首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycosulphatase of Trichoderma viride   总被引:6,自引:5,他引:1       下载免费PDF全文
The growth of the mould Trichoderma viride on a defined medium containing either potassium d-glucose 6-O-sulphate or potassium d-galactose 6-O-sulphate as sole sources of both carbon and sulphur is marked by the production of an enzyme system capable of liberating inorganic SO(4) (2-) ions from either of the sulphate esters. The enzyme is not produced when the organism is grown with glucose (or galactose) and potassium sulphate or with glucose and methionine as sole sources of carbon and sulphur. Experimental conditions are described whereby inorganic SO(4) (2-) ions liberated from potassium glucose 6-O-sulphate by the growing mould appear in the culture medium after a constant lag period of 21-24hr. The enzyme has been shown to be a simple glycosulphatase that is active towards the 6-O-sulphate esters of d-glucose and d-galactose but not towards potassium glucose 3-O-sulphate. The properties of the crude glycosulphatase show the enzyme to be appreciably different from analogous molluscan enzymes that can degrade monosaccharide sulphate esters.  相似文献   

2.
Pseudomonas fluorescens N.C.I.B. 8248 was adapted to grow on potassium d-glucose 6-O-sulphate as the sole carbon and sulphur source. Adapted bacteria grew optimally at 37°C on 1.6% (w/v) sulphate ester and growth coincided with the disappearance of the ester from the culture medium at a rate of 2.4mg/h per ml. Three sulphated compounds were detected in the culture fluid at the termination of growth. One of these was present in traces only and has not been identified. The second was present in somewhat greater amounts and was identified as the 6-O-sulphate ester of d-gluconate, and the major metabolite was identified as d-glycerate 3-O-sulphate. Sulphur utilization by the organism was not associated with the appearance of a glycosulphatase enzyme in the cells. However, a novel enzyme system (or systems) was present that liberated inorganic 35SO42− ions from dipotassium d-gluconate 6[35S]-O-sulphate and from dipotassium dl-glycerate 3[35S]-O-sulphate. Activity towards the latter substrate could not be detected when the adapted or parent Pseudomonas strain was cultured on d-glucose and potassium sulphate as respective carbon and sulphur sources. Some properties of the enzyme acting on the glycerate ester are recorded.  相似文献   

3.
A glycosulphatase present in the soluble fraction of disrupted Pseudomonas carrageenovora has been purified 500-fold by gel filtration on Sephacryl S-200 and ion-exchange chromatography on DEAE-Sepharose CL-6B. By dodecylsulphate/polyacrylamide gel electrophoresis the enzyme is practically homogeneous and has a molecular weight of 55 000. Conditions of optimal sodium chloride concentration and pH at 25 degrees C were 0.25--0.50 mol dm-3 and pH 7.0 respectively. The purified enzyme was inhibited by inorganic phosphate. Preparation is described of neocarrabiose 4-O-[35S]sulphate and neocarratetraose 4-O-[35S]sulphate from labelled Chondrus crispus. The purified glycosulphatase is active against both these substrates although only one of the two sulphate esters in the tetrasaccharide is hydrolysed. Analysis of the reaction products was by gel filtration, electrophoresis and 13C nuclear magnetic resonance spectroscopy. The results are consistent with the products of desulphation being respectively neocarrabiose and neocarratetraose 4-O-monosulphate with the sulphate ester proximal to the reducing end [3,6-anhydro-alpha-D-galactopyranosyl-(1 leads to 3)-beta-D-galactopyranosyl-(1 leads to 4)-3,6-anhydro-alpha-D-galactopyranosyl-(1 leads to 3)-D-galactose 4-O-sulphate].  相似文献   

