首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Morgan  A Roome  A Maizel    S Sharma 《Journal of virology》1989,63(7):3190-3194
To study the effect of T-cell-derived BCGF-12kD on human B-cell autocrine growth-associated functions, we cultured Epstein Barr virus (EBV)-transformed normal B cells (LCL 72285) and Burkitt's lymphoma cells (Raji) in the presence or absence of BCGF-12kD. When cultured in media supplemented only with fetal calf serum, the LCL and Raji cell lines maintained relatively high levels of episomes. Although a similar level of proliferation could be maintained under defined culture conditions in media supplemented with BCGF-12kD, these conditions resulted in a time-dependent reduction of EBV sequences, as detected with EBV nuclear antigen (EBNA-1 and EBNA-2) gene probes. These results suggest that stimulation with T-cell-derived BCGF-12kD can alter a regulatory step which may be involved in the EBV transformation of B cells.  相似文献   

2.
Epstein-Barr virus episome-based promoter function in human myeloid cells.   总被引:6,自引:0,他引:6  
Epstein-Barr virus (EBV) episomal replicons offer an expeditious means for amplifying transfected genes in human cells. A panel of EBV episomes was constructed to assess the relative utility of five distinct eukaryotic promoter elements for high level and inducible gene expression in stably transfected human myeloid leukemia cells. The Rous sarcoma virus 3' long terminal repeat (LTR) was most highly suited for EBV episome-based gene expression, whereas the lymphopapilloma virus and the SV40 early regulatory elements exhibited substantially lower activities. Chemically responsive promoter elements, such as the SV40 early, human metallothionein IIA and rat GRP78 gene promoters, retained their inducibility when EBV episome-based. Differences in gene expression obtained with the episomes reflected differential promoter activity rather than significant variations in episome copy numbers per cell. These observations provide guidelines for the optimal design of EBV episomal expression vectors for human expression work.  相似文献   

3.
Epstein-Barr virus (EBV) has been implicated in the pathogenesis of rheumatoid arthritis (RA) on the basis of indirect evidence, such as its presence in affected joint tissues, antigenic cross reactions between EBV and human proteins, and elevated humoral and cellular anti-EBV immune responses in patients. Here we report development of erosive arthritis closely resembling RA in humanized mice inoculated with EBV. Human immune system components were reconstituted in mice of the NOD/Shi-scid/IL-2Rγ(null) (NOG) strain by transplantation with CD34(+) hematopoietic stem cells isolated from cord blood. These humanized mice were then inoculated with EBV and examined pathologically for the signs of arthritis. Erosive arthritis accompanied by synovial membrane proliferation, pannus formation, and bone marrow edema developed in fifteen of twenty-three NOG mice transplanted with human HSC and inoculated with EBV, but not in the nine NOG mice that were transplanted with HSC but not inoculated with EBV. This is the first report of an animal model of EBV-induced arthritis and strongly suggest a causative role of the virus in RA.  相似文献   

4.
Epstein-Barr virus (EBV)-induced lymphoproliferative disease is an important complication in the context of immune deficiency. Impaired T-cell immunity allows the outgrowth of transformed cells with the subsequent production of predominantly B-cell lymphomas. Currently there is no in vivo model that can adequately recapitulate EBV infection and its association with B-cell lymphomas. NOD/SCID mice engrafted with human CD34(+) cells and reconstituted mainly with human B lymphocytes may serve as a useful xenograft model to study EBV infection and pathogenesis. We therefore infected reconstituted mice with EBV. High levels of viral DNA were detected in the peripheral blood of all infected mice. All infected mice lost weight and showed decreased activity levels. Infected mice presented large visible tumors in multiple organs, most prominently in the spleen. These tumors stained positive for human CD79a, CD20, CD30, and EBV-encoded RNAs and were light chain restricted. Their characterization is consistent with that of large cell immunoblastic lymphoma. In addition, tumor cells expressed EBNA1, LMP1, and LMP2a mRNAs, which is consistent with a type II latency program. EBV(+) lymphoblastoid cell lines expressing human CD45, CD19, CD21, CD23, CD5, and CD30 were readily established from the bone marrow and spleens of infected animals. Finally, we also demonstrate that infection with an enhanced green fluorescent protein (EGFP)-tagged virus can be monitored by the detection of infected EGFP(+) cells and EGFP(+) tumors. These data demonstrate that NOD/SCID mice that are reconstituted with human CD34(+) cells are susceptible to infection by EBV and accurately recapitulate important aspects of EBV pathogenesis.  相似文献   

