首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enhancing effects of diethyldithiocarbamate (DDC) on increase of sodium channel by sulfur dioxide derivatives in ventricular myocytes were studied using the whole cell patch-clamp technique to probe the mechanism of SO(2) on the cardiovascular system in this study. Firstly, the effects of DDC and/or sulfur dioxide (SO(2)) derivatives on the activities of superoxide dismutase (SOD) were studied. The results showed that DDC decreased SOD activities significantly and SO(2) derivatives had no significant effect on SOD activities; however, DDC and SO(2) derivatives combined led to a significant decrease of SOD activities. In the electrophysiological test, DDC (1-100mM) increased sodium current (I(Na)) in a concentration-dependent manner and the concentration for half-maximum increase (EC(50)) was 20mM. Addition of 20mM DDC to the SO(2) derivatives-containing medium significantly shifted the voltage-dependent activation curve of I(Na) toward the hyperpolarizing direction (V(h) are -51mV, -53mV and -54mV, respectively) and shifted the steady-state inactivation curve to more positive potentials (V(h) are -74mV, -71mV and -65mV, respectively) compared with the control and 10muM SO(2) derivatives exposure. These results indicated that DDC could enhance the increasing effects on Na(+) channels induced by SO(2) derivatives, and suggested that the toxicity of SO(2) on ventricular myocytes of rats was realized by free radical, especially O(2)(-).  相似文献   

2.
The effects of sulfur dioxide (SO2) derivatives (bisulfite and sulfite, 1:3 M/M) on voltage-dependent potassium current in isolated adult rat ventricular myocyte were investigated using the whole cell patch-clamp technique. SO2 derivatives (10 microM) increased transient outward potassium current (I(to)) and inward rectifier potassium current (I(K1)), but did not affect the steady-state outward potassium current (I(ss)). SO2 derivatives significantly shifted the steady-state activation curve of I(to) toward the more negative potential at the V(h) point, but shifted the inactivation curve to more positive potential. SO2 derivatives markedly shifted the curve of time-dependent recovery of I(to) from the steady-state inactivation to the left, and accelerated the recovery of I(to) from inactivation. In addition, SO2 derivatives also significantly change the inactivation time constants of I(to) with increasing fast time constant and decreasing slow time constant. These results indicated a possible correlation between the change of properties of potassium channel and SO2 inhalation toxicity, which might cause cardiac myocyte injury through increasing extracellular potassium via voltage-gated potassium channels.  相似文献   

3.
超氧化物歧化酶(superoxide dismutase,SOD)是生物体内专一的过氧自由基(superoxide anions,O2.-)清除剂,而二乙基二硫代氨基甲酸钠(diethyldithiocarbamate,DDC)则是公认的Cu,Zn-SOD的抑制剂。采用全膜片钳技术研究了DDC对二氧化硫(sulfur dioxide,SO2)衍生物引起的大鼠心肌细胞钠电流增大效应的作用,以期更进一步揭示SO2的毒性机理。结果表明:SO2衍生物对SOD活性无显著影响,SO2衍生物存在时,DDC仍可以显著降低SOD的活性。DDC(10 ̄100 mmol/L)剂量依赖性地增大钠电流(INa),半数效应浓度为(19.85±0.95)mmol/L。将20 mmol/L的DDC与10μmol/L的SO2衍生物同时作用于心肌细胞,INa仍表现为电压依赖性的增大,并使INa的电压依赖性激活曲线显著地向负电压方向移动,稳态失活曲线向正电压方向移动,差异极其显著。这表明DDC增强了SO2衍生物对心肌细胞钠电流的增大效应,提示SO2衍生物引起的大鼠心肌细胞毒性主要是通过自由基,特别是O2.-氧化损伤实现的。  相似文献   

