首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biogeographic studies separate the Antarctic Notothenioid fish fauna into high- and low-latitude species. Past studies indicate that some species found in the high-latitude freezing waters of the High-Antarctic Zone have low-serum hysteresis freezing points, while other species restricted to the low-latitude seasonal pack ice zone have higher serum hysteresis freezing points above the freezing point of seawater (−1.9°C), but the relationship has not been systematically investigated. Freeze avoidance was quantified in 11 species of Antarctic icefishes by determining the hysteresis freezing points of their blood serum, in addition, the freezing point depression from serum osmolytes, the antifreeze activity from serum antifreeze glycoproteins (AFGPs), and the antifreeze activity from serum antifreeze potentiating protein were measured for each species. Serum hysteresis freezing point, a proxy for organismal freeze avoidance, decreased as species were distributed at increasing latitude (linear regression r 2 0.66, slope −0.046°C °latitude−1), which appeared largely independent of phylogenetic influences. Greater freeze avoidance at high latitudes was largely a result of higher levels of antifreeze activity from serum AFGPs relative to those in species inhabiting the low-latitude waters. The icefish fauna could be separated into a circum High-Antarctic Group of eight species that maintained serum hysteresis freezing points below −1.9°C even when sampled from less severe habitats. The remaining three species with low-latitude ranges restricted to the waters of the northern part of the west Antarctic Peninsula and Scotia Arc Islands had serum hysteresis freezing points at or above −1.9°C due to significantly lower combined activity from all of their serum antifreeze proteins than found in the High-Antarctic Zone icefish.  相似文献   

2.
Fishes of the perciform suborder Notothenioidei afford an excellent opportunity for studying the evolution and functional importance of diverse types of biochemical adaptation to temperature. Antarctic notothenioids have evolved numerous biochemical adaptations to stably cold waters, including antifreeze glycoproteins, which inhibit growth of ice crystals, and enzymatic proteins with cold-adapted specific activities (k(cat) values) and substrate binding abilities (K(m) values), which support metabolism at low temperatures. Antarctic notothenioids also exhibit the loss of certain biochemical traits that are ubiquitous in other fishes, including the heat-shock response (HSR) and, in members of the family Channichthyidae, hemoglobins and myoglobins. Tolerance of warm temperatures is also truncated in stenothermal Antarctic notothenioids. In contrast to Antarctic notothenioids, notothenioid species found in South American and New Zealand waters have biochemistries more reflective of cold-temperate environments. Some of the contemporary non-Antarctic notothenioids likely derive from ancestral species that evolved in the Antarctic and later "escaped" to lower latitude waters when the Antarctic Polar Front temporarily shifted northward during the late Miocene. Studies of cold-temperate notothenioids may enable the timing of critical events in the evolution of Antarctic notothenioids to be determined, notably the chronology of acquisition and amplification of antifreeze glycoprotein genes and the loss of the HSR. Genomic studies may reveal how the gene regulatory networks involved in acclimation to temperature differ between stenotherms like the Antarctic notothenioids and more eurythermal species like cold-temperate notothenioids. Comparative studies of Antarctic and cold-temperate notothenioids thus have high promise for revealing the mechanisms by which temperature-adaptive biochemical traits are acquired - or through which traits that cease to be of advantage under conditions of stable, near-freezing temperatures are lost - during evolution.  相似文献   

3.
Characterization of antifreeze activity in Antarctic plants   总被引:9,自引:0,他引:9  
Deschampsia antarctica and Colobanthus quitensis are the only vascular plants to have colonized the Maritime Antarctic, which is characterized by its permanently low temperature and frequent summer frosts. To understand how the plants survive freezing temperatures year-round, antifreeze activity was assayed in apoplastic extracts obtained from both non-acclimated and cold-acclimated Antarctic plants. By observing the shape of ice crystals grown in dilution series of the extracts, it was found that D. antarctica had antifreeze activity, but C. quitensis did not. D. antarctica exhibited antifreeze activity in the non-acclimated state and this activity increased after cold acclimation. The antifreeze activity in D. antarctica was labile to proteolysis and high temperature, active over a wide pH range, and associated with molecules greater than 10 kDa in molecular weight. These results show that D. antarctica produces antifreeze proteins that are secreted into the apoplast. When examined by SDS-PAGE, the apoplastic extracts from cold-acclimated D. antarctica exhibited 13 polypeptides. It is concluded that D. antarctica accumulates AFPs as part of its mechanism of freezing tolerance. Moreover, this is the first plant in which antifreeze activity has been observed to be constitutive.  相似文献   

