyltransferase, alpha- and beta-subunit of pyruvate dehydrogenase, and lipoamide dehydrogenase were 7.7, 2.5, 2.6, and 1.8 days, respectively. These results indicate that the component enzymes of the pyruvate dehydrogenase complex were synthesized and degraded at different rates.  相似文献   

11.
1. Bovine kidney pyruvate dehydrogenase multienzyme complex is inactivated by elastase in a similar manner as described earlier for papain. The core component, lipoate acetyltransferase, is cleaved by elastase into an active fragment (Mr 26000) and a fragment with apparent Mr of 45000 as analyzed by dodecylsulfate gel electrophoresis. Due to the fragmentation of the core, the enzyme complex is disassembled into its component enzymes which retain their complete enzymatic activities as assayed separately. 2. A different mechanism was found for the inactivation of pyruvate dehydrogenase complex with trypsin and some other proteases (chymotrypsin, clostripain). In these cases, the pyruvate dehydrogenase component is inactivated rapidly by limited proteolysis. More slowly, the enzyme complex is disassembled simultaneously with fragmentation of the lipoate acetyltransferase which again results in an active fragment of Mr 26000 and another fragment of apparent Mr 45000. Upon prolonged proteolysis, the latter fragment is cleaved further to give products of Mr 36000 or lower. 3. The enzyme-bound lipoyl residues of the pyruvate dehydrogenase complex have been labelled covalently by incubation with [2-14C]pyruvate. After treatment of this [14C]acetyl-enzyme with papain, elastase, or trypsin, radioactivity was associated exclusively with the 45000-Mr and 36000-Mr fragments but not with the active 26000-Mr fragment. 4. It is concluded that the bovine kidney lipoate acetyltransferase core is composed of 60 subunits each consisting of two dissimilar folding domains. One of these contains the intersubunit binding sites as well as the active center for transacylation whereas the other possesses the enzyme-bound lipoyl residues.  相似文献   

12.
Stereospecificities of component enzymes in the pyruvate dehydrogenase complex and 2-ketoglutarate dehydrogenase complex from Escherichia coli for lipoate and dihydrolipoate are determined. Assays of the component enzymes using R,S-, R-, or S-lipoate or the enantiomers of dihydrolipoate show that only the R-enantiomers are substrates for these enzymes. Nonenzymatic reactions involving acetyl group transfer and coupled electron and acetyl group transfer between enantiomeric molecules of lipoate or/and dihydrolipoate proceed at significant rates. Coupled acetyl group and electron transfer from enzyme-bound acetyldihydrolipoyl moieties to free lipoate is also observed. The S-enantiomers are neither substrates nor inhibitors; however, products of S-enantiomers are slowly generated in enzymatic reactions owing to nonenzymatic reactions between enzyme-bound acetyldihydrolipoyl-groups and free S-lipoate or S-dihydrolipoate.  相似文献   

13.
Amino-acid sequences around two lipoic acid residues in the lipoate acetyltransferase component of the pyruvate dehydrogenase complex of Escherichia coli were investigated. A single amino acid sequence of 13 residues was found. A repeated amino acid sequence in the lipoate acetyltransferase chain might explain this result.  相似文献   

14.
The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase activities of Bacillus subtilis were found to co-purify as a single multienzyme complex. Mutants of B. subtilis with defects in the pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase complex were correspondingly affected in branched-chain 2-oxo acid dehydrogenase complex activity. Selective inhibition of the E1 or lipoate acetyltransferase (E2) components in vitro led to parallel losses in pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex activity. The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes of B. subtilis at the very least share many structural components, and are probably one and the same. The E3 component appeared to be identical for the pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes in this organism and to be the product of a single structural gene. Long-chain branched fatty acids are thought to be essential for maintaining membrane fluidity in B. subtilis, and it was observed that the ace (pyruvate dehydrogenase complex) mutant 61142 was unable rapidly to take up acetoacetate, unlike the wild-type, indicative of a defect in membrane permeability. A single pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex can be seen as an economical means of supplying two different sets of essential metabolites.  相似文献   

