首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma clearance, tissue distribution and metabolism of hyaluronic acid were studied with a high average molecular weight [3H]acetyl-labelled hyaluronic acid synthesized in synovial cell cultures. After intravenous injection in the rabbit the label disappeared from the plasma with a half-life of 2.5--4.5 min, which corresponds to a normal hyaluronic acid clearance of approx. 10 mg/day per kg body weight. Injection of unlabelled hyaluronic acid 15 min after the tracer failed to reverse its absorption. Clearance of labelled polymer was retarded by prior injection of excess unlabelled hyaluronic acid. The maximum clearance capacity was estimated in these circumstances to be about 30 mg/day per kg body wt. The injected material was concentrated in the liver and spleen. As much as 88% of the label was absorbed by the liver, where it was found almost entirely in non-parenchymal cells. Degradation was rapid and complete, since volatile material, presumably 3H2O, appeared in the plasma within 20 min. Undegraded [3H]hyaluronic acid, small labelled residues and 3H2O were detected in the liver, but there was little evidence of intermediate oligosaccharides. No metabolite except 3H2O was recognized in plasma or urine. Two-thirds of the radioactivity was retained in the body water 24 h later, and small amounts were found in liver lipids. Radioactivity did not decline in the spleen as rapidly as in the liver. The upper molecular weight limit for renal excretion was about 25 000. Renal excretion played a negligible part in clearance. It is concluded that hyaluronic acid is removed from the plasma and degraded quickly by an efficient extrarenal system with a high reserve capacity, sited mainly in the liver.  相似文献   

2.
Degradation of connective-tissue polysaccharides with bacterial or fungal eliminases and subsequent characterization of the reaction products are now part of standard methodology for the analysis of these compounds. However, the scope of preparative and analytical work based on the use of eliminases has been limited by the lack of procedures for specific removal of the unsaturated uronic acid residues generated in the eliminase reactions. In the present investigation, we have shown that these residues are cleaved by mercuric salts under mild conditions that are not likely to affect other structures in an oligo- or poly-saccharide molecule. Thus the disaccharide generated from hyaluronic acid by digestion with chondroitinase AC or ABC was cleaved into a keto acid and free N-acetylglucosamine within 10 min at room temperature upon exposure to 14 mM-mercuric acetate at pH 5. The reaction of the disaccharide with mercuric salts was used for ready determination of the distribution of radioactivity between the glucuronic acid and N-acetylglucosamine moieties in radioactive hyaluronic acid that had been synthesized by IMR-90 fibroblasts from 3H-labelled monosaccharides. When the precursor was [3H]galactose, over 95% of the incorporated radioactivity was found in the glucuronic acid moiety. In contrast, cells grown in the presence of [3H]glucosamine synthesized a polysaccharide in which almost all of the label was located in the N-acetylglucosamine units. It is apparent from these experiments that the reaction of unsaturated uronic acid residues with mercuric salts provides a new tool with potential for many applications in the study of the structure and metabolism of connective-tissue polysaccharides.  相似文献   

3.
A rapid procedure for measuring the specific radioactivity of phenylalanine in tissues was developed. This facilitates the accurate determination of rates of protein synthesis in a wide range of tissues by injection of 150 mumol of L-[4-(3)H]phenylalanine/100 g body wt. The large dose of amino acid results in a rapid rise in specific radioactivity of free phenylalanine in tissues to values close to that in plasma, followed by a slow but linear fall. This enables the rate of protein synthesis to be calculated from measurements of the specific radioactivity of free and protein-bound phenylalanine in tissues during a 10 min period after injection of radioisotope.  相似文献   

