首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The light-sensitive chlorophyll b (Chl b)-deficient oil yellow-yellow green (OY-YG) mutant of maize (Zea mays) grown under conditions of high light exhibits differential reductions in the accumulation of the three major Chl b-containing antenna complexes and characteristic changes in thylakoid architecture. When observed by freeze-fracture electron microscopy, the most notable changes in the OY-YG thylakoid structure are: (a) a major reduction in the number of 8 nanometer particles of the protoplasmic fracture face of stacked membrane regions (PFs) paralleled by a 60% reduction in the chlorophyll-proteins (CP) associated with the peripheral light harvesting complex (LHCII) for photosystem II (PSII) and which give rise to the LHCII oligomer/monomer (CPII*/CPII) bands on mildly dissociated green gels; (b) a sizable decrease in the proportion of 11 to 13 nanometer particles of the protoplasmic fracture face of unstacked membrane regions (PFu) that parallels the loss of light harvesting complex I (LHCI) antennae from photosystem I (PSI) centers and a 40% reduction of the band containing CP1 and LHCI (CPI*) on mildly dissociating green gels; (c) an unchanged or slightly increased average size of particles of the exoplasmic fracture face of stacked (or appressed) membrane regions (EFs) along with a relative increase in CP29, the postulated bound LHC of PSII, and of CP47 and CP43, PSII core antenna complexes. This latter result sets the OY-YG mutant apart from all other Chl b-deficient mutants studied to date, all of which possess EFs particles that are substantially reduced in size. Based on these findings, we postulate that the bound LHCII associated with EFs particles consists mostly of CP29 chlorophyll proteins and very little, if any, CPII*/CPII chlorophyll proteins. Indeed, the CPII*/CPII chlorophyll proteins may be exclusively associated with the `peripheral' LHCII units that give rise to 8 nanometer PF particles. The differential effect of the Chl b deficiency on the accumulation of the three main antenna complexes (CPII*/CPII>CPI*>CP29) suggests, furthermore, that there is a hierarchy among Chl b-binding proteins, and that this hierarchy might be an integral part of long-term photoregulation mediating Chl b partitioning in the chloroplast.  相似文献   

2.
The effects of chilling in the light (4 days at 5°C and 100-200 micromoles of photons per square meter per second) on the distribution of chlorophyll (Chl) protein complexes between appressed and nonappressed thylakoid regions of pumpkin (Cucurbita pepo L.) chloroplasts were studied and compared with the changes occurring during in vitro heat treatment (5 minutes at 40°C) of isolated thylakoids. Both treatments induced an increase (18 and 65%, respectively) in the relative amount of the antenna Chl a protein complexes (CP47 + CP43) of photosystem II (PSII) in stroma lamellae vesicles. Freeze-fracture replicas of light-chilled material revealed an increase in the particle density on the exoplasmic fracture face of unstacked membrane regions. These two treatments differed markedly, however, in respect to comigration of the light-harvesting Chl a/b protein complex (LHCII) of PSII. The LHCII/PSII ratio in stroma lamellae vesicles remained fairly constant during chilling in the light, whereas it dropped during the heat treatment. Moreover, it was a minor light-harvesting Chl a/b protein complex of PSII, CP29, that increased most in stroma lamellae vesicles during light-chilling. Changes in the organization of LHCII during chilling were suggested by a shift to particles of smaller sizes on the protoplasmic fracture face of stacked membrane regions and a decrease in the amount of trans3-hexadecenoic acid in the phosphatidyldiacylglycerol fraction.  相似文献   

3.
Electric field-induced absorption changes (electrochromism or Stark effect) of the light-harvesting PSII pigment-protein complexes LHCIIb, CP29, CP26 and CP24 were investigated. The results indicate the lack of strong intermolecular interactions in the chlorophyll a (Chl a) pools of all complexes. Characteristic features occur in the electronic spectrum of Chl b, which reflect the increased values of dipole moment and polarizability differences between the ground and excited states of interacting pigment systems. The strong Stark signal recorded for LHCIIb at 650-655 nm is much weaker in CP29, where it is replaced by a unique Stark band at 639 nm. Electrochromism of Chl b in CP26 and CP24 is significantly weaker but increased electrochromic parameters were also noticed for the Chl b transition at 650 nm. The spectra in the blue region are dominated by xanthophylls. The differences in Stark spectra of Chl b are linked to differences in pigment content and organization in individual complexes and point to the possibility of electron exchange interactions between energetically similar and closely spaced Chl b molecules.  相似文献   