5.
Epstein-Barr virus (EBV) receptor-negative cells were treated with UV-inactivated Sendai virus (SV) or with reconstituted SV envelopes having a low hemolytic activity and then assayed for EBV binding or for susceptibility to EBV infection. EBV binding was assessed by using both unlabeled and fluoresceinated EBV preparations. It was found that SV or SV envelope treatment renders these cells able to bind EBV. Various experiments were performed to clarify the mechanism of this SV-induced binding. The EBV receptor-negative 1301 cells were treated with SV either at 0°C or at both 0 and 37°C successively and then examined for EBV binding at 0°C. It was thus found that when SV treatment was performed exclusively at 0°C, the target cells showed higher fluorescence intensity after their incubation with fluoresceinated EBV. In addition, Clostridium perfringens neuraminidase treatment of 1301 cells did not induce any EBV binding to these cells. These data indicate that EBV binding is not due to the disturbance of the cell membrane by SV envelope fusion or to the uncovering of EBV binding sites on the cells after the enzymatic action of SV neuraminidase. Moreover, bound EBV was partly eluted from SV-treated 1301 cells at 37°C, and the treatment of EBV with C. perfringens neuraminidase inhibited its SV-mediated binding. These data indicate that EBV binds to the hemagglutinin-neuraminidase of SV on the target cell surface and that a fraction of the bound EBV becomes irreversibly associated with the SV-treated cell membrane. Our data also show that EBV can penetrate into 1301 cells which have incorporated SV envelopes into their membrane, as demonstrated by the induction of the EBV-determined nuclear antigen by B95-8 EBV in SV envelope-treated 1301 cells.  相似文献   

6.
The association of Epstein-Barr virus (EBV) with nasopharyngeal carcinoma is supported by the presence of EBV genomes in the epithelial elements of the tumor and by elevated antibody titers to EBV-specific antigens in the patients; the levels of these titers are related to the clinical course of the disease. However, since most laboratory data suggest that EBV is a B-lymphotropic virus, it is unclear how the virus becomes associated with the epithelial elements of the nasopharynx. The purpose of the present work was to find a human model system to study this association. A human epithelial line (U) was found that could be directly infected by EBV, and viral functions, the induction of EBV nuclear antigen and cellular DNA synthesis, were demonstrated. The U line was established in 1957 by the late H. J. Van Kooten (Kok-Doorschodt at the University of Utrecht), and although it is no longer diploid, it exhibits density inhibition. When U cells were infected with EBV, EBV nuclear antigen was expressed in 6 to 16% of the cells, 1 and 2 days after infection with B95-8 virus, but not with the P3HR-1 strain. No evidence for virus replication was obtained; immunofluorescence staining for early antigens and virus capsid antigens gave negative results. Quantitative adsorption experiments for EBV indicated that the adsorption capacity of U cells is significant (60% of Raji cells). The present results also demonstrated that infection with the virus overcomes block(s) in cellular DNA synthesis caused by 5-fluorodeoxyuridine. The induction of DNA synthesis was determined by increased incorporation of [3H]thymidine into the cells. The highest level of isotope incorporation was observed at about 15 h after infection and thereafter decreased. Analysis of the induced DNA indicated that it was of cellular origin.  相似文献   

7.
《Seminars in Virology》1994,5(4):281-288
Epstein-Barr virus (EBV), a gammaherpesvirus widespread in all human populations, establishes an asymptomatic persistent infection in the majority of individuals. This review briefly summarizes what is known about the complex interactions between the virus and its host, with particular emphasis on the immune mechanisms that are involved in controlling persistent infection. EBV also persists in the malignant cells of a number of human tumors. The possible mechanisms by which these cells might avoid virus-specific immune responses and the potential for adapting these responses to clear the tumor are also discussed.  相似文献   