4.
Voltage-gated cardiac Na(+) channels are composed of alpha- and beta(1)-subunits. In this study beta(1)-subunit was cotransfected with the alpha-subunit of the human cardiac Na(+) channel (hH1(alpha)) in human embryonic kidney (HEK293t) cells. The effects of this coexpression on the kinetics and fatty acid-induced suppression of Na(+) currents were assessed. Current density was significantly greater in HEK293t cells coexpressing alpha- and beta(1)-subunits (I(Na,alpha beta)) than in HEK293t cells expressing alpha-subunit alone (I(Na,alpha)). Compared with I(Na,alpha), the voltage-dependent inactivation and activation of I(Na,alpha beta) were significantly shifted in the depolarizing direction. In addition, coexpression with beta(1)-subunit prolonged the duration of recovery from inactivation. Eicosapentaenoic acid [EPA, C20:5(n-3)] significantly reduced I(Na,alpha beta) in a concentration-dependent manner and at 5 microM shifted the midpoint voltage of the steady-state inactivation by -22 +/- 1 mV. EPA also significantly accelerated channel transition from the resting state to the inactivated state and prolonged the recovery time from inactivation. Docosahexaenoic acid [C22:6(n-3)], alpha-linolenic acid [C18:3(n-3)], and conjugated linoleic acid [C18:2(n-6)] at 5 microM significantly inhibited both I(Na,alpha beta) and I(Na,alpha.) In contrast, saturated and monounsaturated fatty acids had no effects on I(Na,alpha beta). This finding differs from the results for I(Na,alpha), which was significantly inhibited by both saturated and unsaturated fatty acids. Our data demonstrate that functional association of beta(1)-subunit with hH1(alpha) modifies the kinetics and fatty acid block of the Na(+) channel.  相似文献   

5.
The inhibitory effect of diclofenac, a non-steroidal anti-inflammatory drug (NSAID), on the voltage-gated inward Na+ current (I(Na)) in cultured rat myoblasts was investigated using the whole-cell voltage-clamp technique. At concentrations of 10 nM-100 microM, diclofenac produced a dose-dependent and reversible inhibition of I(Na) with an IC50 of 8.51 microM, without modulating the fast activation and inactivation process. The inhibitory effect of diclofenac took place at resting channels and increased with more depolarizing holding potential. In addition to inhibiting the Na+ current amplitude, diclofenac significantly modulated the steady-state inactivation properties of the Na+ channels, but did not alter the steady-state activation. The steady-state inactivation curve was significantly shifted towards the hyperpolarizing potential in the presence of diclofenac. Furthermore, diclofenac treatment resulted in a fairly slow recovery from inactivation of the Na+ channel. The inhibitory effect of diclofenac was enhanced by repetitive pulses and was inflected by changing frequency; the blocking effect at higher frequency was significantly greater than at lower frequency. Both intracellular and extracellular application of diclofenac could inhibit I(Na), indicating that diclofenac may exert its channel inhibitory action both inside and outside the channel sites. Our data directly demonstrate that diclofenac can inhibit the inward Na+ channels in rat myoblasts. Some different inhibitory mechanisms from that in neuronal Na+ channels are discussed.  相似文献   

6.
We have recently shown that sulfur dioxide (SO(2)) derivatives (bisulfite and sulfite, 1:3 M/M) modulated L-type calcium, sodium, and potassium channels in rat myocytes. The aim of this study was to investigate whether SO(2) derivatives could alter Na/Ca exchanger current and the intracellular free [Ca(2+)]. The nickel-sensitive Na/Ca exchanger current was measured in rat myocytes exposed to ramp pulses in Tyrode's solution containing ouabain, nifedipine, and +/-Ni (5 mmol/l). Myocytes were loaded with the fluorescent Ca(2+) indicator Fura-2/AM to estimate intracellular Ca(2+) concentration. SO(2) derivatives significantly inhibited both outward and inward Ni-sensitive Na/Ca exchanger currents without a shift in the reversal potential. The intracellular free [Ca(2+)] was raised by SO(2) derivatives in several concentrations. SO(2) derivatives increased [Ca(2+)](i) in rat myocytes and its mechanism might involve SO(2) derivatives significantly inhibiting Na/Ca exchanger current and enhancing L-type calcium channel.  相似文献   