4.
The long-term accumulation of pipecolic acid, as well as its disappearance following exogenous administration was studied in brain and other organs of the mouse. Mice were pulse-injected intraperitoneally or intravenously with 1Ci[3H]D,l-pipecolic acid (6.9 nmol/mouse=2.9 g/kg). The total radioactivity retained in tissues was measured in brain, liver, and kidney, as well as in plasma during the period 1 min to 24 hr. TLC separation of DNP-derivatives was performed. Three features of the pattern of retention of pipecolic acid are most salient; first the rapid accumulation in brain, second the rapid secretion of this compound in the urine, and third the long-lasting steady levels of radioactivity maintained in brain.Sixty minutes after i.v. injection, the brain/plasma ratio is approximately 0.2 and approaches unity only at 5 hr. Following intraperitoneal injection the percent recovered as pipecolic acid in brain is 78% at 30 min and 71% at 120 min, suggesting a slow metabolic activity. Liver shows a different trend than brain with a slower accumulation and a faster disappearance. Kidney shows a pattern similar to plasma with a rapid secretion of radioactivity into urine which correlates well with the exponential decrease in plasma and urine. The administration of probenecid significantly increases radioactivity due to pipecolic acid in brain, liver, and urine. Formation of -aminoadipic acid, a known metabolite of pipecolic acid, can be demonstrated in kidney 30 min after intraperitoneal injection. The present data together with results obtained previously with intracarotid injections suggest that pipecolic acid is taken up in the mouse brain from the circulation. Most of the pipecolic acid taken up is rapidly removed through the circulation and secreted in the urine; however, a small part is retained and probably metabolized by brain and kidney.  相似文献   

5.
[1-14C]Palmitic and [9,10-3H]palmitic acids were injected into the femoral artery of fetal sheep in utero about one month preparturition. The experiment was terminated after 5, 15 or 30 min when the main tissues were removed for analysis of the lipid components. 5 min after injection of the label, most was recovered in the plasma but increasing amounts were recovered later in the liver and heart. Selective loss of 14C-label occurred such that in the plasma, 30 min after injection, the ratio of 3H:14C had changed from 1:1 to 8.4:1. Increasing amounts of the labelled lipid were recovered in esterified form with time after injection, and the 3H:14C ratio differed markedly in specific lipids and tissues. Most of the label was recovered in palmitic acid, but some was also present in myristic and octadecenoic acids. Some evidence was obtained that the latter may have been the delta 11-isomer, which was found in much greater amounts in fetal than maternal tissues. It appears that partial-oxidation and resynthesis of fatty acids occurs in a concerted manner at a rapid rate in fetal sheep. The phenomenon has important implications for the interpretation of the results of much previous work with fetal animals in vivo.  相似文献   

6.
The metabolism of hyaluronic acid in cultured skin fibroblasts derived from a patient with the Hurler syndrome and from a normal subject was examined. 1. An increased net incorporation of [(3)H]glucose into the hyaluronic acid fraction of the Hurler-syndrome cells occurred when compared with normal cells. 2. During a ;chase' period, approx. 35% of the radioactivity derived from glucose was lost from the hyaluronic acid fraction of the Hurler-syndrome cells, whereas the normal cells retained all their radioactivity. 3. Although the Hurler-syndrome cells contained a ninefold greater amount of hyaluronic acid than normal cells, simultaneous determination of the specific radioactivity derived from the label revealed a value for the Hurler-syndrome cells one-half that of normal cells. These results are taken to indicate that the Hurler cells synthesize hyaluronic acid de novo at a higher rate than do normal cells. 4. Exposure of Hurler-syndrome cultured fibroblasts to a crude urine corrective-factor preparation (Neufeld & Cantz, 1971), now known to contain alpha-l-iduronidase, the specific Hurler-syndrome corrective factor (Bach et al., 1972), decreased the hyaluronic acid content to near-normal values before any effect was observed on [(3)H]glucose incorporation into the hyaluronic acid fraction. 5. In addition, the hyaluronic acid content of the normal cells decreased after exposure to the corrective factor of urine. 6. The mobilization of hyaluronic acid in Hurler-syndrome and normal cells exposed to the crude corrective-factor preparation of urine caused a decrease in specific radioactivity in the ;corrected' Hurler-syndrome cells and an increase in specific radioactivity in the ;corrected' normal cells.  相似文献   