8.
EB病毒不能感染小鼠是因为小鼠CR2受体构像与人的不同,通过对小鼠CR2受体进行定点空变,然后将野生型和突变型小鼠CR2/1(MCR2/1)及人CR2(hCR2)用基因转移技术导入小鼠鼻咽上皮细胞系(TMNE)进行表达,观察转染阳性细胞是否具有结合EB病毒的能力,EBER-1杂交结果显示,只有转染hCR2和空变型MCR2(mtMCR2)的TMNE细胞可以感染EB病毒,但是前感染EB病毒的阳性率比后高的高得多。电镜结果也进一步证实EB病毒可以感染这两种细胞,这为进一步研究EB病毒进入细胞的机制及建立EB病毒相关的鼻咽癌动物模型奠定了良好的基础。  相似文献   

9.
Biology and disease associations of Epstein-Barr virus   总被引:10,自引:0,他引:10  
Epstein-Barr virus (EBV) is a human herpesvirus which infects almost all of the world's population subclinically during childhood and thereafter remains in the body for life. The virus colonizes antibody-producing (B) cells, which, as relatively long-lived resting cells, are an ideal site for long-term residence. Here EBV evades recognition and destruction by cytotoxic T cells. EBV is passed to naive hosts in saliva, but how the virus gains access to this route of transmission is not entirely clear. EBV carries a set of latent genes that, when expressed in resting B cells, induce cell proliferation and thereby increase the chances of successful virus colonization of the B-cell system during primary infection and the establishment of persistence. However, if this cell proliferation is not controlled, or if it is accompanied by additional genetic events within the infected cell, it can lead to malignancy. Thus EBV acts as a step in the evolution of an ever-increasing list of malignancies which are broadly of lymphoid or epithelial cell origin. In some of these, such as B-lymphoproliferative disease in the immunocompromised host, the role of the virus is central and well defined; in others, such as Burkitt's lymphoma, essential cofactors have been identified which act in concert with EBV in the evolution of the malignant clone. However, in several diseases in which the presence of EBV has more recently been discovered, the role of the virus is unclear. This review describes recent views on the EBV life cycle and its interlinks with normal B-cell biology, and discusses how this interrelationship may be upset and result in EBV-associated disease.  相似文献   

10.
We demonstrate that vectors incorporating components from Epstein-Barr virus (EBV) for retention and from human genomic DNA for replication greatly enhance the level and duration of marker gene expression in dividing cultured cells. The same types of vectors were tested in vivo by high-pressure tail vein injection of naked DNA in mice, resulting in liver delivery and expression. The therapeutic gene was a human factor IX (hFIX) minigene comprising genomically derived 5', 3', and intronic sequences that provided relatively good gene expression in vivo. We demonstrated that addition of the EBV EBNA1 gene and its family of repeats binding sites provided a 10- to 100-fold increase in prolonged hFIX expression in mouse liver. A single 25-microg dose of vector DNA generated normal (>5 microg/mL) levels of hFIX throughout the 8 month duration of the experiment. Vector DNA with or without the EBV sequences was retained in liver cells, and vector replication was not a factor in these nondividing liver cells. Instead, it appears that enhancement of stable hFIX expression by the EBV components was responsible for the increased level and duration of therapeutic gene expression. The EBV sequences also significantly enhanced stable expression of a vector carrying the full genomic hFIX gene delivered to mouse liver. These results underline the crucial importance of appropriate gene expression signals on gene therapy vectors and the utility of EBV sequences in particular for increasing stable gene expression.  相似文献   

11.
Circular Epstein-Barr virus (EBV) DNA molecules have been purified and characterized from a human lymphoid cell line derived from a case of heterophile antibody-positive, blood transfusion-induced infectious mononucleosis, 883L. The circular EBV DNA in three cell lines obtained by transformation of human umbilical cord blood leukocytes with a strain of EBV originally derived from 883L was also studied. As estimated from sedimentation velocity data and electron microscopy, the circular EBV DNA molecules are 10 to 15% smaller than either the circular EBV DNA previously found intracellularly in several other types of EBV-transformed cells or the linear EBV DNA present extracellularly in virus particles. In addition, the EBV-transformed cord blood cell lines studied here differed from other EBV-transformed cells in that integrated virus DNA sequences could not be detected.  相似文献   