7.
Fu ZY  DU CY  Yao Y  Liu CW  Tian YT  He BJ  Zhang T  Yang Z 《生理学报》2007,59(1):63-70
利用全细胞膜片钳技术,在急性分离的新生大鼠海马CA3区锥体细胞上研究高效氯氰菊酯的两种组分高顺氯氰菊酯和高反氯氰菊酯对瞬时外向钾电流(transient outward potassiumcurrent,IA)和延迟整流钾电流(delayed rectifier potassiumcurrent,Ik)的影响。高顺氯氰菊酯使IA增大,而高反氯氰菊酯则使IA减小。高顺和高反氯氰菊酯均使IA激活曲线左移,反式结构还可促进IA的失活。高顺和高反氯氰菊酯均使IK减小,并使其激活曲线左移,而对IK的失活过程无影响,高反氯氰菊酯可使IK失活后恢复过程延长。结果表明,瞬时外向钾通道和延迟整流钾通道同样是高效氯氰菊酯的作用靶点,这可能是高效氯氰菊酯对哺乳动物产生毒性作用的原因之一。  相似文献   

8.
三羟异黄酮对豚鼠心室肌细胞L-型钙通道电流的影响   总被引:2,自引:0,他引:2  
Ji ES  Yin JX  Ma HJ  He RR 《生理学报》2004,56(4):466-470
本实验用全细胞膜片钳技术观察三羟异黄酮(genistein,GST)对豚鼠心室肌细胞L-钙通道电流(ICa、L)的影响。结果如下:(1)GST(10、50、100 μmol/L)可浓度依赖性地降低ICa,L(n=6,P<0.01)。GST的非活性结构类似物daidzein(100μmol/L),在同一浓度范围对ICa,L没有影响(n=5,P>0.05)。(2)GST使I-V曲线上移,但对ICa,L的电压依赖特征和最大激活电压无明显影响。(3)GST对ICa,L的激活动力学特性也无影响,但可使钙电流稳态失活曲线左移。V0.5从对照的-28.6±0.6 mV变为-32.8±1.1mV,κ值从对照的5.8±0.5 mV升至6.5±0.9 mV(n=6,P<0.05)。(4)GST明显使复活曲线右移,从而使ICa,L从失活状态下恢复明显减慢(n=7,P<0.01)。(5)酪氨酸磷酸酶抑制剂正钒酸钠(1 mmol/L)显著对抗GST引起的ICa,L抑制效应(n=6,P<0.01)。根据以上结果得出的结论是:GST抑制ICa,L加速钙通道失活和钙通道在失活状态下恢复减慢;GST对ICa,L的这种抑制作用与蛋白酪氨酸激酶(PTK)抑制有关。  相似文献   

9.
Anandamide is an endocannabinoid that has antiarrhythmic effects through inhibition of L-type Ca(2+) channels in cardiomyocytes. In this study, we investigated the electrophysiological effects of anandamide on K(+) channels in rat ventricular myocytes. Whole cell patch-clamp technique was used to record K(+) currents, including transient outward potassium current (I(to)), steady-state outward potassium current (I(ss)), inward rectifier potassium current (I(K1)), and ATP-sensitive potassium current (I(KATP)) in isolated rat cardiac ventricular myocytes. Anandamide decreased I(to) while increasing I(KATP) in a concentration-dependent manner but had no effect on I(ss) and I(K1) in isolated ventricular myocytes. Furthermore, anandamide shifted steady-state inactivation curve of I(to) to the left and shifted the recovery curve of I(to) to the right. However, neither cannabinoid 1 (CB(1)) receptor antagonist AM251 nor CB(2) receptor antagonist AM630 eliminated the inhibitory effect of anandamide on I(to). In addition, blockade of CB(2) receptors, but not CB(1) receptors, eliminated the augmentation effect of anandamide on I(KATP). These data suggest that anandamide suppresses I(to) through a non-CB(1) and non-CB(2) receptor-mediated pathway while augmenting I(KATP) through CB(2) receptors in ventricular myocytes.  相似文献   