15.
Tissue specific isoforms of an enzyme autoantigen were sought in an attempt to explain a possible disease-associated translocation of the enzyme. A human heart cDNA clone (0.66 kb) coding for part of the lipoate acetyl transferase component of pyruvate dehydrogenase complex, recently identified as one of the major autoantigens of primary biliary cirrhosis was isolated. The cloned cDNA corresponded to nucleotides 1545-2201 of a previously published placental sequence, but showed some differences which give rise to differences in the inferred amino acid sequences of proteins. This may indicate the existence of tissue-specific isoforms of the lipoate acetyl transferase component of pyruvate dehydrogenase complex coded for by a multi-gene family.  相似文献   

16.
The pyruvate dehydrogenase complex was purified from Ascaris muscle both with and without MgCl2 treatment at the first stage of purification. The specific activity of complex purified with MgCl2 treatment was about 2-fold as high as that purified without it. In addition to three component enzymes, two unknown polypeptides of 46 and 41 kDa were found in the complex purified by the two procedures. The quantity of unknown polypeptide of 41 kDa was increased in the complex purified with MgCl2 treatment as compared with that without it. Antibodies against the three component enzymes were prepared. All the antibodies precipitated the two unknown polypeptides in addition to the three component enzymes in immunoprecipitation experiments. Antibody against the alpha-subunit of pyruvate dehydrogenase reacted with the 41 kDa polypeptide as well as the alpha-subunit in the immunoblotting method. The unknown polypeptide of 46 kDa did not react with any antibody. These results suggest that the unknown 41 kDa polypeptide is a derivative of the alpha-subunit and that the unknown 46 kDa polypeptide is not a proteolytic-degradative product of component enzymes but is a component of the Ascaris pyruvate dehydrogenase complex. When the Ascaris complex was incubated with [2-14C]pyruvate in the absence of CoASH, only lipoate acetyltransferase was acetylated. In rat heart pyruvate dehydrogenase complex, lipoate acetyltransferase and another protein (referred to as component x or protein x) were acetylated. These results indicate that the unknown polypeptide of 46 kDa is a new component.  相似文献   

17.
The pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus was treated with chymotrypsin at pH 7 and 0 degrees C. Loss of the overall catalytic activity lagged behind the rapid cleavage of the lipoate acetyltransferase polypeptide chains, whose apparent Mr fell from 57 000 to 45 000 as judged by sodium dodecylsulphate/polyacrylamide gel electrophoresis. The inactive chymotrypsin-treated enzyme had lost the lipoic-acid-containing regions of the lipoate acetyltransferase chains, yet remained a highly assembled structure. Treatment of this chymotryptic core complex with trypsin at pH 7.0 and 0 degrees C caused a further shortening of the lipoate acetyltransferase polypeptide chains to an apparent Mr of 28 000 and was accompanied by disassembly of the complex. The lipoic-acid-containing regions are therefore likely to be physically exposed in the intact complex, protruding from the structural core formed by the lipoate acetyltransferase component between the subunits of the other component enzymes. Proton nuclear magnetic resonance spectroscopy demonstrated that the enzyme complex contains large regions of polypeptide chain with remarkable intramolecular mobility, most of which were retained after excision of the lipoic-acid-containing regions with chymotrypsin. It is likely that the highly mobile regions are in the lipoate acetyltransferase component and facilitate movement of the lipoic acid residues. Such polypeptide chain mobility provides the molecular basis of a novel system of active-site coupling in the 2-oxo acid dehydrogenase multienzyme complexes.  相似文献   