7.
The chain length of [3H]hyaluronic acid synthesized by cultivating human skin fibroblasts in the presence of [3H]glucosamine was investigated. [3H]Hyaluronic acid obtained from the matrix fraction was excluded from a Sepharose CL-2B column irrespective of the incubation period, whereas that from the medium was depolymerized into a constant chain length (Mr = 40,000). The reducing and non-reducing terminals of the depolymerized hyaluronic acid were N-acetylglucosamine and glucuronic acid, respectively. Prolonged incubation produced no oligosaccharides as shown by examination of hyaluronidase digests, suggesting the presence of a novel endo-beta-N-acetylglucosaminidase in cultured human skin fibroblasts.  相似文献   

8.
Uptake and degradation of hyaluronan in lymphatic tissue.   总被引:6,自引:0,他引:6       下载免费PDF全文
Afferent lymph vessels entering popliteal lymph nodes of sheep were infused with [3H]acetyl-labelled hyaluronan of high Mr (4.3 x 10(6)-5.5 x 10(6)) and low Mr (1.5 x 10(5)). Analysis of efferent lymph and of residues in the nodes showed that hyaluronan presented by this route is taken up and degraded by lymphatic tissue. Labelled residues isolated in node extracts by gel chromatography and h.p.l.c. included N-acetylglucosamine, acetate, water and a fraction provisionally identified as N-acetylglucosamine 6-phosphate. Between 48 and 75% of the infused material was unrecovered, and had been presumably eliminated through the bloodstream as diffusible residues. Rates of degradation reached as high as 43 micrograms/h in a node of 2 g wt. infused with 56 micrograms/h. Some HA passed into efferent lymph and some was detected in the nodes, but fractions of Mr greater than 1 x 10(6) were not found in either. It is concluded that the amounts and Mr values of hyaluronan released from the tissues into peripheral lymph can be significantly underestimated by analysis of efferent lymph, i.e. lymph that has passed through lymph nodes. A substantial role in the normal metabolic turnover of at least one major constituent of intercellular matrix and connective tissue may now be added to the established functions of the lymphatic system.  相似文献   

9.
Glucose metabolism in the developing rat. Studies in vivo   总被引:10,自引:10,他引:0  
1. The specific radioactivity of plasma d-glucose and the incorporation of (14)C into plasma l-lactate, liver glycogen and skeletal-muscle glycogen was measured as a function of time after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into newborn, 2-, 10- and 30-day-old rats. 2. The log of the specific radioactivity of both plasma d-[6-(14)C]- and d-[6-(3)H]-glucose of the 2-, 10- and 30-day-old rats decreased linearly with time for at least 60min after injection of labelled glucose. The specific radioactivity of both plasma d-[6-(14)C]- and d-[6-(3)H]-glucose of the newborn rat remained constant for at least 75min after injection. 3. The glucose turnover rate of the 30-day-old rat was significantly greater than (approximately twice) that of the 2- and 10-day-old rats. The relative size of both the glucose pool and the glucose space decreased with age. Less than 10% of the glucose utilized in the 2-, 10- and 30-day-old rats was recycled via the Cori cycle. 4. The results are discussed in relationship to the availability of dietary glucose and other factors that may influence glucose metabolism in the developing rat.  相似文献   

10.
125I-somatomedin A (SMA) was injected iv into rats. Distribution studies in rats showed concentrations of radioactivity to be high in kidney and plasma, low in brain, and intermediate in other tissues. The concentration of total and trichloracetic acid (TCA) precipitable radioactivity in rat blood and tissues fell at rapid rate. Ninety per cent of the radioactivity was in the urine in 24 hr, and only 15% of urine radioactivity was TCA precipitable. The half-life of the radioactivity in TCA-precipitable fraction from blood and that from tissues were nearly identical (about 6 hr). In both liver and kidney, TCA-precipitable radioactivity was detected in membrane and/or organellar fraction and cytosol fraction. Sephadex G-200 chromatography at neutral PHY AT NEUTRAL PH of plasma after injection of 125I-SMA revealed 3 peaks of radioactivity in higher molecular weight region than purified SMA.  相似文献   