12.
Epstein-Barr virus (EBV) efficiently induces growth of human B cells and prevents cell death. Considerable progress has been made in understanding these processes, the role of EBV in human cancer cells and the relationship of viral gene expression to virus persistence and cancer.  相似文献   

13.
Nucleolar protein p40/EBP2 is a proliferation-associated antigen that interacts with Epstein-Barr virus nuclear antigen 1 (EBNA1) to maintain the Epstein-Barr virus (EBV) episomes. The yeast p40/EBP2 functions in the processing of 27S-A into 27S-B ribosomal RNA. The present study reports high evolutionary conservation of the cDNA-derived amino acid sequences of p40/EBP2 from frog, chicken, pig, rat, mouse, bovine, and human. p40/EBP2 is ubiquitously expressed in human tissues. It is highly expressed in myelogenous leukemia K-562 compared to other cell lines tested. The human p40/EBP2 gene is located in chromosome 1 with nine exons and eight introns. The minimal promoter region resides 300 nucleotides upstream of a putative ATG initiation codon preceded by a pyrimidine-rich region. These two regions contain eight Sp1 and four c-Ets-1 putative binding sites. Analysis of the p40/EBP2 gene and its promoter region will facilitate studies on the regulation of its expression in EBV-infected and noninfected cells.  相似文献   

14.
Raji, a human lymphoblastoid cell line, expresses a membrane receptor (EBVR) specific for Epstein Barr virus (EBV). A component that binds EBV was extracted from this cell line by treatment of the cells for 3 hr on ice with Tris buffer containing 10% glycerol. The treatment reduced the capacity of the cells to bind virus, and after concentration the receptor extract (RE) inhibited both EBV binding and superinfection of fresh Raji cells. Similarly prepared extracts of EBVR- cells lacked such activity. An antibody was made to the extract (anti-RE), which after absorption with EBVR- cells, bound to the same percentages of EBVR+ lymphoblastoid cell lines, EBVR+ human/mouse somatic cell hybrids, and fresh peripheral B cells as the virus did. In reciprocal assays, preincubation of EBVR+ cells with anti-RE inhibited virus binding. Doubly stained patches were observed on membranes of EBVR+ cells that had been incubated simultaneously with virus and anti-RE and stained respectively with rhodaminated and fluoresceinated reagents. The major polypeptide immunoprecipitated by anti-RE from radiolabeled Raji cells had an approximate calculated m.w. of 150,000.  相似文献   

15.
The Epstein-Barr virus (EBV) is a gamma-herpes virus which establishes latent, life-long infection in more than 95% of the human adult population. Despite its growth transforming capacity, most carriers control EBV associated malignacies efficiently and remain free of EBV+ tumors. Though EBV is controlled by a potent immune response, this virus uses latency to persist in vivo. This review summarizes work which has been done to characterize T cell responses to EBV. The CD8 T cell responses are rather well characterized and have been shown by several groups to be highly focused towards early lytic antigens. Much less is known about CD4 T cell epitopes, due to the small size of the CD4 compartment. However, recent data indicate a control of lytic and latent cycles of EBV by specific CD4+ T cells. A clear understanding of the T cell response to EBV is important with a view to developing immunotherapies for the virus and its related malignancies.  相似文献   

16.
As a direct approach to visualize Epstein-Barr virus (EBV) binding to its cellular receptors and to learn more on the nature of this binding, virus preparations were conjugated to fluorescein isothiocyanate and used to detect EBV receptors on lymphoid cells. Different enzymatic and chemical treatments were also applied either to the virus or to target cells or to both, and the effect of these treatments on virus binding was then examined. The results obtained show that: (i) EBV can be fluoresceinated without affecting its infectivity or cell binding ability, and the fluoresceinated virus represents an important tool to investigate the biology and nature of EBV interactions with its cellular receptors; (ii) the two virus strains (P3HR-1 and B95-8) share common receptors on Raji cells; (iii) protease treatment of EBV or target cells abrogates virus binding; (iv) EBV receptors regenerate after removal of the protease, and this regeneration is inhibited by cycloheximide or sucrose; (v) EBV particles bear concanavalin A receptors, and this lectin hinders the interaction of the virus with its cellular receptors; (vi) neuraminidase treatment, various monosaccharides, ovalbumin, and glycopeptides derived from EBV or cell surface do not inhibit virus binding. Taken together, the above data also demonstrate that some cellular and viral surface (glyco-) proteins are required for EBV binding to its targets.  相似文献   