4.
Sodium hexan-1-yl sulphate and certain related alkyl sulphate esters have been shown to serve as inducers of the formation of primary alkylsulphatases (designated as P1 and P2) in Pseudomonas C12B. When the organism is grown on sodium hexan-1-yl [(35)S]sulphate as the sole source of sulphur or as the sole source of carbon and sulphur only the P2 alkylsulphatase is formed and inorganic (35)SO(4) (2-) is liberated into the media. Cell extracts contain this anion as the major (35)S-labelled metabolite although two unidentified labelled metabolites as well as choline O-[(35)S]sulphate occur in trace quantities in some extracts. Dialysed cell extracts are capable of liberating inorganic (35)SO(4) (2-) from sodium hexan-1-yl [(35)S]sulphate without the need to include cofactors known to be required for the bacterial degradation of n-alkanes. The collective results suggest that sodium hexan-1-yl sulphate can act as an inducer of P1 alkylsulphatase formation without the need for prior metabolic modification of the carbon moiety of the ester.  相似文献   

5.
Dopamine 3-O-sulphate (3-O-hydrosulphato-4-hydroxyphenethylamine) was isolated from newly ecdysed cockroaches, Periplaneta americana (L.), and its structure established by chemical and physical techniques and by synthesis. Relatively high concentrations (about 1mumol/g wet. wt.) of dopamine 3-O-sulphate exist in the newly ecdysed insect, and these concentrations decrease sharply as sclerotization of the cuticle proceeds. At least 40% of the radioactivity of (14)C-labelled dopamine 3-O-sulphate injected into newly ecdysed nymphs was recovered in the sclerotized cuticle 7-12 days after the injection. However, less than 1% of the radioactivity of injected dopamine 3-O-[(35)S]sulphate was recovered, and this value was not appreciably different from that for the incorporation of Na(2) (35)SO(4). Apparently, little or none of the sulphate moiety of dopamine 3-O-sulphate is incorporated directly into the cuticle as the intact sulphate ester. These observations are discussed in relation to current concepts of cuticular sclerotization in insects.  相似文献   

6.
The role of soil microbes in plant sulphur nutrition   总被引:1,自引:0,他引:1  
Chemical and spectroscopic studies have shown that in agricultural soils most of the soil sulphur (>95%) is present as sulphate esters or as carbon-bonded sulphur (sulphonates or amino acid sulphur), rather than inorganic sulphate. Plant sulphur nutrition depends primarily on the uptake of inorganic sulphate. However, recent research has demonstrated that the sulphate ester and sulphonate-pools of soil sulphur are also plant-bioavailable, probably due to interconversion of carbon-bonded sulphur and sulphate ester-sulphur to inorganic sulphate by soil microbes. In addition to this mineralization of bound forms of sulphur, soil microbes are also responsible for the rapid immobilization of sulphate, first to sulphate esters and subsequently to carbon-bound sulphur. The rate of sulphur cycling depends on the microbial community present, and on its metabolic activity, though it is not yet known if specific microbial species or genera control this process. The genes involved in the mobilization of sulphonate- and sulphate ester-sulphur by one common rhizosphere bacterium, Pseudomonas putida, have been investigated. Mutants of this species that are unable to transform sulphate esters show reduced survival in the soil, indicating that sulphate esters are important for bacterial S-nutrition in this environment. P. putida S-313 mutants that cannot metabolize sulphonate-sulphur do not promote the growth of tomato plants as the wild-type strain does, suggesting that the ability to mobilize bound sulphur for plant nutrition is an important role of this species.  相似文献   