11.
3H-labelled metabolites were determined in the perchloric acid-soluble fraction of blood plasma and liver of adult male Wistar rats, following the application of [5 - 3H]uridine. Ten minutes after the injection of uridine, only 20% of the total 3H activity of the plasma could be attributed to [3H]uridine. The remaining radioactivity was found chiefly in [3H]uracil (40%) and 3H2O (20%). In the liver, at 10 min, [3H]-uridine and [3H]uracil together accounted for less than 0.5% of the total radioactivity; about 70% of the radioactivity was due to [3H]beta-alanine, and 15% to 3H2O. 45 min after the injection, 70% of the radioactivity in the plasma was due to 3H2O, whereas uridine and uracil represented about 4% and 6%, respectively. At this time, about 55% of the radioactivity in the liver was due to [3H]beta-alanine, about 40% to 3H2O, and about 5% to unidentified metabolites; [3H]uridine and [3H]uracil were not observed. A comparison of the rate of catabolism of [5-3H]-uridine, [5-3H]cytidine and [6-3H]thymidine showed that cytidine is degraded in the organism 25 times more slowly than uridine or thymidine. The biological half lives for the total degradation of the [3H]nucleosides to 3H2O, based on the values in the plasma, were: uridine 1.1 h; thymidine 1.3 h; cytidine 25 h. Furthermore, the turnover time of exogenous uridine in the plasma was found to be 9 min, which gives a half life of 6 min for the metabolism of exogenous uridine to uracil.  相似文献   

12.
Lipoprotein lipase was purified from bovine milk and labeled with 125I. After intravenous injection to rats the labeled lipase rapidly disappeared from the blood. The initial half-life was about 1 min and more than 70% of the radioactivity was found in the liver at 10 min. 30 min after the injection about 10% of the injected radioactivity was present in acid-soluble form in blood, indicating that the enzyme had been rapidly degraded. Injection of asialofetuin, ribonuclease B or mannan in amounts known to block the hepatic receptors for glycoproteins with exposed galactose, N-acetylglucosamine or mannose residues did not retard the removal of the lipoprotein lipase. Thus, some other, as yet undefined, receptor is implicated. Lipoprotein lipase is known to bind to heparin and some related polysacchrides. Heparin injected before the enzyme delayed its removal and heparin injected after the enzyme caused an immediate increase in blood radioactivity, signifying return from tissues to blood of labeled enzyme. Lipoprotein lipase is present at the endothelium in several extrahepatic tissues and is rapidly turned over. Its presence in blood in appreciable amounts would cause a derangement of lipid transport. The efficient hepatic removal of the enzyme may thus serve an important physiological purpose in keeping the blood levels of this enzyme low.  相似文献   

13.
The in vivo metabolism of 12-(S)-Hydroxy-eicosatetraenoic acid (12-HETE), the end-lipoxygenase product of arachidonic acid in platelets, has been investigated in the rat. Fifty microcuries of 5,6-[3H]-12-HETE (50 Ci/mmol) were injected to anesthetized rats and the radioactivity was followed in plasma. At the end of the experiment, various organs of the animal were removed and the radioactivity attached to them was determined. The label of the plasma plateaued to approximately one third of the initial radioactivity ten minutes after the injection. Among the various organs tested (brain, heart, intestine, kidney, liver, lungs, spleen, testis/uterus) the kidney was far the most active to accumulate 12-HETE and/or its labeled metabolites, and no radioactivity could be detected in urine during the course of the experiment. The analysis of lipid extracts from the various tissues revealed that 12-HETE was not accumulating in its unesterified form but was likely bound to phospholipids. We conclude that, although the label providing from the initial 12-HETE did not completely disappear from plasma, circulating 12-HETE cannot be considered as a circulating marker of cell activation.  相似文献   