4.
The presence of large-molecular-mass, thermal hysteresis (TH)-producing antifreezes (e.g., antifreeze proteins) has been reported in numerous and diverse taxa, including representative species of fish, arthropods, plants, fungi, and bacteria. However, relatively few of these antifreeze molecules have been chemically characterized. We screened diverse species by subjecting their homogenates to ice-affinity purification and discovered the presence of a newly identified class of antifreeze, a xylomannan-based TH-producing glycolipid that was previously reported in one species of freeze-tolerant Alaskan beetle. We isolated xylomannan-based antifreeze glycolipids from one plant species, six insect species, and the first frog species to be shown to produce a large-molecular-mass antifreeze. 1H NMR spectra of the ice-purified molecules isolated from these diverse freeze-tolerant and freeze-avoiding organisms were nearly identical, indicating that the chemical structures of the glycolipids were highly similar. Although the exact functions remain uncertain, it appears that antifreeze glycolipids play a role in cold tolerance.  相似文献   

5.
6.
The radiation of notothenioid fishes (Perciformes) in Antarctic waters was likely the result of an absence of competition in the isolated Antarctic waters and key traits such as the production of antifreeze glycoprotein and buoyancy modifications. Although notothenioids lack a swim bladder, the buoyancy of Antarctic species, ranging from neutrally buoyant to relatively heavy, corresponds to diverse life styles. The buoyancy of South American notothenioids has not been studied. Static buoyancy was measured in adult notothenioids (n = 263, from six species of the sub-order Notothenioidei, families Bovichtidae, Eleginopidae, Nototheniidae, and Harpagiferidae) from the Beagle Channel. Measurements were expressed as percentage buoyancy (%B). Buoyancy ranged from 3.88 to 6.96% (median, 4.0–6.7%), and therefore, all species could be considered benthic consistent with previous studies that found that neutral buoyancy in notothenioids is rare. Harpagifer bispinis, Patagonotothen cornucola, and Cottoperca gobio were significantly less buoyant than Paranotothenia magellanica. The buoyancy values of most species were concordant with known habitat preferences. These data, especially the data of C. gobio (sister lineage of all other nototehnioids) and E. maclovinus (sister lineage of the Antarctic clade of notothenioids), could be useful for understanding the diversification of this feature during the notothenioid radiation.  相似文献   

7.
Many Antarctic notothenioid species endemic to the Seasonal Pack-ice Zone have converged on adult blood serum freezing points that are several tenths of a degree above the freezing point of seawater. While these fishes share high adult serum freezing points, the development of their freeze avoidance during ontogeny has not been studied. We investigated this in wild caught juveniles of one such species, Chaenocephalus aceratus (family Channichthyidae), using blood serum antifreeze activity as a proxy for their freeze avoidance. Juvenile serum antifreeze activity was significantly below that of adults through the oldest year 2+ specimens collected. This increased at an estimated rate of 0.368 × 10−3 ± 0.405 × 10−4°C day−1 which, if sustained, would leave C. aceratus below their adult serum antifreeze activity levels of 0.57 ± 0.08°C until 4.2 years after hatching. Underlying the 2.7-fold increase in their serum antifreeze activity from late year 0+ juveniles to adults was an even greater 10.4-fold increase in the concentration of their serum antifreeze glycopeptides, which increased proportionally across all of their serum AFGP size isoforms. With insufficient antifreeze activity to avoid freezing in the ice-laden surface waters, both adult and juvenile C. aceratus are most likely restricted to the year round ice-free waters where a metastable supercooled state can be maintained.  相似文献   