10.
运用全细胞膜片钳技术研究二氧化硫衍生物对大鼠背根神经元瞬间外向钾电流(IA和ID)和延迟整流钾电流(IK)的影响。结果发现二氧化硫衍生物剂量依赖性地增大钾通道的电导,电压依赖性地增大钾电流的幅度,且这种增大作用部分可逆。二氧化硫非常显著地使延迟整流钾电流的激活过程向超极化方向移动,使瞬间外向钾电流的失活过程向去极化方向移动。10μmol/L二氧化硫衍生物作用前后,延迟整流钾电流的半数激活电压分别是(20.3±2.1)mV和(15.0±1.5)mV;IA和ID的半数失活电压分别朝去极化方向移动了6mV和7.4mV。这些结果表明二氧化硫改变了钾通道的特性,改变了神经元的兴奋性。  相似文献   

11.
Taurine-magnesium coordination compound (TMCC) has anti-arrhythmic effects. The aim of the present study was to explore the targets of the anti-arrhythmic effect of TMCC and the electrophysiological effects of TMCC on ouabain-induced arrhythmias in rat ventricular myocytes. Sodium current (I(Na)), L-type calcium current (I(ca, L)), and transient outward potassium current (I(to)) were measured and analyzed using whole-cell patch-clamp recording technique in normal rat cardiac myocytes and rat ventricular myocytes of arrhythmia induced by ouabain. In isolated ventricular myocytes, I(Na) and I(to) were blocked by TMCC (100, 200, 400 μM) in a concentration-dependent manner, and the effects of TMCC (400 μM) were equal to that of amiodarone. However, I (ca, L) was moderately increased by TMCC (400 μM) while significantly decreased by amiodarone. Ouabain (5 μM) significantly decreased sodium, L-type calcium, and transient outward potassium currents. TMCC (100 μM) relieved abnormal sodium currents induced by ouabain through facilitation of steady-state inactivation. TMCC (200 and 400 μM) relieved abnormal L-type calcium currents induced by ouabain through facilitation of steady-state activation and retardation of steady-state inactivation. TMCC failed to further inhibit abnormal transient outward potassium currents induced by ouabain. However, amiodarone inhibited the decreasing sodium, L-type calcium, and transient outward potassium currents further. These data suggest that I(Na), I(ca, L), and I(to) may be the targets of the antiarrhythmic effect of TMCC, which can antagonize ouabain-induced changes of ionic currents in rat ventricular myocytes.  相似文献   

12.
硫酸镁对大鼠海马CA1区神经元钠电流的抑制作用   总被引:5,自引:2,他引:3  
Sang N  Meng ZQ 《生理学报》2002,54(6):539-543
利用全细胞膜片钳技术研究了硫酸镁 (MgSO4 )对大鼠海马CA1区神经元钠电流的影响。结果表明 ,MgSO4 可浓度依赖和电压依赖地抑制钠电流 ,半数抑制浓度为 4 0 5mmol/L。这一抑制作用与刺激频率无关。结果还表明 ,4mmol/LMgSO4 不影响钠电流的失活过程 ,却使半数激活电压由 - 5 5 8± 6 8mV变为 - 3 4 2± 6 2mV (n =8,P <0 0 1) ,而激活曲线的斜率因子不变。结果提示 ,MgSO4 抑制大鼠海马CA1区神经元的钠电流可能是其抗缺血缺氧造成的中枢神经系统损伤的机制之一  相似文献   

