首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hallmark of a Type-I photosynthetic reaction center (RC) is the presence of three [4Fe–4S]2+/1+ clusters, named FX, FA, and FB that act as terminal electron acceptors. Their function is to increase the distance, and hence the lifetime, of the initial charge-separated state so that diffusion-mediated processes, such as the reduction of ferredoxin, can occur. Type-I homodimeric RCs, such as those found in heliobacteria, green-sulfur bacteria, and Candidatus Chloracidobacterium thermophilum, are less well understood than Photosystem I, the prototypical Type-I heterodimeric RC found in cyanobacteria and plants. Here, we review recent progress that has been made in elucidating the spectroscopic and biochemical properties of the bound Fe/S clusters and their cognate proteins in homodimeric Type-I RCs. In Heliobacterium modesticaldum, the identification and characterization of two loosely bound polypeptides, PshBI and PshBII that harbor the FA and FB clusters threatens to break the long-accepted assumption that Type-I RCs harbor one tightly bound FA/FB-containing protein. Additionally, the detection of the FX cluster in S = 1/2 and S = 3/2 ground spin states has resolved the long-standing issue of its missing EPR spectrum. In Chlorobaculum tepidum, the focus is on the biochemical properties of the unusual extrinsic Fe/S protein, PscB, which is readily dissociable from the RC core. The C-terminal domain of PscB is constructed as a bacterial ferredoxin, harboring the FA and FB clusters, but the N-terminal domain contains a number of PxxP motifs and is rich in Lys, Pro, and Ala residues, features characteristic of proteins that interact with SH3 domains. Little is known about Candidatus Chloracidobacterium thermophilum except that the photosynthetic RC is predicted to be a Type-I homodimer with an FX-binding site. These findings are placed in a context that promises to unify the acceptor side of homodimeric Type-I RCs in prokaryotic phototrophs.  相似文献   

2.
Chemical rescue of site-modified amino acids using externally supplied organic molecules represents a powerful method to investigate structure-function relationships in proteins. Here we provide definitive evidence that aryl and alkyl thiolates, reagents typically used for in vitro iron-sulfur cluster reconstitutions, serve as rescue ligands to a site-specifically modified [4Fe-4S]1+,2+ cluster in PsaC, a bacterial dicluster ferredoxin-like subunit of Photosystem I. PsaC binds two low-potential [4Fe-4S]1+,2+ clusters termed FA and FB. In the C13G/C33S variant of PsaC, glycine has replaced cysteine at position 13 creating a protein that is missing one of the ligating amino acids to iron-sulfur cluster FB. Using a variety of analytical techniques, including non-heme iron and acid-labile sulfur assays, and EPR, resonance Raman, and Mössbauer spectroscopies, we showed that the C13G/C33S variant of PsaC binds two [4Fe-4S]1+,2+ clusters, despite the absence of one of the biological ligands. 19F NMR spectroscopy indicated that the external thiolate replaces cysteine 13 as a substitute ligand to the FB cluster. The finding that site-modified [4Fe-4S]1+,2+ clusters can be chemically rescued with external thiolates opens new opportunities for modulating their properties in proteins. In particular, it provides a mechanism to attach an additional electron transfer cofactor to the protein via a bound, external ligand.  相似文献   

3.
4.
The expression of human G protein-coupled receptors (GPCRs) in Saccharomyces cerevisiae containing chimeric yeast/mammalian Gα subunits provides a useful tool for the study of GPCR activation. In this study, we used a one-GPCR-one-G protein yeast screening method in combination with molecular modeling and mutagenesis studies to decipher the interaction between GPCRs and the C-terminus of different α-subunits of G proteins. We chose the human adenosine A2B receptor (hA2BR) as a paradigm, a typical class A GPCR that shows promiscuous behavior in G protein coupling in this yeast system. The wild-type hA2BR and five mutant receptors were expressed in 8 yeast strains with different humanized G proteins, covering the four major classes: Gαi, Gαs, Gαq, and Gα12. Our experiments showed that a tyrosine residue (Y) at the C-terminus of the Gα subunit plays an important role in controlling the activation of GPCRs. Receptor residues R1033.50 and I1073.54 are vital too in G protein-coupling and the activation of the hA2BR, whereas L213IL3 is more important in G protein inactivation. Substitution of S2356.36 to alanine provided the most divergent G protein-coupling profile. Finally, L2366.37 substitution decreased receptor activation in all G protein pathways, although to a different extent. In conclusion, our findings shed light on the selectivity of receptor/G protein coupling, which may help in further understanding GPCR signaling.  相似文献   