7.
The metabolism of potassium dodecyl [35S]-sulphate in the rat   总被引:7,自引:6,他引:1       下载免费PDF全文
The metabolic fate of potassium dodecyl [(35)S]sulphate was studied in rats. Intraperitoneal and oral administration of the ester into free-ranging animals were followed by the excretion of the bulk of the radioactivity in the urine within 12hr., approximately 17% being eliminated as inorganic [(35)S]sulphate. Similar results were obtained in experiments in which potassium dodecyl [(35)S]sulphate was injected intravenously into anaesthetized rats with bile-duct and ureter cannulae. Analysis of urinary radioactivity revealed the presence of a new ester sulphate (metabolite A). This metabolite was isolated, purified and subsequently identified as the sulphate ester of 4-hydroxybutyric acid by paper, thin-layer and gas chromatography, by paper electrophoresis and by comparison of its properties with those of authentic butyric acid 4-sulphate. The identity of the metabolite was confirmed by isotope-dilution experiments. When either purified metabolite A or authentic potassium butyric acid 4[(35)S]-sulphate was administered to free-ranging rats the bulk of the radioactivity was eliminated unchanged in the urine within 12hr., approx. 20% of the dose appearing as inorganic [(35)S]sulphate. Whole-body radioautography and isolated-liver-perfusion experiments implicated the liver as the major site of metabolism of potassium dodecyl [(35)S]sulphate. It is suggested that butyric acid 4-sulphate probably arises by omega-oxidation of dodecyl sulphate to a fatty acid-like compound, which is then degraded by beta-oxidation.  相似文献   

8.
Some factors influencing the oxidative activity of upper horizons of spruce forest soils (a mixture of fermentative and humus layers) toward intermediates of the oxidative part of the sulphur cycle were investigated. Preincubation of the soil with added cysteine, sulphide, elemental sulphur or thiosulphate was found to stimulate enzyme systems oxidating any of these compounds. Sulphite and sulphate were ineffective in this respect. The oxidation of elemental sulphur was stimulated by CaCO3, technical urea and high doses of superphosphate and potassium sulphate. It was inhibited by KH2PO4, pure urea, 40 % potassium salt, ammonium nitrate with calcium carbonate and the fertilizer NPK I. It proceeded at the highest rate at approximately 60 % capillary capacity (61 % of mass water content). Oxidation of thiosulphate was stimulated by KH2PO4, pure urea, superphosphate, potassium sulphate and only slightly by the fertilizer NPK I. It was inhibited by CaCO3, 40 % potassium salt and only slightly by ammonium nitrate with calcium carbonate. Potassium chloride, glucose and technical urea were without effect. The oxidation proceeded at the highest rate at 35 % maximal capillary capacity (48 % mass water content).  相似文献   

9.
The formation of sulpho-conjugates of 3,4-dihydroxyphenylethylamine (dopamine) and related compounds was examined in preparations of rat tissues. Liver high-speed-supernatant preparations readily transferred sulphate from adenosine 3'-phosphate 5'-sulphato-phosphate to dopamine under standard conditions. The main product was identified as the 3-O-sulphate. The preparation also sulphated the 3- and 4-methoxy derivatives but to a lesser extent (44% and 95% respectively) relative to dopamine. Brain preparations possessed only half the activity of liver but formed both the 3- and 4-O-sulphates in the molar ratio of 1.7:1. l-3,4-Dihydroxyphenylalanine (l-dopa) in both tissue preparations did not yield any significant amount of sulpho-conjugate when the dopa decarboxylase present was inhibited. The sulphotransferase activity of preparations was doubled in the presence of dithiothreitol and it was concluded that l-tyrosine methyl ester sulphotransferase was the enzyme involved. A method for the preparation of authentic dopamine 3-O-sulphate and 4-O-sulphate was developed.  相似文献   

