首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
IME1, a positive regulator gene of meiosis in S. cerevisiae   总被引:31,自引:0,他引:31  
Y Kassir  D Granot  G Simchen 《Cell》1988,52(6):853-862
  相似文献   

3.
Summary The cell division cycle gene CDC25 was replaced by various disrupted and deleted mutant copies. Mutants disrupted at a central position of the gene, or lacking 532 residues within the amono-terminal half of the gene product grow normally in glucose, but not in acetate media, and they fail to sporulate as homozygous diploids. Disruptions or deletions within the carboxy-terminal half are lethal, except for the deletion of the 38 carboxy-terminal residues, which are required for sporulation but not for growth in glucose or acetate media. It is concluded that distinct domains of the CDC25 gene product are involved in the control of mitosis and/or meiosis.  相似文献   

4.
5.
We have studied the patterns of expression of four B-type cyclins (Clbs), Clb1, Clb2, Clb3, and Clb4, and their ability to activate p34cdc28 during the mitotic and meiotic cell cycles of Saccharomyces cerevisiae. During the mitotic cell cycle, Clb3 and Clb4 were expressed and induced a kinase activity in association with p34cdc28 from early S phase up to mitosis. On the other hand, Clb1 and Clb2 were expressed and activated p34cdc28 later in the mitotic cell cycle, starting in late S phase and continuing up to mitosis. The pattern of expression of Clb3 and Clb4 suggests a possible role in the regulation of DNA replication as well as mitosis. Clb1 and Clb2, whose pattern of expression is similar to that of other known Clbs, are likely to have a role predominantly in the regulation of M phase. During the meiotic cell cycle, Clb1, Clb3, and Clb4 were expressed and induced a p34cdc28-associated kinase activity just before the first meiotic division. The fact that Clb3 and Clb4 were not synthesized earlier, in S phase, suggests that these cyclins, which probably have a role in S phase during the mitotic cell cycle, are not implicated in premeiotic S phase. Clb2, the primary mitotic cyclin in S. cerevisiae, was not detectable during meiosis. Sporulation experiments on strains deleted for one, two, or three Clbs indicate, in agreement with the biochemical data, that Clb1 is the primary cyclin for the regulation of meiosis, while Clb2 is not involved at all.  相似文献   

6.
7.
Recombinationless meiosis in Saccharomyces cerevisiae.   总被引:38,自引:11,他引:27       下载免费PDF全文
We have utilized the single equational meiotic division conferred by the spo13-1 mutation of Saccharomyces cerevisiae (S. Klapholtz and R. E. Esposito, Genetics 96:589-611, 1980) as a technique to study the genetic control of meiotic recombination and to analyze the meiotic effects of several radiation-sensitive mutations (rad6-1, rad50-1, and rad52-1) which have been reported to reduce meiotic recombination (Game et al., Genetics 94:51-68, 1980); Prakash et al., Genetics 94:31-50, 1980). The spo13-1 mutation eliminates the meiosis I reductional segregation, but does not significantly affect other meiotic events (including recombination). Because of the unique meiosis it confers, the spo13-1 mutation provides an opportunity to recover viable meiotic products in a Rec- background. In contrast to the single rad50-1 mutant, we found that the double rad50-1 spo13-1 mutant produced viable ascospores after meiosis and sporulation. These spores were nonrecombinant: meiotic crossing-over was reduced at least 150-fold, and no increase in meiotic gene conversion was observed over mitotic background levels. The rad50-1 mutation did not, however, confer a Rec- phenotype in mitosis; rather, it increased both spontaneous crossing-over and gene conversion. The spore inviability conferred by the single rad6-1 and rad52-1 mutations was not eliminated by the presence of the spo13-1 mutation. Thus, only the rad50 gene has been unambiguously identified by analysis of viable meiotic ascospores as a component of the meiotic recombination system.  相似文献   

8.
The PINOID (PID) family, which belongs to AGCVIII kinases, is known to be involved in the regulation of auxin efflux transporter PIN-FORMED (PIN) proteins through changes in the phosphorylation status. Recently, we demonstrated that the PID family is necessary for phytochrome-mediated phototropic enhancement in Arabidopsis hypocotyls and that the downregulation of PID expression by red-light pretreatment results in the promotion of the PIN-mediated auxin gradient during phototropic responses. However, whether PID participates in root phototropism in Arabidopsis seedlings has not been well studied. Here, we demonstrated that negative root phototropic responses are enhanced in the pid quadruple mutant and are severely impaired in transgenic plants expressing PID constitutively. The results indicate that the PID family functions in a negative root phototropism as a negative regulator. On the other hand, analysis with PID fused to a yellow fluorescent protein, VENUS, showed that unilateral blue-light irradiation causes a lower accumulation of PID proteins on the shaded side than on the irradiated side. This result suggests that the blue-light-mediated asymmetrical distribution of PID proteins may be one of the critical responses in phototropin-mediated signals during a negative root phototropism. Alternatively, such a transverse gradient of PID proteins may result from gravitropic stimulation produced by phototropic bending.  相似文献   