4.
《BBA》2022,1863(5):148555
In land plants, both efficient light capture and photoprotective dissipation of chlorophyll excited states in excess require proper assembly of Photosystem II supercomplexes PSII-LHCs. These include a dimeric core moiety and a peripheral antenna system made of trimeric LHCII proteins connected to the core through monomeric LHC subunits. Regulation of light harvesting involves re-organization of the PSII supercomplex, including dissociation of its LHCII-CP24-CP29 domain under excess light. The Chl a603-a609-a616 chromophore cluster within CP29 was recently identified as responsible for the fast component of Non-Photochemical Quenching of chlorophyll fluorescence. Here, we pinpointed a chlorophyll-protein domain of CP29 involved in the macro-organization of PSII-LHCs. By complementing an Arabidopsis knock-out mutant with CP29 sequences deleted in the residue binding chlorophyll b614/b3-binding, we found that the site is promiscuous for chlorophyll a and b. By plotting NPQ amplitude vs. CP29 content we observed that quenching activity was significantly reduced in mutants compared to the wild type. Analysis of pigment-binding supercomplexes showed that the missing Chl did hamper the assembly of PSII-LHCs supercomplexes, while observation by electron microscopy of grana membranes highlighted the PSII particles were organized in two-dimensional arrays in mutant grana partitions. As an effect of such array formation electron transport rate between QA and QB reduced, likely due to restricted plastoquinone diffusion. We conclude that chlorophyll b614, rather being part of pigment cluster responsible for quenching, is needed to maintain full rate of electron flow in the thylakoids by controlling protein-protein interactions between PSII units in grana partitions.  相似文献   

5.
Direct protein film voltammetry (PFV) was used to investigate the redox properties of the photosystem II (PSII) core complex from spinach. The complex was isolated using an improved protocol not used previously for PFV. The PSII core complex had high oxygen-evolving capacity and was incorporated into thin lipid and polyion films. Three well-defined reversible pairs of reduction and oxidation voltammetry peaks were observed at 4 °C in the dark. Results were similar in both types of films, indicating that the environment of the PSII-bound cofactors was not influenced by film type. Based on comparison with various control samples including Mn-depleted PSII, peaks were assigned to chlorophyll a (Chl a) (E m = ?0.47 V, all vs. NHE, at pH 6), quinones (?0.12 V), and the manganese (Mn) cluster (E m = 0.18 V). PFV of purified iron heme protein cytochrome b-559 (Cyt b-559), a component of PSII, gave a partly reversible peak pair at 0.004 V that did not have a potential similar to any peaks observed from the intact PSII core complex. The closest peak in PSII to 0.004 V is the 0.18 V peak that was found to be associated with a two-electron process, and thus is inconsistent with iron heme protein voltammetry. The ?0.47 V peak had a peak potential and peak potential-pH dependence similar to that found for purified Chl a incorporated into DMPC films. The midpoint potentials reported here may differ to various extents from previously reported redox titration data due to the influence of electrode double-layer effects. Heterogeneous electron transfer (hET) rate constants were estimated by theoretical fitting and digital simulations for the ?0.47 and 0.18 V peaks. Data for the Chl a peaks were best fit to a one-electron model, while the peak assigned to the Mn cluster was best fit by a two-electron/one-proton model.  相似文献   

6.
7.
Photosynthetic supercomplexes from the cryptophyte Rhodomonas CS24 were isolated by a short detergent treatment of membranes from the cryptophyte Rhodomonas CS24 and studied by electron microscopy and low-temperature absorption and fluorescence spectroscopy. At least three different types of supercomplexes of photosystem I (PSI) monomers and peripheral Chl a/c2 proteins were found. The most common complexes have Chl a/c2 complexes at both sides of the PSI core monomer and have dimensions of about 17 × 24 nm. The peripheral antenna in these supercomplexes shows no obvious similarities in size and/or shape with that of the PSI-LHCI supercomplexes from the green plant Arabidopsis thaliana and the green alga Chlamydomonas reinhardtii, and may be comprised of about 6-8 monomers of Chl a/c2 light-harvesting complexes. In addition, two different types of supercomplexes of photosystem II (PSII) dimers and peripheral Chl a/c2 proteins were found. The detected complexes consist of a PSII core dimer and three or four monomeric Chl a/c2 proteins on one side of the PSII core at positions that in the largest complex are similar to those of Lhcb5, a monomer of the S-trimer of LHCII, Lhcb4 and Lhcb6 in green plants.  相似文献   