17.
18.
Epstein-Barr virus (EBV) is a gammaherpesvirus infecting the majority of the human adult population in the world. TLR2, a member of the Toll-like receptor (TLR) family, has been implicated in the immune responses to different viruses including members of the herpesvirus family, such as human cytomegalovirus, herpes simplex virus type 1, and varicella-zoster virus. In this report, we demonstrate that infectious and UV-inactivated EBV virions lead to the activation of NF-kappaB through TLR2 using HEK293 cells cotransfected with TLR2-expressing vector along with NF-kappaB-Luc reporter plasmid. NF-kappaB activation in HEK293-TLR2 cells (HEK293 cells transfected with TLR2) by EBV was not enhanced by the presence of CD14. The effect of EBV was abrogated by pretreating HEK293-TLR2 cells with blocking anti-TLR2 antibodies or by preincubating viral particles with neutralizing anti-EBV antibodies 72A1. In addition, EBV infection of primary human monocytes induced the release of MCP-1 (monocyte chemotactic protein 1), and the use of small interfering RNA targeting TLR2 significantly reduced such a chemokine response to EBV. Taken together, these results indicate that TLR2 may be an important pattern recognition receptor in the immune response directed against EBV infection.  相似文献   

19.
Epstein-Barr virus (EBV) is associated with human cancers, including nasopharyngeal carcinoma, Burkitt's lymphoma, gastric carcinoma and, somewhat controversially, breast carcinoma. EBV infects and efficiently transforms human primary B lymphocytes in vitro. A number of EBV-encoded genes are critical for EBV-mediated transformation of human B lymphocytes. In this study we show that an EBV-infected lymphoblastoid cell line obtained from the spontaneous outgrowth of B cells from a leukemia patient contains a deletion, which involves a region of approximately 16 kbp. This deletion encodes major EBV genes involved in both infection and transformation of human primary B lymphocytes and includes the glycoprotein gp350, the entire open reading frame of EBNA3A, and the amino-terminal region of EBNA3B. A fusion protein created by this deletion, which lies between the BMRF1 early antigen and the EBNA3B latent antigen, is truncated immediately downstream of the junction 21 amino acids into the region of the EBNA3B sequence, which is out of frame with respect to the EBNA3B protein sequence, and indicates that EBNA3B is not expressed. The fusion is from EBV coordinate 80299 within the BMRF1 sequence to coordinate 90998 in the EBNA3B sequence. Additionally, we have shown that there is no detectable induction in viral replication observed when SNU-265 is treated with phorbol esters, and no transformants were detected when supernatant is used to infect primary B lymphocytes after 8 weeks in culture. Therefore, we have identified an EBV genome with a major deletion in critical genes involved in mediating EBV infection and the transformation of human primary B lymphocytes that is incompetent for replication of this naturally occurring EBV isolate.  相似文献   

20.
Epstein-Barr virus (EBV) initially enters the body through the oropharyngeal mucosa and subsequently infects B lymphocytes through their CD21 (CR2) complement receptor. Mechanisms of EBV entry into and release from epithelial cells are poorly understood. To study EBV infection in mucosal oropharyngeal epithelial cells, we established human polarized tongue and pharyngeal epithelial cells in culture. We show that EBV enters these cells through three CD21-independent pathways: (i) by direct cell-to-cell contact of apical cell membranes with EBV-infected lymphocytes; (ii) by entry of cell-free virions through basolateral membranes, mediated in part through an interaction between beta1 or alpha5beta1 integrins and the EBV BMRF-2 protein; and (iii) after initial infection, by virus spread directly across lateral membranes to adjacent epithelial cells. Release of progeny virions from polarized cells occurs from both their apical and basolateral membranes. These data indicate that multiple approaches to prevention of epithelial infection with EBV will be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号