10.
Sulphate esters make up a large proportion of the available sulphur in agricultural soils, and many pseudomonads can desulphurize a range of aryl- and alkylsulphate esters to provide sulphur for growth. After miniTn5 transposon mutagenesis of Pseudomonas putida S-313, we isolated 19 mutants that were defective in cleavage of the chromogenic sulphate ester 5-bromo-4-chloro-3-indoxylsulphate (X-sulphate). Analysis of these strains revealed that they carried independent insertions in a gene cluster that comprised genes for a sulphate ester/sulphonate transporter (atsRBC) a LysR-type regulator (sftR), an oxygenolytic alkylsulphatase (atsK), an arylsulphotransferase (astA) and a putative TonB-dependent receptor (sftP). The SftP protein was localized in the outer membrane, and the arylsulfphotransferase was identified as an intracellular enzyme. Expression of sftR was repressed in the presence of inorganic sulphate, and the sftR gene was required for the expression of atsBC, atsRK and sftP-astA. An sftR mutant was unable to grow with aryl- or alkylsulphate esters in laboratory media and showed significantly reduced survival compared with the parent strain during incubation in Danish agricultural and grassland soils. This effect suggests that sulphate esters are an important sulphur source for microbes in aerobic soils and highlights the importance of the microbial population in the soil sulphur cycle.  相似文献   

11.
kappa-Carrageenase from Pseudomonas carrageenovora.   总被引:2,自引:0,他引:2  
A kappa-carrageenase was isolated from the cell-free medium of cultured Pseudomonas carrageenovora. From dodecylsulphate/polyacrylamide gel electrophoresis, a single protein (identified as the kappa-carrageenase) was detected in the medium. Activity against nominal carrageenan types and inspection of the products indicate the enzyme to be a kappa-carrageenase. Purification is described here by ammonium sulphate precipitation and subsequent CM-Sepharose CL-6B ion-exchange chromatography. Molecular weight was estimated as 35,000 by dodecylsulphate/polyacrylamide gel electrophoresis. Products of degradation were analysed by gel filtration, spectrophotometric assays and 13C nuclear magnetic resonance. These results are consistent with the product of limit digest being neocarrabiose 4-O-sulphate.  相似文献   

12.
A mixed culture of two Gram-negative bacteria isolated from soil converted 50 g d-glucose l–1 to 2,5-diketo-d-gluconate (2,5 DKG) in 92% yield within 150 h. The first strain, producing 2-keto-d-gluconate (2 KDG) from d-glucose via d-gluconate (DG), was classified as Flavimonas oryzihabitans. The second strain, that converts 2 KDG to 2,5 DKG, was identified as Pseudomonas cepacia. This approach presents a new possibility to produce ascorbic acid by microbial transformation, including the use of other, more convenient substrates.  相似文献   

13.
A heparan sulphate sulphotransferase was partially purified from an ox lung homogenate by (NH(4))(2)SO(4) precipitation. Various glycosaminoglycans were assayed as sulphate acceptors with this enzyme. The highest acceptor activity was obtained with desulphated heparin and heparan sulphate, which indicates that sulphate transfer may be to free amino groups of the substrate. Some heparan sulphate was (35)S-labelled by incubation with the enzyme and re-isolated. On treatment of this heparan [(35)S]sulphate with nitrous acid and separation of the degradation products on Sephadex G-15, a major peak of radioactivity was obtained, and identified as [(35)S]sulphate by high-voltage electrophoresis at pH5.3. The [(35)S]sulphate is believed to be derived from N-[(35)S]sulphated groups of heparan [(35)S]-sulphate. That the ox lung preparation contained an N-sulphotransferase was confirmed by the isolation of 2-deoxy-2-[(35)S]sulphoamino-d-glucose as the major product from the flavobacterial degradation of heparan [(35)S]sulphate.  相似文献   

14.
Barley plants were grown in a nutrient solution containing 25 μ M sulphate and the roots were pulsed with [35S]sulphate for 48-h periods at 6 different times between the emergence of leaf 5 (L5) and the emergence of leaf 8 (L8). Growth was continued in unlabelled solution until the emergence of L10. Within the shoot system sulphur was directed principally into the leaf undergoing expansion. A large proportion of the 35S-label delivered to young expanding leaves (> 40% of full expansion) did not occur at the time of the pulse, but subsequently during the ensuing chase indicating slow redistribution of sulphur from another site. During the later stages of leaf expansion (40–100%), most of the sulphur entered the leaf during the pulse, suggesting that sulphur was delivered more directly from the nutrient solution. Up to 75% of the sulphur delivered to L3–L6 at the time they approached or attained full expansion (70–100%) was re-exported. At least some of the sulphur exported from fully expanded leaves was redistributed to developing leaves.  相似文献   