5.
《BBA》1987,893(2):149-160
The Photosystem I reaction center is a membrane-bound, multiprotein complex containing a primary electron donor (P-700), a primary electron acceptor (A0), an intermediate electron acceptor (A1) and three membrane-bound iron-sulfur centers (FX, FB, and FA). We reported in part I of this series (Golbeck, J.H. and Cornelius, J.M. (1986) Biochim. Biophys. Acta 849, 16–24) that in the presence of 1% lithium dodecyl sulfate (LDS), the reaction center becomes dissociated, resulting in charge separation and recombination between P-700 and FX without the need for prereduction of FA and FB. In this paper, we report (i) the LDS-induced onset of the 1.2-ms ‘fast’ phase of the P-700 absorption transient is time-dependent, attaining a maximum 3:1 ratio of ‘fast’ to ‘slow’ kinetic phases; (ii) the ‘fast’ kinetic phase, corresponding to the P-700+ FX backreaction, is stabilized indefinitely by dilution of the LDS-treated particle followed by ultrafiltration over a YM-100 membrane; (iii) without stabilization, the P-700+ FX reaction deteriorates, leading to the rise of the long-lived P-700 triplet formed from the P-700+AO backreaction; (iv) the ‘slow’ kinetic phase correlates with the redox and ESR properties of FA and/or FB, which indicates that in a minority of particles the terminal iron-sulfur protein remains attached to the reaction center core; (v) the ultrafiltered reaction center is severely deficient in all of the low molecular-weight polypeptides, particularly the 19-kDa, 18-kDa and 12-kDa polypeptides relative to the 64-kDa polypeptide(s); (vi) the stabilized particle contains 5.8 mol labile sulfide per mol photoactive P-700, reflecting largely the iron-sulfur content of Fx, but also residual FA and FB, on the reaction center; and (vii) the apoproteins of FA and FB are physically removed from the reaction center particle as indicated by the presence of protein-bound zero-valence sulfur in the YM-100 filtrate. These results are interpreted in terms of a model for Photosystem I in which FA and FB are located on a low-molecular-weight polypeptide and FX is depicted as a [2Fe-2S] cluster shared between the two high-molecular-weight polypeptides Photosystem I-A1 and Photosystem I-A2.  相似文献   

6.
The influence of varying combinations of water activity (aw) and temperature on growth, aflatoxin biosynthesis and aflR/aflS expression of Aspergillus parasiticus was analysed in the ranges 17–42°C and 0.90–0.99 aw. Optimum growth was at 35°C. At each temperature studied, growth increased from 0.90 to 0.99 aw. Temperatures of 17 and 42°C only supported marginal growth. The external conditions had a differential effect on aflatoxin B1 or G1 biosynthesis. The temperature optima of aflatoxin B1 and G1 were not at the temperature which supported optimal growth (35°C) but either below (aflatoxin G1, 20–30°C) or above (aflatoxin B1, 37°C). Interestingly, the expression of the two regulatory genes aflR and aflS showed an expression profile which corresponded to the biosynthesis profile of either B1 (aflR) or G1 (aflS). The ratios of the expression data between aflS:aflR were calculated. High ratios at a range between 17 and 30°C corresponded with the production profile of aflatoxin G1 biosynthesis. A low ratio was observed at >30°C, which was related to aflatoxin B1 biosynthesis. The results revealed that the temperature was the key parameter for aflatoxin B1, whereas it was water activity for G1 biosynthesis. These differences in regulation may be attributed to variable conditions of the ecological niche in which these species occur.  相似文献   