8.
Antarctic terrestrial ecosystems currently include very few non-native species, due to the continent’s extreme isolation from other landmasses. However, the indigenous biota is vulnerable to human-mediated introductions of non-native species. In December 2005, four construction vehicles were imported by contractors to the British Antarctic Survey’s (BAS) Rothera Research Station (Antarctic Peninsula) from the Falkland Islands and South Georgia (South Atlantic) on board RRS James Clark Ross. The vehicles were contaminated with >132 kg of non-Antarctic soil that contained viable non-native angiosperms, bryophytes, micro-invertebrates, nematodes, fungi, bacteria, and c. 40,000 seeds and numerous moss propagules. The incident was a significant contravention of BAS operating procedures, the UK Antarctic Act (1994) and the Protocol on Environmental Protection to the Antarctic Treaty (1998), which all prohibit the introduction of non-native species to Antarctica without an appropriate permit. The introduction of this diverse range of species poses a significant threat to local biodiversity should any of the species become established, particularly as the biota of sub-Antarctic South Georgia is likely to include many species with appropriate pre-adaptations facilitating the colonisation of more extreme Antarctic environments. Once the incident was discovered, the imported soil was removed immediately from Antarctica and destroyed. Vehicle cleaning and transportation guidelines have been revised to enhance the biosecurity of BAS operations, and to minimise the risk of similar incidents occurring.  相似文献   

9.
Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.  相似文献   

10.
Antifreeze proteins are a structurally diverse group of proteins characterized by their unique ability to cause a separation of the melting- and growth-temperatures of ice. These proteins have evolved independently in different kinds of cold-adapted ectothermic animals, including insects and fish, where they protect against lethal freezing of the body fluids. There is a great variability in the capacity of different kinds of antifreeze proteins to evoke the antifreeze effect, but the basis of these differences is not well understood. This study reports on salt-induced enhancement of the antifreeze activity of an antifreeze protein from the longhorn beetle Rhagium inquisitor (L.). The results imply that antifreeze activity is predetermined by a steady-state distribution of the antifreeze protein between the solution and the ice surface region. The observed salt-induced enhancement of the antifreeze activity compares qualitatively and quantitatively with salt-induced lowering of protein solubility. Thus, salts apparently enhance antifreeze activity by evoking a solubility-induced shift in the distribution pattern of the antifreeze proteins in favour of the ice. These results indicate that the solubility of antifreeze proteins in the solution surrounding the ice crystal is a fundamental physiochemical property in relation to their antifreeze potency.  相似文献   

11.
Recent studies have revealed a previously unanticipated level of biodiversity present in the Antarctic littoral. Here, we report research on the ecophysiological strategies adopted by intertidal species that permit them to survive in this environment, presenting cold-tolerance data for the widest range of invertebrates published to date from the Antarctic intertidal zone. We found significant differences in levels of cold tolerance between species within this zone. However, and contrary to expectations, intraspecific comparisons of subtidal and intertidal groups of eight species found significant differences between groups in only three species. One species, the nemertean Antarctonemertes validum, showed evidence of the presence of antifreeze proteins (thermal hysteresis proteins), with 1.4°C of thermal hysteresis measured in its haemolymph. We found a strong inverse relationship across species between mass and supercooling point, and fitted a power law model to describe the data. The scaling exponent (0.3) in this model suggests a relationship between an animal’s supercooling point and its linear dimensions.  相似文献   

12.
An ice-binding protein from an Antarctic sea ice bacterium   总被引:4,自引:0,他引:4  
An Antarctic sea ice bacterium of the Gram-negative genus Colwellia, strain SLW05, produces an extracellular substance that changes the morphology of growing ice. The active substance was identified as a approximately 25-kDa protein that was purified through its affinity for ice. The full gene sequence was determined and was found to encode a 253-amino acid protein with a calculated molecular mass of 26,350 Da. The predicted amino acid sequence is similar to predicted sequences of ice-binding proteins recently found in two species of sea ice diatoms and a species of snow mold. A recombinant ice-binding protein showed ice-binding activity and ice recrystallization inhibition activity. The protein is much smaller than bacterial ice-nucleating proteins and antifreeze proteins that have been previously described. The function of the protein is unknown but it may act as an ice recrystallization inhibitor to protect membranes in the frozen state.  相似文献   