18.
The mammalian pyruvate dehydrogenase complex, Mr 8.5 X 10(6), contains an additional tightly bound 50 000-Mr polypeptide, component X, which copurifies with the intact assembly. Small amounts of the individual E2 and X polypeptides were obtained by elution of the protein bands from SDS/polyacrylamide gels. One-dimensional peptide mapping studies with 125I-labelled lipoyl acetyltransferase (E2) and component X subunits indicate that these two proteins are structurally distinct entities. Similar analysis of purified subunits, initially radiolabelled in the intact complex in the presence of [2-14C]pyruvate and N-ethyl-[2,3-14C]maleimide confirm that distinct 14C-labelled peptides are generated from these two species. These protein-chemical data supplement recent immunological findings, which demonstrate that component X is not a proteolytic fragment of the larger lipoyl acetyltransferase (Mr 70 000) subunit. Incubation of the native PDC in the presence of [2-14C]pyruvate leads to rapid uptake of radiolabel, presumably as acetyl groups, into both E2 and protein X. Specific incorporation of acetyl groups declines to a similar extent on both polypeptides after inhibiting pyruvate dehydrogenase (E1) activity by phosphorylation or omitting thiamine diphosphate (TPP) from the assay mixture. Addition of CoASH promotes the parallel deacetylation of both lipoyl acetyltransferase and protein X in a reaction which displays sensitivity to N-ethylmaleimide.  相似文献   

19.
The catalytic roles of the two reductively acetylatable lipoic acid residues on each lipoate acetyltransferase chain of the pyruvate dehydrogenase complex of Escherichia coli were investigated. Both lipoyl groups are reductively acetylated from pyruvate at the same apparent rate and both can transfer their acetyl groups to CoASH, part-reactions of the overall complex reaction. The complex was treated with N-ethylmaleimide in the presence of pyruvate and the absence of CoASH, conditions that lead to the modification and inactivation of the S-acetyldihydrolipoic acid residues. Modification was found to proceed appreciably faster than the accompanying loss of enzymic activity. The kinetics of the modification were fitted best by supposing that the two lipoyl groups react with the maleimide at different rates, one being modified at approximately 3.5 times the rate of the other. The loss of complex activity took place at a rate approximately equal to that calculated for the modification of the more slowly reacting lipoic acid residue. The simplest interpretation of this result is that only this residue is essential in the overall catalytic mechanism, but an alternative explanation in which one lipoic acid residue can take over the function of another was not ruled out. The kinetics of inactivation could not be reconciled with an obligatory serial interaction between the two lipoic acid residues. Similar experiments with the fluorescent N-[p-(benzimidazol-2-yl)phenyl]maleimide supported these conclusions, although the modification was found to be less specific than with N-ethylmaleimide. The more rapidly modified lipoic acid residue may be involved in the system of intramolecular transacetylation reactions that couple active sites in the lipoate acetyltransferase component.  相似文献   

20.
The regulatory effects of alpha-ketoisovalerate on purified bovine heart pyruvate dehydrogenase complex and endogenous pyruvate dehydrogenase kinase were investigated. Incubation of pyruvate dehydrogenase complex with 0.125 to 10 mM alpha-ketoisovalerate caused an initial lag in enzymatic activity, followed by a more linear but inhibited rate of NADH production. Incubation with 0.0125 or 0.05 mM alpha-ketoisovalerate caused pyruvate dehydrogenase inhibition, but did not cause the initial lag in pyruvate dehydrogenase activity. Gel electrophoresis and fluorography demonstrated the incorporation of acyl groups from alpha-keto[2-14C]isovalerate into the dihydrolipoyl transacetylase component of the enzyme complex. Acylation was prevented by pyruvate and by arsenite plus NADH. Endogenous pyruvate dehydrogenase kinase activity was stimulated specifically by K+, in contrast to previous reports, and kinase stimulation by K+ correlated with pyruvate dehydrogenase inactivation. Maximum kinase activity in the presence of K+ was inhibited 62% by 0.1 mM thiamin pyrophosphate, but was inhibited only 27% in the presence of 0.1 mM thiamin pyrophosphate and 0.1 mM alpha-ketoisovalerate. Pyruvate did not affect kinase inhibition by thiamin pyrophosphate at either 0.05 or 2 mM. The present study demonstrates that alpha-ketoisovalerate acylates heart pyruvate dehydrogenase complex and suggests that acylation prevents thiamin pyrophosphate-mediated kinase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号