15.
Two different pathways for thiosulphate oxidation are present in the purple sulphur bacterium Allochromatium vinosum: oxidation to tetrathionate and complete oxidation to sulphate with obligatory formation of sulphur globules as intermediates. The tetrathionate:sulphate ratio is strongly pH-dependent with tetrathionate formation being preferred under acidic conditions. Thiosulphate dehydrogenase, a constitutively expressed monomeric 30 kDa c-type cytochrome with a pH optimum at pH 4.2 catalyses tetrathionate formation. A periplasmic thiosulphate-oxidizing multienzyme complex (Sox) has been described to be responsible for formation of sulphate from thiosulphate in chemotrophic and phototrophic sulphur oxidizers that do not form sulphur deposits. In the sulphur-storing A. vinosum we identified five sox genes in two independent loci (soxBXA and soxYZ). For SoxA a thiosulphate-dependent induction of expression, above a low constitutive level, was observed. Three sox-encoded proteins were purified: the heterodimeric c-type cytochrome SoxXA, the monomeric SoxB and the heterodimeric SoxYZ. Gene inactivation and complementation experiments proved these proteins to be indispensable for thiosulphate oxidation to sulphate. The intermediary formation of sulphur globules in A. vinosum appears to be related to the lack of soxCD genes, the products of which are proposed to oxidize SoxY-bound sulphane sulphur. In their absence the latter is instead transferred to growing sulphur globules.  相似文献   

16.
When soybean plants are pulsed with [35S]sulphate, label is subsequently redistributed from the roots to the leaves. This confounds studies to measure the redistribution of label from leaves. Accordingly, soybean plants ( Glycine max [L.] Merr. cv. Stephens) were grown in 20 μ M sulphate and a small portion of the root system (donor root) was pulsed with [35S]sulphate for 24 h. After removing the donor root, the plants were transferred into unlabelled solution, either without sulphate (S20→SO) or with 20 μ M sulphate (S20→20) (intact plants). Also at this time, the expanding leaf (L3) was excised from half of the plants in each treatment (excised plants). Immediately after the pulse, only ca 15% of the label occurred in the roots and ca 40% in the expanding leaf, L3, mostly in the soluble fraction. In intact S20→20 plants, 35S-label was exported from the soluble fraction of L3, mostly as sulphate, whilst L4 and L5 imported label. Similar responses occurred in S20→SO plants except that export of label from L3 was more rapid. Excision of L3 from S20→S20 plants inhibited labelling of leaves L4-L6 but not total sulphur, whereas in S20→SO plants, excision of L3 inhibited the import of both total sulphur and 35S-label in leaves L4, L5 and L6. The data suggest that the soluble fraction of almost fully expanded leaves is an important reserve of sulphur for redistribution to growing leaves. The 35S-label in the root system exhibited fluctuations consistent with its proposed role in the recycling of soluble sulphur from the leaves.  相似文献   

17.
1. Rat liver mitochondria incubated in oxygen with glutathione and [(35)S]-thiosulphate produced labelled sulphate. 2. Inner-labelled thiosulphate (S.(35)SO(3))(2-) was converted into [(35)S]sulphate more rapidly than outer-labelled thiosulphate ((35)S.SO(3))(2-). 3. Thiosulphate labelled in both sulphur atoms was formed during ((35)S.SO(3))(2-) oxidation; the outer sulphur atom before oxidation to sulphate was incorporated into the inner position. 4. A thiosulphate cycle in the metabolic pathway of sulphate formation in animal tissues is discussed.  相似文献   