7.
《BBA》1987,891(1):94-98
Core extrusion of the bound iron-sulfur centers from spinach Photosystem I showed the presence of [2Fe-2S] clusters as well as [4Fe-4S] clusters among FA, FB and FX. Extrusion of the iron-sulfur ensemble was not quantitative; however, the presence of [2Fe-2S] clusters correlated with higher concentration of unfolding solvent. Since FX is highly resistant to denaturation, and since FA and FB are known to contain [4Fe-4S] clusters, the [2Fe-2S] clusters are assigned to FX. The presence of [2Fe-2S] clusters in Photosystem I has significance in the structure and organization of FX on the reaction center. Since four cysteinyl ligands are assumed to hold an iron-sulfur cluster, a Photosystem I subunit may consist of two approx. 64-kDa proteins bridged by a single [2Fe-2S] cluster. The complete reaction center would consist of two subunits positioned so that two [2Fe-2S] clusters are in magnetic interaction, thereby constituting FX.  相似文献   

8.
A site-directed C14G mutation was introduced into the stromal PsaC subunit of Synechococcus sp. strain PCC 7002 in vivo in order to introduce an exchangeable coordination site into the terminal FB [4Fe–4S] cluster of Photosystem I (PSI). Using an engineered PSI-less strain (psaAB deletion), psaC was deleted and replaced with recombinant versions controlled by a strong promoter, and the psaAB deletion was complemented. Modified PSI accumulated at lower levels in this strain and supported slower photoautotrophic growth than wild type. As-isolated PSI complexes containing PsaCC14G showed resonances with g values of 2.038 and 2.007 characteristic of a [3Fe–4S]1+ cluster. When the PSI complexes were illuminated at 15 K, these resonances partially disappeared and two new sets of resonances appeared. The majority set had g values of 2.05, 1.95, and 1.85, characteristic of FA ?, and the minority set had g values of 2.11, 1.90, and 1.88 from FB′ in the modified site. The S?=?1/2 spin state of the latter implied the presence of a thiolate as the terminal ligand. The [3Fe–4S] clusters could be partially reconstituted with iron, producing a larger population of [4Fe–4S] clusters. Rates of flavodoxin reduction were identical in PSI complexes isolated from wild type and the PsaCC14G variant strain; this implied equivalent capacity for forward electron transfer in PSI complexes that contained [3Fe–4S] and [4Fe–4S] clusters. The development of this cyanobacterial strain is a first step toward translation of in vitro PSI-based biosolar molecular wire systems in vivo and provides new insights into the formation of Fe/S clusters.  相似文献   

9.
Xiao-Min Gong  Tal Lev  Chanoch Carmeli 《BBA》2009,1787(2):97-104
Photosystem I (PS I) mediates light-induced electron transfer from P700 through a chlorophyll a, a quinone and a [4Fe-4S] iron-sulfur cluster FX, located on the core subunits PsaA/B to iron-sulfur clusters FA/B on subunit PsaC. Structure function relations in the native and in the mutant (psaB-C565S/D566E) of the cysteine ligand of FX cluster were studied by X-ray absorption spectroscopy (EXAFS) and transient spectroscopy. The structure of FX was determined in PS I lacking clusters FA/B by interruption of the psaC2 gene of PS I in the cyanobacterium Synechocystis sp PCC 6803. PsaC-deficient mutant cells assembled the core subunits of PS I which mediated electron transfer mostly to the phylloquinone. EXAFS analysis of the iron resolved a [4Fe-4S] cluster in the native PsaC-deficient PS I. Each iron had 4 sulfur and 3 iron atoms in the first and second shells with average Fe-S and Fe-Fe distances of 2.27 Å and 2.69 Å, respectively. In the C565S/D566E serine mutant, one of the irons of the cluster was ligated to three oxygen atoms with Fe-O distance of 1.81 Å. The possibility that the structural changes induced an increase in the reorganization energy that consequently decreased the rate of electron transfer from the phylloquinone to FX is discussed.  相似文献   