13.
The Na(+) current component I(Ca(TTX)) is functionally distinct from the main body of Na(+) current, I(Na). It was proposed that I(Ca(TTX)) channels are I(Na) channels that were altered by bathing media containing Ca(2+), but no, or very little, Na(+). It is known that Na(+)-free conditions are not required to demonstrate I(Ca(TTX).) We show here that Ca(2+) is also not required. Whole-cell, tetrodotoxin-blockable currents from fresh adult rat ventricular cells in 65 mm Cs(+) and no Ca(2+) were compared to those in 3 mM Ca(2+) and no Cs(+) (i.e., I(Ca(TTX))). I(Ca(TTX)) parameters were shifted to more positive voltages than those for Cs(+). The Cs(+) conductance-voltage curve slope factor (mean, -4.68 mV; range, -3.63 to -5.72 mV, eight cells) is indistinguishable from that reported for I(Ca(TTX)) (mean, -4.49 mV; range, -3.95 to -5.49 mV). Cs(+) current and I(Ca(TTX)) time courses were superimposable after accounting for the voltage shift. Inactivation time constants as functions of potential for the Cs(+) current and I(Ca(TTX)) also superimposed after voltage shifting, as did the inactivation curves. Neither of the proposed conditions for conversion of I(Na) into I(Ca(TTX)) channels is required to demonstrate I(Ca(TTX)). Moreover, we find that cardiac Na(+) (H1) channels expressed heterologously in HEK 293 cells are not converted to I(Ca(TTX)) channels by Na(+)-free, Ca(2+)-containing bathing media. The gating properties of the Na(+) current through H1 and those of Ca(2+) current through H1 are identical. All observations are consistent with two non-interconvertable Na(+) channel populations: a larger that expresses little Ca(2+) permeability and a smaller that is appreciably Ca(2+)-permeable.  相似文献   

14.
We previously demonstrated that activation of a 5HT(4) receptor coupled cAMP-dependent signaling pathway increases tetrodotoxin-resistant Na(+) current (I(Na)) in a nociceptor-like subpopulation of rat dorsal root ganglion cells (type 2). In the present study we used electrophysiology experiments and computer modeling studies to explore the mechanism(s) underlying the increase of I(Na) by 5HT. In electrophysiological experiments with type 2 dorsal root ganglion cells, 5HT increased peak I(Na) and the activation and inactivation rate, without significantly affecting the voltage dependency of activation or availability. Studies on the voltage dependency of channel availability, time course of removal of inactivation, and inactivation of evoked Na(+) currents suggested that there are at least two inactivation states of the Na(+) channel, one (I(fast)) that is induced and retrieved faster than the other (I(slow)). Long (1 s), but not short (60 or 100 ms), inactivating conditioning pulses (CPs) suppressed the 5HT-induced increase in I(Na). Computer modeling studies suggest that 5HT increased I(Na) mainly by decreasing the transition rate (k(OI1)) from an open state to I(fast). Furthermore, 5HT increased I(Na) activation and inactivation rates mainly by increasing the transition rate from closed to open (k(C3O)) and from I(fast) to I(slow) (k(I1I2)), respectively. The antagonism of the 5HT-induced increase in I(Na) by 1-s inactivation CPs may be due an enhancement of transitions from I(fast) to I(slow), via the increase in k(I1I2). This may deplete the pool of channels residing in I(fast), reducing the frequency of reopenings from I(fast), which offsets the increase in I(Na) produced by the reduction in k(OI1). The above findings fit well with previous studies showing that activation of the cAMP/PKA cascade simultaneously increases voltage sensitive tetrodotoxin-resistant Na(+) conductance and inactivation rate in nociceptors. The antagonism of the effects of 5HT by long inactivation CPs suggests that drugs designed to induce and/or stabilize the I(slow) state might be useful for reducing hyperalgesia produced by inflammatory mediators.  相似文献   

15.
Gd(3+) blocks stretch-activated channels and suppresses stretch-induced arrhythmias. We used whole cell voltage clamp to examine whether effects on Na(+) channels might contribute to the antiarrhythmic efficacy of Gd(3+). Gd(3+) inhibited Na(+) current (I(Na)) in rabbit ventricle (IC(50) = 48 microM at -35 mV, holding potential -120 mV), and block increased at more negative test potentials. Gd(3+) made the threshold for I(Na) more positive and reduced the maximum conductance. Gd(3+) (50 microM) shifted the midpoints for activation and inactivation of I(Na) 7.9 and 5.7 mV positive but did not alter the slope factor for either relationship. Activation and inactivation kinetics were slowed in a manner that could not be explained solely by altered surface potential. Paradoxically, Gd(3+) increased I(Na) under certain conditions. With membrane potential held at -75 mV, Gd(3+) still shifted threshold for activation positive, but I(Na) increased positive to -40 mV, causing the current-voltage curves to cross over. When availability initially was low, increased availability induced by Gd(3+) dominated the response at test potentials positive to -40 mV. The results indicate that Gd(3+) has complex effects on cardiac Na(+) channels. Independent of holding potential, Gd(3+) is a potent I(Na) blocker near threshold potential, and inhibition of I(Na) by Gd(3+) is likely to contribute to suppression of stretch-induced arrhythmias.  相似文献   