13.
Many organisms in extremely cold environments such as the Antarctic Pole have evolved antifreeze molecules to prevent ice formation. There are four types of antifreeze proteins (AFPs). Type-IV antifreeze proteins (AFP4s) are present also in certain temperate and even tropical fish, which has raised a question as to whether these AFP4s have important functions in addition to antifreeze activity. Here we report the identification and functional analyses of AFP4s in cyprinid fish. Two genes, namely afp4a and afp4b coding for AFP4s, were identified in gibel carp (Carassius auratus gibelio) and zebrafish (Danio rerio). In both species, afp4a and afp4b display a head-to-tail tandem arrangement and share a common 4-exonic gene structure. In zebrafish, both afp4a and afp4b were found to express specifically in the yolk syncytial layer (YSL). Interestingly, afp4a expression continues in YSL and digestive system from early embryos to adults, whereas afp4b expression is restricted to embryogenesis. Importantly, we have shown by using afp4a-specific and afp4b-specifc morpholino knockdown and cell lineage tracing approaches that AFP4a participates in epiboly progression by stabilizing yolk cytoplasmic layer microtubules, and AFP4b is primarily related to convergence movement. Therefore, both AFP4 proteins are essential for gastrulation of zebrafish embryos. Our current results provide first evidence that AFP such as AFP4 has important roles in regulating developmental processes besides its well-known function as antifreeze factors.  相似文献   

14.
A cDNA for a type II antifreeze protein was isolated from liver of smelt (Osmerus mordax). The predicted protein sequence is homologous to that from sea raven (Hemitripterus americanus) and both show homology to a family of calcium-dependent lectins. Smelt and sea raven belong to taxonomic orders believed to have diverged prior to Cenozoic glaciation. Thus, type II antifreeze proteins appear to have evolved independently in these fish species from pre-existing calcium-dependent lectins. Sequence alignment of the antifreezes and the lectins suggest that these proteins adopt a similar fold, that the sea raven antifreeze has lost its Ca2+ binding sites, and the smelt antifreeze has retained one site. Experiments show that smelt antifreeze protein activity is responsive to Ca2+ but that of sea raven antifreeze protein is not. These results suggest that the type II fish antifreeze proteins and calcium-dependent lectins share a common ancestry, related folding structures, and functional similarity.  相似文献   

15.
The sequence and activity of antifreeze proteins from two right eye flounder species were compared to assess the influence of structural variations on antifreeze capacity. The cDNA encoding the major serum antifreeze protein in the yellowtail flounder (Limanda ferruginea) was cloned from liver tissue. Its DNA sequence shows that the precursor to the antifreeze is a 97-residue preproportion. Edman degradation identified the N-terminus of the 48-amino-acid mature serum antifreeze protein and confirmed the sequence of the first 36 residues. A comparison with the previously determined winter flounder antifreeze protein and mRNA sequences shows strong homology through the 5' and 3' untranslated regions and in the peptide region. The mature protein section has the greatest sequence variation. Specifically, the yellowtail antifreeze protein, in contrast to that of the winter flounder, contains a fourth 11-amino-acid repeat and lacks several of the hydrophilic residues that have been postulated to aid in the binding of the protein to ice crystals. Intramolecular salt bridges are present in the antifreeze proteins from both species but in different registries with respect to the 11-amino-acid repeats. On a mass basis the yellowtail flounder antifreeze, though longer than that of the winter flounder, is only 80% as effective at depressing the freezing temperature of aqueous solutions. This lower activity might be due to the reduced number of hydrophilic ice-binding residues per molecule.  相似文献   

16.
The two giant notothenioid species, the Patagonian toothfish Dissostichus eleginoides and the Antarctic toothfish D. mawsoni, are important components of the Antarctic ichthyofauna and heavily exploited commercially. They have similar appearance and size, both are piscivorous and bentho-pelagic, but differ in their geographic distribution and absence/presence of the antifreeze trait. We karyotyped these two sister species by analyzing specimens collected from multiple Antarctic and sub-Antarctic sites. Both species have a diploid number of 48, but differ in karyotypic formula, (2m + 2sm + 44a) for D. eleginoides and (2m + 4sm + 42a) for D. mawsoni, due to an extra pair of submetacentric chromosomes in the latter. Chromosomal fluorescence in situ hybridization with rDNA probes revealed unexpected species-specific organization of rRNA genes; D. mawsoni possesses two rDNA loci (versus one locus in D. eleginoides), with the second locus mapping to its additional submetacentric chromosome. The additional rRNA genes in D. mawsoni may be a cold-adaptive compensatory mechanism for growth and development of this large species in freezing seawater.  相似文献   