10.
The ability of aflatoxins B1 and G1 to induce back mutations to arg+ in Escherichia coli K-12/343/113 was compared with induction of mitotic gene conversion to ade+ in the diploid yeast strain Saccharomyces cerevisiae D4, ade2?. In analogy to previous results with other microorganisms, the compounds were not genetically active per se, indicating that under the experimental conditions employed none of the tester strains were able to activate the compounds to mutagenic products.In experiments using liver homegenates (S-9 fraction) of male Golden Syrian hamsters previously treated with phenobarbital, aflatoxin B1 exhibited strong genetic activity both in E. coli and in S. cerevisiae, whereas the mutagenic activity of aflatoxin G1 was markedly lower and could be detected only in the E. coli tester strain. These results correlate the findings that aflatoxin G1 is a less potent carcinogen and mutagen than aflatoxin B1.  相似文献   

11.
Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G1 phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3′-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.Conditionally replicating adenoviruses are a novel class of biological agents used to treat cancer (57). The E1B-55K deletion mutant virus ONYX-015, originally known as dl1520 (4), is one of the first of such agents (7). H101 is another E1B-55K deletion mutant adenovirus that is being used for tumor therapy in China (30, 78). We previously reported that cells infected during the G1 phase of the cell cycle with E1B-55K deletion mutant adenoviruses exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less effectively killed than cells infected during S phase (34, 35, 66). These observations indicated that the E1B-55K deletion mutant virus ONYX-015 is restricted in cells infected in G1. This restriction is significant because a large fraction of cells within a tumor exist in the G1 phase of the cell cycle (71). Here we show that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1).The E4orf1-encoded protein is a small adapter molecule that associates with PDZ domain-containing proteins including MUPP1, PATJ, MAGI-1, ZO-2, and Dlg1 (46). PDZ domain-containing proteins often serve as scaffolds for the assembly of signaling complexes at the plasma membrane (64). Through its association with PDZ domain-containing proteins, the E4orf1-encoded protein promotes signaling through the phosphatidylinositol 3′-kinase (PI3-kinase) pathway to effectors such as protein kinase B (Akt), the mammalian target of rapamycin (mTOR), and the S6 ribosomal protein kinase (p70 S6K) (27, 54). Through these effectors, PI3-kinase alters protein synthesis and cell survival (21, 28). E4orf1 is the principal oncogenic determinant of species D adenovirus type 9 (42). The transforming ability of E4orf1 can be blocked by the PI3-kinase inhibitor LY249002 (27). However, phosphorylation of p70 S6K can also proceed by pathways that are independent of PI3-kinase or Akt. For example, the Rho-like GTPase Rac1 can activate p70 S6K (17). Rac1 is itself regulated by cellular factors to which it binds, including the Rac1-specific guanine nucleotide exchange factor T-cell lymphoma invasion and metastasis 1 protein (Tiam1). Tiam1 and the neural tissue-associated F-actin-binding protein neurabin II or spinophilin recruit p70 S6K into a complex containing Rac1, resulting in increased phosphorylation of p70 S6K (12, 36, 50). Interestingly, both Tiam1 and neurabin II are PDZ-containing proteins. These observations provided a potential basis by which E4orf1 may modulate protein synthesis and cell survival.In this report, we show for the first time that E4orf1 restricts the abilities of the E1B-55K deletion mutant virus to produce viral progeny, to direct viral late protein synthesis, and to kill tumor cells. Drugs that are reported to prevent phosphorylation of p70 S6K or to disrupt the interaction between Tiam1 and Rac1 increase the cell-killing ability of the E1B-55K deletion mutant virus to nearly the same level observed for an E1B-55K/E4orf1 double mutant and the wild-type virus. By uncovering a role for E4orf1 in the course of a lytic adenovirus infection, this study presents novel genetic and pharmacological means by which the effectiveness of replicating oncolytic adenoviruses can be improved.  相似文献   