16.
Over 20 different missense mutations in the alpha subunit of the adult skeletal muscle Na channel have been identified in families with either myotonia (muscle stiffness) or periodic paralysis, or both. The V445M mutation was recently found in a family with myotonia but no weakness. This mutation in transmembrane segment IS6 is novel because no other disease-associated mutations are in domain I. Na currents were recorded from V445M and wild-type channels transiently expressed in human embryonic kidney cells. In common with other myotonic mutants studied to date, fast gating behavior was altered by V445M in a manner predicted to increase excitability: an impairment of fast inactivation increased the persistent Na current at 10 ms and activation had a hyperpolarized shift (4 mV). In contrast, slow inactivation was enhanced by V445M due to both a slower recovery (10 mV left shift in beta(V)) and an accelerated entry rate (1.6-fold). Our results provide additional evidence that IS6 is crucial for slow inactivation and show that enhanced slow inactivation cannot prevent myotonia, whereas previous studies have shown that disrupted slow inactivation predisposes to episodic paralysis.  相似文献   

17.
Ceramides are novel second messengers that may mediate signaling leading to apoptosis and the regulation of cell cycle progression. Moreover, ceramide analogs have been reported to directly modulate K(+) and Ca(2+) channels in different cell types. In this report, the effect of C(6)-ceramide on the voltage-gated inward Na(+) currents (I(Na)) in cultured rat myoblasts was investigated using whole-cell current recording and a fluorescent Ca(2+) imaging experiment. At concentrations of 1-100 microM, ceramide produced a dose-independent and reversible inhibition of I(Na). Ceramide also significantly shifted the steady-state inactivation curve of I(Na) by 16 mV toward the hyperpolarizing potential, but did not alter the steady-state activation properties. C(2)-ceramide caused a similar inhibitory effect on I(Na) amplitude. However, dihydro-C(6)-ceramide, the inactive analog of ceramide, failed to modulate I(Na). The effect of C(6)-ceramide on I(Na) was abolished by intracellular infusion of the Ca(2+)-chelating agent BAPTA, but was mimicked by application of caffeine. Blocking the release of Ca(2+) from the sarcoplasmic reticulum with xestospongin C or heparin, an inositol 1,4,5-trisphosphate (IP(3)) receptor blocker, induced a gradual increase in I(Na) amplitude and eliminated the effect of ceramide on I(Na). In contrast, ruthenium red, which is a blocker of the ryanodine-sensitive Ca(2+) receptor did not affect the action of C(6)-ceramide on I(Na). Intracellular application of the G-protein agonist GTPgammaS also induced a gradual decrease in I(Na) amplitude, while the G-protein antagonist GDPbetaS eliminated the effect of C(6)-ceramide on I(Na). Calcium imaging showed that C(6)-ceramide could give rise to a significant elevation of intracellular calcium. Our data show that increased calcium release through the IP(3)-sensitive Ca(2+) receptor, which probably occurred through the G-protein and phospholipase C pathway, may be responsible for C(6)-ceramide-induced inhibition of the I(Na) of rat myoblasts.  相似文献   