14.
A 4 day half-life of dopamine beta-hydroxylase (DBH) was determined for rats injected IV with 125I-rat DBH from the slow exponential component of radioactivity appearing in plasma, urine, feces and combined urine and feces. Half-life estimates for 125I-rat DBH injected IV into WKY and SHR animals did not differ from Sprague Dawley (Zivic Miller) rats. Radioactivity declined in parallel in plasma, urine and feces following IV 125I-rat DBH administration and each radioactivity falloff curve could be resolved into two components. The slow phase of the decline of radioactivity excreted into urine and feces from which DBH half-life was calculated occurred between 5 and 25 days after 125I-rat DBH injection. The early fast phase which is associated with distribution of the exogenous protein in body fluids and tissues continued for approximately the first 140 hr after DBH injection. The distribution characteristics of IV administered active bovine DBH and 125I-rat DBH into the lymphatic system were examined. After active bovine DBH or 125I-rat DBH was injected IV into rats, active DBH or radioactivity, respectively, appeared in lymph fluid (thoracic duct) within 20 min; reached peak concentrations within 90 min, and thereafter, declined in parallel with the plasma concentration. The concentration of radioactivity in plasma and lymph fluid were found to be unequal at 9 hr but were equivalent 68–75 hrs after IV injection of 125I-rat DBH. Based on the amount of active DBH or radioactivity which accumulates in lymph fluid it is clear that'a substantial amount (> 50%) of the DBH in blood circulates through the lymphatic channels. Analysis of parallel experiments with labelled serum albumin indicate that use of these methods to study plasma proteins do provide sensitive measures of biological half-life and lymphatic distribution characteristics. Specifically for DBH, the results of our study suggest that DBH normally circulates in plasma and lymph fluid with a biological half-life of 4 days.  相似文献   

15.
The metabolism of the positron-emitting compound [18F]6-fluoro-L-3,4-dihydroxyphenylalanine (*F-DOPA) was studied in carbidopa-pretreated male hooded rats. Thirty minutes following carbidopa administration (5 mg/kg i.p.), animals received *F-DOPA (500 micrograms/kg; specific activity, 175-230 Ci/mol) as an intrajugular bolus. Blood samples were taken at various times between 5 and 90 min, and the plasma was analyzed by HPLC with gamma counting of fractions. *F-DOPA disappeared rapidly from plasma in concert with the formation of the 3-O-methylated metabolite, Me-*F-DOPA. Animals were killed from 5 to 120 min after injection, and the brains were rapidly dissected. The disappearance of *F-DOPA from both vermis and striatal samples was rapid. Me-*F-DOPA, the sole metabolite observed in the vermis, was the major labeled material in the striatum at greater than or equal to 20 min after injection. Fluorodopamine was an important metabolite in the striatum, making up 25% of total radioactivity at early intervals. Striatal samples also contained fluoro-3,4-dihydroxyphenylacetic acid, which constituted approximately 10% of the total radioactivity, and traces of two radiolabeled compounds, tentatively identified as fluorohomovanillic acid and fluoro-3-methoxytyramine.  相似文献   

16.
E A Turley  S Roth 《Cell》1979,17(1):109-115
SV40-transformed mouse fibroblasts migrate upon, and spontaneously glycosylate, plastic substrates derivatized with chondroitin-6 sulfate and hyaluronic acid. Autoradiography of cultures prelabeled with 3H-glucose and 3H-galactose demonstrates the presence of silver grains near adherent cells. Silver grains are particularly dense near cells cultured on chondroitin sulfate. No significant grains are observed on control dishes or dishes derivatized with polygalacturonic acid. Radioactive material left by cells is not removed by boiling the dishes in 8 M urea and 10% sodium dodecylsulfate, suggesting that it is covalently linked to the derivatized plastic. Acid hydrolysis shows that the radioactive material consists of glucuronic acid and N-acetylglucosamine when the prelabeled cells are cultured on hyaluronic acid. When cells are cultured on chondroitin sulfate, the radioactive product consists only of glucuronic and and N-acetylgalactosamine sulfate. Sonicates of prelabeled cells or the supernatants from cultures of intact prelabeled cells add no SDS-urea-resistant radioactivity to dishes derivatized with these glycosaminoglycans.  相似文献   