12.
The model plant tobacco (Nicotiana tabacum L.) was chosen for a survey of the subunit composition of the V-ATPase at the protein level. V-ATPase was purified from tobacco leaf cell tonoplasts by solubilization with the nonionic detergent Triton X-100 and immunoprecipitation. In the purified fraction 12 proteins were present. By matrix-assisted laser-desorption ionization mass spectrometry (MALDI-MS) and amino acid sequencing 11 of these polypeptides could be identified as subunits A, B, C, D, F, G, c, d and three different isoforms of subunit E. The polypeptide which could not be identified by MALDI analysis might represent subunit H. The data presented here, for the first time, enable an unequivocal identification of V-ATPase subunits after gel electrophoresis and open the possibility to assign changes in polypeptide composition to variations in respective V-ATPase subunits occurring as a response to environmental conditions or during plant development.  相似文献   

13.
Beef heart mitochondrial protein factor FB [Higashiyama etal, Biochemistry 14, 4117–4121 (1975)] was purified and its properties were compared with those of coupling factor B. Both proteins stimulated ATP-driven NAD+ reduction in ammonia and EDTA-treated (AE-) submitochondrial particles, but the extent of stimulation (maximum activity of particles) was very low with FB. FB was found to be ineffective in stimulating Pi-ATP exchange in either AE-particles or reconstituted oligomycin-sensitive ATPase vesicles. Furthermore, FB failed to stimulate ATP-driven NAD+ reduction activity of AE-particles in the presence of saturating amounts of dithiothreitol (DTT). DTT alone stimulates the particle activity extensively as reported earlier. Rabbit antiserum to FB did not show a precipitin band with purified Factor B, nor did the antibody inhibit Factor B stimulated activity of the AE-particles. The data suggest that FB and Factor B are two different molecular species with different functions and fail to provide evidence that FB is a coupling factor.  相似文献   

14.
We have found that the nearest promoter is not always the primary promoter for making translatable message. The technique of ultraviolet mapping was used to determine the location of promoter sites for translated mRNA coded for by bacteriophages φX174 and S13. The method is based on the theory that the “target size” for u.v. inactivation of expression of a gene is proportional to the distance between the promoter and the 3′ end of the gene. This method has revealed an expected and some unexpected locations for the promoters responsible for gene expression. Ultraviolet-survival curves for expression of phage genes were interpreted in the following way. The contiguous genes D, F, G and H are expressed as a unit under the control of a promoter located near gene D. However, gene B (and probably the adjacent genes K and C) are controlled by a promoter distant from gene B, possibly in the region of gene H, rather than from a promoter located just before gene B. Likewise, gene A is controlled by a promoter distant from gene A.  相似文献   

15.
An F4:5 population of 285 families with each tracing back to a different F2 plant, derived from a cotton bacterial blight resistant line ‘DeltaOpal’ and a susceptible line ‘DP388’, was artificially inoculated with bacterial blight race 18 (Xanthomonas axonopodis pv. malvacearum) to assay their resistance or susceptibility to the disease. The segregation in the F4:5 population indicates that the resistance was conditioned by a single dominant gene designated B 12. Simple sequence repeat (SSR) markers identified as putatively linked to the resistance gene by bulked segregant analysis were confirmed on the entire F4:5 population. Three SSR markers, CIR246, BNL3545 and BNL3644 on chromosome 14, were found closely linked to B 12 . The association between CIR246 and B 12 was validated among 354 plants of 16 diverse varieties. Based on Monsanto SSR/single nucleotide polymorphism (SNP) consensus map, SNP markers closely linked to CIR246 were used to screen ‘DeltaOpal’ and ‘DP388’ for polymorphism. The polymorphic SNP markers were run on the F4:5 population and the four SNP markers spanning 3.4 cM were found to flank the resistance gene on chromosome 14. The linkage between B 12 and the 4-SNP marker haplotype was validated using 18 elite cotton lines. This 4-SNP marker haplotype can be used for marker assisted selection for bacterial blight resistance breeding programs or for screening germplasm collections for this locus rapidly.  相似文献   