18.
A study of the sulphur amino acids of rat tissues   总被引:2,自引:2,他引:0       下载免费PDF全文
1. In a study of the metabolism of l-[(35)S]methionine in vivo, the labelled sulphur compounds of rat liver and brain were separated first by ion-exchange chromatography into two fractions containing (i) free sulphur amino acids such as methionine, cystathionine, cyst(e)ine and homocyst(e)ine and (ii) glutathione. 2. Two-dimensional paper chromatography with butan-1-ol-acetic acid or propionic acid-water in the first direction and 80% acetone or acetone-ethyl methyl ketone-water in the second direction was found superior to other solvent systems for separating the sulphur amino acids. 3. At 10min. after injection of [(35)S]methionine only a small part of the (35)S was found combined in free methionine or other free sulphur amino acids. 4. Evidence was obtained of the presence of adenosyl[(35)S]methionine and adenosyl[(35)S]homocysteine in perchloric acid extracts of rat liver and brain. 5. The trans-sulphuration pathway was active in brain as well as in liver.  相似文献   

19.
S. K. Hasija 《Mycopathologia》1966,28(1-2):102-106
Summary Nitrogen and sulphur requirements ofColletotrichum inamdarii Lal isolated from the leaves ofCarissa carandas L. have been studied. DL-serine, L-asparagine and L-phenylalanine have been found to be of good nitrogen source followed by potassium nitrate, calcium nitrate, magnesium nitrate, DL-alanine, ammonium nitrate, glutamic acid, ammonium sulphate, DL-valine, aspartic acid, ammonium chloride, ammonium hydrogencarbonate, L-histidine and potassium nitrite. There was no growth in the absence of nitrogen.Sporulation was excellent on calcium nitrate and sodium nitrate, Very good on DL-serine, potassium nitrate, and magnesium nitrate. Good on L-asparagine, L-phenylalanine and ammonium oxalate. Fair on DL-alanine, DL-leucine, ammonium sulphate, DL-valine, ammonium chloride and L-histidine whereas poor on glutamic acid, aspartic acid, ammonium tartarate and ammonium nitrate. Few spores were observed on ammonium hydrogencarbonate but potassium nitrite did not show any sporulation.Amongst the sulphur compounds sodium bisulphate gave the best growth and good sporulation, followed by sodium thiosulphate, magnesium sulphate, ammonium sulphate and potassium sulphate. Thiourea gave negligible growth whereas it failed to grow on zinc sulphate and potassium persulphate.  相似文献   

20.
A sulphate deficiency-induced gene, sdi1 , has been identified by cDNA-amplified fragment length polymorphism (AFLP) analysis utilizing field-grown, nutrient-deficient wheat ( Triticum aestivum var. Hereward). The expression of sdi1 was specifically induced in leaf and root tissues in response to sulphate deficiency, but was not induced by nitrogen, phosphorus, potassium or magnesium deficiency. Expression was also shown to increase in plant tissues as the external sulphate concentration in hydroponically grown plants was reduced from 1.0 to 0.0 m m . On this basis, sdi1 gene expression has potential as a sensitive indicator of sulphur nutritional status in wheat. Genome-walking techniques were used to clone the 2.7-kb region upstream of sdi1 from genomic DNA, revealing several cis -element motifs previously identified as being associated with sulphur responses in plants. The Arabidopsis thaliana gene most highly homologous to sdi1 is At5g48850, which was also demonstrated to be induced by sulphur deficiency, an observation confirmed by the analysis of microarray data available in the public domain. The expression of Atsdi1 was induced more rapidly than previously characterized sulphur-responsive genes in the period immediately following the transfer of plants to sulphur-deficient medium. Atsdi1 T-DNA 'knockout' mutants were shown to maintain higher tissue sulphate concentrations than wild-type plants under sulphur-limiting conditions, indicating a role in the utilization of stored sulphate under sulphur-deficient conditions. The structural features of the sdi1 gene and its application in the genetic determination of the sulphur nutritional status of wheat crops are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号