18.
Activation and inactivation of ion channels involve volume changes from conformational rearrangements of channel proteins. These volume changes are highly susceptible to changes in ambient pressure. Depending on the pressure level, channel function may be irreversibly altered by pressure. The corresponding structural changes persist through the post-decompression phase. High-pressure applications are a useful tool to evaluate the pressure dependence as well as pressure limits for reversibility of such alterations. Mammalian cells are only able to tolerate much lower pressures than microorganisms. Although some limits for pressure tolerance in mammalian cells have been evaluated, the mechanisms of pressure-induced alteration of membrane physiology, in particular of channel function, are unknown. To address this question, we recorded fast inward sodium (I(Na)) and slowly activating L-type calcium (I(Ca)) currents in single mammalian muscle fibers in the post-decompression phase after a prolonged 3-h, high-pressure treatment of up to 20 MPa. I(Na) and I(Ca) peak amplitudes were markedly reduced after pressure treatment at 20 MPa. This was not from a general breakdown of membrane integrity as judged from in situ high-pressure fluorescence microscopy. Membrane integrity was preserved even for pressures as high as 35 MPa at least for pressure applications of shorter durations. Therefore, the underlying mechanisms for the observed amplitude reductions have to be determined from the activation (time-to-peak [TTP]) and inactivation (tau(dec)) kinetics of I(Na) and I(Ca). No major changes in I(Na) kinetics, but marked increases, both in TTP and tau(dec) for I(Ca), were detected after 20 MPa. The apparent molecular volume changes (activation volumes) deltaV(double dagger) for the pressure-dependent irreversible alteration of channel gating approached zero for Na+ channels. For Ca2+ channels, deltaV(double dagger) was very large, with approx 2.5-fold greater values for channel activation than inactivation (approx 210 A3). We conclude, that in skeletal muscle, high pressure differentially and irreversibly affects the gating properties and the density of functional Na+ and Ca2+ channels. Based on these results, a model of high pressure-induced alterations to the channel conformation is proposed.  相似文献   

19.
The effects of pronase and the anticonvulsant drugs diphenylhydantoin, bepridil, and sodium valproate on fast and slow Na+ inactivation were examined in cut-open Myxicola giant axons with loose patch-clamp electrodes applied to the internal surface. Pronase completely eliminated fast Na+ inactivation without affecting the kinetics of Na+ activation or the maximum Na+ conductance. The time and voltage dependences of slow inactivation following pronase treatment were identical to those measured before enzyme application in the same axons. All three anticonvulsants slowed the time course of recovery from fast Na+ inactivation in untreated axons, and shifted the steady-state fast inactivation curve in the hyperpolarizing direction along the voltage axis. Anticonvulsants enhanced steady-state slow inactivation and retarded recovery from slow inactivation in both untreated and pronase-treated axons. Although some quantitative differences were seen, the order of potency of the anticonvulsants on slow Na+ inactivation was the same as that for recovery from fast inactivation.  相似文献   

20.
Wang W  Hu GY  Wang YP 《Life sciences》2006,78(26):2989-2997
Magnesium lithospermate B (MLB) is the main water-soluble principle of Salviae Miltiorrhizae Radix (also called as 'Danshen' in the traditional Chinese medicine) for the treatment of cardiovascular diseases. MLB was found to possess a variety of pharmacological actions. However, it is unclear whether and how MLB affects the cardiac ion channels. In the present study, the effects of MLB on the voltage-activated ionic currents were investigated in single ventricular myocytes of adult guinea pigs. MLB reversibly inhibited L-type Ca(2+) current (I(Ca,L)). The inhibition was use-dependent and voltage-dependent (the IC(50) value of MLB was 30 microM and 393 microM, respectively, at the holding potential of -50 mV and -100 mV). In the presence of 100 microM MLB, both the activation and steady-state inactivation curves of I(Ca,L) were markedly shifted to hyperpolarizing membrane potentials, whereas the time course of recovery of I(Ca,L) from inactivation was not altered. MLB up to 300 microM had no significant effect on the fast-inactivating Na(+) current (I(Na)), delayed rectifier K(+) current (I(K)) and inward rectifier K(+) current (I(K1)). The results suggest that the voltage-dependent Ca(2+) antagonistic effect of MLB work in concert with its antioxidant action for attenuating heart ischemic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号