16.
Photosystem I (PS I) converts the energy of light into chemical energy via transmembrane charge separation. The terminal electron transfer cofactors in PS I are three low-potential [4Fe-4S] clusters named FX, FA and FB, the last two are bound by the PsaC subunit. We have modelled the FA and FB binding sites by preparing two apo-peptides (maquettes), sixteen amino acids each. These model peptides incorporate the consensus [4Fe-4S] binding motif along with amino acids from the immediate environment of the iron-sulfur clusters FA and FB. The [4Fe-4S] clusters were successfully incorporated into these model peptides, as shown by optical absorbance, EPR and Mössbauer spectroscopies. The oxidation-reduction potential of the iron-sulfur cluster in the FA-maquette is − 0.44 ± 0.03 V and in the FB-maquette is − 0.47 ± 0.03 V. Both are close to that of FA and FB in PS I and are considerably more negative than that observed for other [4Fe-4S] model systems described earlier (Gibney, B. R., Mulholland, S. E., Rabanal, F., and Dutton, P. L. Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 15041-15046). Our optical data show that both maquettes can irreversibly bind to PS I complexes, where PsaC-bound FA and FB were removed, and possibly participate in the light-induced electron transfer reaction in PS I.  相似文献   

17.
Heliobacteria contain Type I reaction centers (RCs) and a homodimeric core, but unlike green sulfur bacteria, they do not contain an extended antenna system. Given their simplicity, the heliobacterial RC (HbRC) should be ideal for the study of a prototypical homodimeric RC. However, there exist enormous gaps in our knowledge, particularly with regard to the nature of the secondary and tertiary electron acceptors. To paraphrase S. Neerken and J. Amesz (2001 Biochim Biophys Acta 1507:278–290): with the sole exception of primary charge separation, little progress has been made in recent years on the HbRC, either with respect to the polypeptide composition, or the nature of the electron acceptor chain, or the kinetics of forward and backward electron transfer. This situation, however, has changed. First, the low molecular mass polypeptide that contains the terminal FA and FB iron-sulfur clusters has been identified. The change in the lifetime of the flash-induced kinetics from 75 ms to 15 ms on its removal shows that the former arises from the P798+ [FA/FB]? recombination, and the latter from P798+ FX ? recombination. Second, FX has been identified in HbRC cores by EPR and Mössbauer spectroscopy, and shown to be a [4Fe–4S]1+,2+ cluster with a ground spin state of S = 3/2. Since all of the iron in HbRC cores is in the FX cluster, a ratio of ~22 Bchl g/P798 could be calculated from chemical assays of non-heme iron and Bchl g. Third, the N-terminal amino acid sequence of the FA/FB-containing polypeptide led to the identification and cloning of its gene. The expressed protein can be rebound to isolated HbRC cores, thereby regaining both the 75 ms kinetic phase resulting from P798+ [FA/FB]? recombination and the light-induced EPR resonances of FA ? and FB ?. The gene was named ‘pshB’ and the protein ‘PshB’ in keeping with the accepted nomenclature for Type I RCs. This article reviews the current state of knowledge on the structure and function of the HbRC.  相似文献   