17.
Mice were treated daily with [3H]MPTP (30 mg/kg, 1 uCi, s.c.) for 1, 3, and 10 days to determine the fate and localization of tritiated compounds. An untreated mouse was housed either in the same cage ("cage-mate control") or in an adjacent cage separated by mesh-wire ("near-neighbor control"). The radioactivity measured in blood, brain, liver, and remaining body of [3H]MPTP-treated mice was dependent on the total dose of the drug the animals received and did not vary with the type of tissue analyzed. Significant amounts of radioactivity were found in the tissues of the "cage-mate control" mice, but not of the "near-neighbor control" mice. The route of transmission appears to be through the urine, as the urine of [3H]MPTP-treated mice was highly radioactive after the drug injection. Only traces of radioactivity were found in their feces and there was no increase in the background radiation in the environment of the cages, indicating that the tritiated compounds were not exhaled. Proper disposal of urinary products of MPTP-treated animals is therefore necessary to reduce the risk of possible drug contamination in humans.  相似文献   

18.
1. Normally fed and cholestyramine-treated rats were injected through the superior mesenteric vein with different amounts of radiolabelled glycoholic acid and the appearance of radioactivity in bile was measured. 2. In normally fed rats radioactivity appeared in bile within 30 s of injection and reached a maximum after 2 1/2 min; in the cholestyramine-treated animals the appearance of radioactivity was slower and less of the injected material was excreted into bile. 3. At 10 min after injection, livers were removed and the amounts of radioactive glycoholic acid and endogenous cholic acid conjugates in nuclei and cytosol were determined; most of the bile acid was found in the cytosol, only small amounts being found in nuclei. 4. Nuclear preparations from both normally fed and cholestyramine-fed rats were extracted with KCl (0.4 M) in an attempt to identify a putative bile acid receptor, but no such receptor was found. 5. Regulation of bile acid synthesis does not involve nuclear binding of bile acids.  相似文献   

19.
1. [4-(14)C]Progesterone was administered intravenously to anaesthetized male and female New Zealand White rabbits as a single injection or as a 45-60min. infusion. 2. After a single dose about 60% of the radioactivity was recovered in 6hr., and twice as much radioactivity was present in bile as in urine. After infusion total recovery of radioactivity was only about 40% in 6hr., but the relative proportions of metabolites in bile and urine were about the same as after a single dose. 3. Bile and urine samples were hydrolysed successively by beta-glucuronidase, cold acid and hot acid. 4. In bile the major proportion of metabolites appeared in the glucuronide fraction; in urine beta-glucuronidase hydrolysis yielded the greatest amounts of ether-extractable radioactivity, but the greatest proportion of radioactivity could not be extracted by ether from an alkaline solution of the hydrolysed urine. 5. There was no apparent difference in the quantity or distribution of metabolites excreted by male and female animals.  相似文献   

20.
Intracerebral administration of [3H]arachidonic acid ([3H]ArA) into 19-20-day-old rat embryos, resulted in a rapid incorporation of label into brain lipids. One hour after injection, 55.6 +/- 8.2, 18.0 +/- 3.4, and 13.7 +/- 1.3% of the total radioactivity was associated with phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, respectively. Approximately 10% of radioactivity was found acylated in neutral lipids of which free ArA comprised only 1.5 +/- 0.2% of the total radioactivity. Complete restriction of the maternal-fetal circulation for < or = 40 min did not affect the rate of [3H]ArA incorporation (t1/2 = 2 min) into fetal brain lipids, suggesting an effective acylation mechanism that proceeds irrespective of the impaired blood flow. After a short restriction period (5 min), the radioactivity in diacylglycerol was elevated by 50%. After a longer restriction period (20 min), the radioactivity in the free fatty acid and diacylglycerol fractions increased to values of 130 and 87%, respectively. Polyphosphoinositides prelabeled with either [3H]ArA or 32P were rapidly degraded after 5 min of ischemia. After 20 min, the decrease in phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate radioactivity was 47 and 70%, respectively. Double labeling of phospholipids with [14C]palmitic acid and [3H]ArA indicated a preferential loss of [3H]ArA within the polyphosphoinositide species after 20 min, but not after 5 min of ischemia. The specific activity of [14C]palmitate remained unchanged. The current data suggest phospholipase C-mediated diacylglycerol formation at the beginning of the insult followed by a phospholipase A2-mediated ArA liberation at a later time, both enzymes presumably acting preferentially on polyphosphoinositide species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号