9.
The catalytic subunit of protein phosphatase type 1 (PP1) has an essential role in mitosis, acting in opposition to the Ipl1/Aurora B protein kinase to ensure proper kinetochore-microtubule interactions. However, the regulatory subunit(s) that completes the PP1 holoenzyme that functions in this capacity is not known. We show here that the budding yeast Ypi1 protein is a nuclear protein that functions with PP1 (Glc7) in this mitotic role. Depletion of cellular Ypi1 induces mitotic arrest due to activation of the spindle checkpoint. Ypi1 depletion is accompanied by a reduction of nuclear PP1 and by loss of nuclear Sds22, a Glc7 binding partner that is found in a ternary complex with Ypi1 and Glc7. Expression of a Ypi1 variant that binds weakly to PP1 also activates the spindle checkpoint and suppresses the temperature sensitivity of an ipl1-2 mutant. These results, together with genetic interactions among YPI1, GLC7, and SDS22 mutants, indicate that Ypi1 and Sds22 are positive regulators of the nuclear Glc7 activity that is required for mitosis.  相似文献   

10.
11.
12.
13.
14.
15.
Aurora A, meiosis and mitosis   总被引:6,自引:0,他引:6  
The Aurora family kinases are pivotal to the successful execution of cell division. Together they ensure the formation of a bipolar mitotic spindle, accurate segregation of chromosomes and the completion of cytokinesis. They are also attractive drug targets, being frequently deregulated in cancer and able to transform cells in vitro. In this review, we summarize current knowledge about the three family members, Aur-A, Aur-B and Aur-C. We then focus on Aur-A, its roles in mitotic progression, and its emerging roles in checkpoint control pathways. Aur-A activity can be controlled at several levels, including phosphorylation, ubiquitin-dependent proteolysis and interaction with both positive regulators, such as TPX2, and negative ones, like the tumor suppressor protein p53. In addition, work in Xenopus oocytes and early embryos has revealed a second role for Aur-A, directing the polyadenylation-dependent translation of specific mRNAs important for cell cycle progression. This function extends to post-mitotic neurons, and perhaps even to cycling somatic cells.  相似文献   

16.
17.
Shen H  Luong P  Huq E 《Plant physiology》2007,145(4):1471-1483
Light is vital for plant growth and development. To respond to ambient light signals, plants are equipped with an array of photoreceptors, including phytochromes that sense red (R)/far-R (FR) regions and cryptochromes and phototropins that respond to the ultraviolet-A/blue (B) region of the light spectrum, respectively. Several positively and negatively acting components in light-signaling pathways have been identified using genetic approaches; however, the pathways are not saturated. Here, we characterize a new mutant named pleiotropic photosignaling (pps), isolated from a genetic screen under continuous R light. pps has longer hypocotyls and slightly smaller cotyledons under continuous R, FR, and B light compared to that of the wild type. pps is also hyposensitive to both R and FR light-induced seed germination. Although photosynthetic marker genes are constitutively expressed in pps in the dark at high levels, the expression of early light-regulated genes is reduced in the pps seedlings compared to wild-type seedlings under R light. PPS encodes MAX2/ORE9 (for MORE AXILLARY BRANCHES2/ORESARA9), an F-box protein involved in inflorescence architecture and senescence. MAX2 is expressed ubiquitously in the seedling stage. However, its expression is restricted to vascular tissues and meristems at adult stages. MAX2 is also localized to the nucleus. As an F-box protein, MAX2 is predicted to be a component of the SCF (for SKP, Cullin, and F-box protein) complex involved in regulated proteolysis. These results suggest that SCF(MAX2) plays critical roles in R, FR, and B light-signaling pathways. In addition, MAX2 might regulate multiple targets at different developmental stages to optimize plant growth and development.  相似文献   

18.
19.
20.
The temperature-sensitive cell cycle mutation bimE7 of Aspergillus nidulans causes cells to become blocked in mitosis at a restrictive temperature. Previous work has shown that this mitotic block is induced even when cells are arrested in the S or G2 phase. The mitotic block is also observed in cells carrying a null mutation in bimE, obtained by molecular disruption of the gene (Osmani, S.A., Engle, D.B., Doonan, J.H., and Morris, N.R. (1988) Cell 52, 241-251), indicating that a lack of bimE function is responsible for the phenotype. We have cloned the bimE gene by complementation of the mutant phenotype and have isolated and sequenced its corresponding cDNA. The gene product is encoded by a 6.5-7-kilobase mRNA. The deduced amino acid sequence suggests a protein with three transmembrane domains. The sequence contains numerous potential N-glycosylation sites and several putative cAMP-dependent phosphorylation sites. No homologous protein sequences were found in the common data bases. The bimE gene product is a novel component in the regulation of mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号