18.
Recent studies demonstrated that uniaxial transverse loading (FG) of a rat gastrocnemius medialis muscle resulted in a considerable reduction of maximum isometric muscle force (ΔFim). A hill-type muscle model assuming an identical gearing G between both ΔFim and FG as well as lifting height of the load (Δh) and longitudinal muscle shortening (ΔlCC) reproduced experimental data for a single load.Here we tested if this model is able to reproduce experimental changes in ΔFim and Δh for increasing transverse loads (0.64 N, 1.13 N, 1.62 N, 2.11 N, 2.60 N). Three different gearing ratios were tested: (I) constant Gc representing the idea of a muscle specific gearing parameter (e.g. predefined by the muscle geometry), (II) Gexp determined in experiments with varying transverse load, and (III) Gf that reproduced experimental ΔFim for each transverse load.Simulations using Gc overestimated ΔFim (up to 59%) and Δh (up to 136%) for increasing load. Although the model assumption (equal G for forces and length changes) held for the three lower loads using Gexp and Gf, simulations resulted in underestimation of ΔFim by 38% and overestimation of Δh by 58% for the largest load, respectively. To simultaneously reproduce experimental ΔFim and Δh for the two larger loads, it was necessary to reduce Fim by 1.9% and 4.6%, respectively. The model seems applicable to account for effects of muscle deformation within a range of transverse loading when using a linear load-dependent function for G.  相似文献   

19.
The topography of Escherichia coli 5S RNA has been examined in the presence of ribosomal proteins L5, L18 and L25 and their different combinations, by comparing the kethoxal modification characteristics of the various RNA-protein complexes with those of the free A-conformer of 5S RNA (Noller &; Garrett, 1979, accompanying paper).Two of the four most reactive guanines, G13 and G41, are unaffected by the protein, in accord with the finding that these are the only two guanines that are accessible in the 50S subunit (Noller &; Herr, 1974). The other two very reactive guanines, G24 and G69, are strongly protected by protein L18, either in the presence or absence of proteins L5 and L25. Protein binding studies with kethoxal-modified 5S RNA provide evidence that one or both of these two guanines are directly involved in the protein-RNA interactions, and this conclusion is supported by the occurrence of guanines in these two positions in all the other sequenced prokaryotic 5S RNAs.The group of less reactive guanines, G16, G23, G44, G86 and G107, are protected to some extent by each of the proteins L5, L18 and L25; the strongest effect is with L18. We suggest that this is attributable to a small increase in the conformational homogeneity of the 5S RNA and that L18, in particular, induces some tightening of the RNA structure.Only one guanine, G69, is rendered more accessible by the proteins. This effect is produced by protein L25, which is known to cause some destructuring of the 5S RNA (Bear et al., 1977). There was no other evidence for any destructuring of the 5S RNA. In particular, the sequence 72 to 83, which is complementary to a sequence in 23S RNA (Herr &; Noller, 1975), is not modified. However, in contrast to an earlier report (Erdmann et al., 1973), the conserved sequence G44-A-A-C, which has been implicated in tRNA binding, was not rendered more accessible by the proteins.  相似文献   

20.
Inbreeding (mating between relatives) can dramatically reduce the fitness of offspring by causing parts of the genome to be identical by descent. Thus, measuring individual inbreeding is crucial for ecology, evolution and conservation biology. We used computer simulations to test whether the realized proportion of the genome that is identical by descent (IBDG) is predicted better by the pedigree inbreeding coefficient (FP) or by genomic (marker-based) measures of inbreeding. Genomic estimators of IBDG included the increase in individual homozygosity relative to mean Hardy–Weinberg expected homozygosity (FH), and two measures (FROH and FE) that use mapped genetic markers to estimate IBDG. IBDG was more strongly correlated with FH, FE and FROH than with FP across a broad range of simulated scenarios when thousands of SNPs were used. For example, IBDG was more strongly correlated with FROH, FH and FE (estimated with ⩾10 000 SNPs) than with FP (estimated with 20 generations of complete pedigree) in populations with a recent reduction in the effective populations size (from Ne=500 to Ne=75). FROH, FH and FE generally explained >90% of the variance in IBDG (among individuals) when 35 K or more SNPs were used. FP explained <80% of the variation in IBDG on average in all simulated scenarios, even when pedigrees included 20 generations. Our results demonstrate that IBDG can be more precisely estimated with large numbers of genetic markers than with pedigrees. We encourage researchers to adopt genomic marker-based measures of IBDG as thousands of loci can now be genotyped in any species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号