17.
A re-evaluation of the role of type IV antifreeze protein   总被引:1,自引:0,他引:1  
A lipoprotein-like antifreeze protein (type IV AFP) has previously been isolated only from the blood plasma of the longhorn sculpin. However, the plasma antifreeze activity in all individuals of this species tested from Newfoundland and New Brunswick waters ranges from low to undetectable. A close relative of the longhorn sculpin, the shorthorn sculpin, does have appreciable antifreeze activity in its blood but this is virtually all accounted for by the α-helical, alanine-rich type I AFP, other isoforms of which are also present in the skin of both fishes. We have characterized a putative ortholog of type IV AFP in shorthorn sculpin by cDNA cloning. This 12.2-kDa Gln-rich protein is 87% identical to the longhorn sculpin’s type IV AFP. Recombinant versions of both orthologs were produced in bacteria and shown to have antifreeze activity. Immunoblotting with antibodies raised to type IV AFP shows this protein present in longhorn sculpin plasma at levels of less than 100 μg/mL, which are far too low to protect the blood from freezing at the temperature of icy seawater. This confirms the results of direct antifreeze assays on the plasmas. It appears that type IV AFP has the potential to develop as a functional antifreeze in these fishes but may not have been selected for this role because of the presence of type I AFP. Consistent with this hypothesis is the observation that the type IV AFP gene has not been amplified the way functional antifreeze protein genes have in all other species examined.  相似文献   

18.
A quantification method was developed to determine the concentrations of the major antifreeze glycoprotein (AFGP) isoforms in the blood of Antarctic notothenioid fishes. Serum samples were precipitated with 2.5% TCA and the supernatant containing AFGPs were chromatographed on an HPLC size exclusion column and the concentrations of the major AFGP size classes were determined from the areas of the corresponding peaks in the elution profile. Eight species of Antarctic notothenioid fishes were examined and their blood AFGP concentrations varied from 5 to 35 mg/mL. All of these fishes synthesized both the large and small AFGPs, but maintained higher levels of small AFGPs than the large ones in their blood. The species inhabiting more severe water environments (lower temperature and presence of ice) had higher serum AFGP levels than those in milder environments. The cryopelagic Pagothenia borchgrevinki decreased their blood AFGP concentrations in response to warm acclimation, but to a much lower extent in comparison to the antifreeze-bearing fishes in the Northern Hemisphere. After being warm acclimated at +4 degrees C for 16 weeks, the serum concentrations of the small and large AFGPs were decreased by about 60% and 20%, respectively.  相似文献   

19.
20.
Renal glomerular evolution in Antarctic notothenioid fishes   总被引:2,自引:0,他引:2  
Light and electron microscopy were used to document the degree of glomerular development in 10 species of Antarctic notothenioid fishes. When combined with results of previous studies, data revealed that 16 of 20 species inhabiting subzero sea water were aglomerular. One subantarctic and two temperate species were pauciglomerular, and an additional temperate species had a moderate number of glomeruli. Renal corpuscles were variable in number and diameter among the pauciglomerular species, and most had few patent glomerular capillaries. Radiolabelled markers indicated that the glomerular filtration rate was low in the pauciglomerular Notothenia angustata , ranging from 0.005 to 0.124 ml h−1 kg−1 in eight specimens. Arterial perfusion of Microfil demonstrated that arteries supplying aglomerular and pauciglomerular kidneys were confined largely to the periphery of the organ, and glomerular capillaries were absent or few in number. As ancestral notothenioids probably had glomerular kidneys, data from 20–25% of the fauna suggest that there has been an evolutionary loss of glomeruli in many species. The pattern of glomerular reduction is consistent with the hypothesis that the selective advantage of aglomerularism is in the urinary conservation of small molecular weight antifreeze glycopeptide compounds that are vital to survival in sub-zero Antarctic waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号