8.
Chlorophyll fluorescence has been often used as an intrinsic optical molecular probe to study photosynthesis. In this study, the origin of bands at 437 and 475.5 nm in the chlorophyll fluorescence excitation spectrum for emission at 685 nm in Arabidopsis chloroplasts was investigated using various optical analysis methods. The results revealed that this fluorescence excitation spectrum was related to the absorption characteristics of pigment molecules in PSII complexes. Moreover, the excitation band centred at 475.5 nm had a blue shift, but the excitation band at 437 nm changed relatively less due to induction of non‐photochemical quenching (NPQ). Furthermore, fluorescence emission spectra showed that this blue shift occurred when excitation energy transfer from both chlorophyll b (Chl b) and carotenoids (Cars) to chlorophyll a (Chl a) was blocked. These results demonstrate that the excitation band at 437 nm was mainly contributed by Chl a, while the excitation band at 475.5 nm was mainly contributed by Chl b and Cars. The chlorophyll fluorescence excitation spectrum, therefore, could serve as a useful tool to describe specific characteristics of light absorption and energy transfer between light‐harvesting pigments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Antenna complexes are key components of plant photosynthesis, the process that converts sunlight, CO2, and water into oxygen and sugars. We report the first (to our knowledge) femtosecond transient absorption study on the light-harvesting pigment-protein complexes CP26 (Lhcb5) and CP24 (Lhcb6) of Photosystem II. The complexes are excited at three different wavelengths in the chlorophyll (Chl) Qy region. Both complexes show a single subpicosecond Chl b to Chl a transfer process. In addition, a reduction in the population of the intermediate states (in the 660-670 nm range) as compared to light-harvesting complex II is correlated in CP26 to the absence of both Chls a604 and b605. However, Chl forms around 670 nm are still present in the Chl a Qy range, which undergoes relaxation with slow rates (10-15 ps). This reduction in intermediate-state amplitude CP24 shows a distinctive narrow band at 670 nm connected with Chls b and decaying to the low-energy Chl a states in 3-5 ps. This 670 nm band, which is fully populated in 0.6 ps together with the Chl a low-energy states, is proposed to originate from Chl 602 or 603. In this study, we monitored the energy flow within two minor complexes, and our results may help elucidate these structures in the future.  相似文献   

10.
The photosynthetic unit includes the reaction centers (RC 1 and RC 2) and the light-harvesting complexes which contribute to evolution of one O2 molecule. The light-harvesting complexes, that greatly expand the absorptance capacity of the reactions, have evolved along three principal lines. First, in green plants distinct chlorophyll (Chl) a/b-binding intrinsic membrane complexes are associated with RC 1 and RC 2. The Chl a/b-binding complexes may add about 200 additional chromophores to RC 2. Second, cyanobacteria and red algae have a significant type of antenna (with RC 2) in the form of phycobilisomes. A phycobilisome, depending on the size and phycobiliprotein composition adds from 700 to 2300 light-absorbing chromophores. Red algae also have a sizable Chl a-binding complex associated with RC 1, contributing an additional 70 chromophores. Third, in chromophytes a variety of carotenoid-Chl-complexes are found. Some are found associated with RC 1 where they may greatly enhance the absorptance capacity. Association of complexes with RC 2 has been more difficult to ascertain, but is also expected in chromophytes. The apoprotein framework of the complexes provides specific chromophore attachment sites, which assures a directional energy transfer whithin complexes and between complexes and reaction centers. The major Chl-binding antenna proteins generally have a size of 16–28 kDa, whether of chlorophytes, chromophytes, or rhodophytes. High sequence homology observed in two of three transmembrane regions, and in putative chlorophyll-binding residues, suggests that the complexes are related and probably did not evolve from widely divergent polyphyletic lines.Abbreviations APC allophycocyanin - B phycoerythrin-large bangiophycean phycoerythrin - Chl chlorophyll - LCM linker polypeptide in phycobilisome to thylakoid - FCP fucoxanthin Chl a/c complex - LHC(s) Chl-binding light harvesting complex(s) - LHC I Chl-binding complex of Photosystem I - LHC II Chl-binding complex of Photosystem II - PC phycocyanin - PCP peridinin Chl-binding complex - P700 photochemically active Chl a of Photosystem I - PS I Photosystem I - PS II Photosystem II - RC 1 reaction center core of PS I - RC 2 reaction center core of PS II - R phycoerythrin-large rhodophycean phycoerythrin - sPCP soluble peridinin Chl-binding complex  相似文献   

11.
(1) Five minor chlorophyll-protein complexes were isolated from thylakoid membranes of the green alga Acetabularia by SDS-polyacrylamide gel electrophoresis, after SDS or octylglucoside solubilization. None of them were related to CP I (Photosystem I reaction center core) or CP II (chlorophyll ab light-harvesting complex). (2) Two complexes (CPa-1 and CPa-2) contained only chlorophyll (Chl) a, with absorption maxima of 673 and 671 nm, and fluorescence emission maxima of 683 nm compared to 676 nm for CP II. The complexes had apparent molecular masses of 43–47 and 38–40 kDa, and contained a single polypeptide of 41 and 37 kDa, respectively. They each account for about 3% of the total chlorophyll. (3) Three complexes had identical spectra, with Chl ab ratios of 3–4 compared to 2 for thylakoid membranes, and a pronounced shoulder around 485 nm indicating enrichment in carotenoids. One of them was the complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432) and the other two were slightly different oligomeric forms of CP 29. They could be formed from CP 29 during reelectrophoresis; but about half the complex was isolated originally in an oligomeric form. Together they account for at least 7% of the total chlorophyll. Their function is unknown.  相似文献   

12.
The light environment during plant growth determines the structural and functional properties of higher plant chloroplasts, thus revealing a dynamically regulated developmental system. Pisum sativum plants growing under intermittent illumination showed chloroplasts with fully functional photosystem (PS) II and PSI reaction centers that lacked the peripheral chlorophyll (Chi) a/b and Chl a light-harvesting complexes (LHC), respectively. The results suggest a light flux differential threshold regulation in the biosynthesis of the photosystem core and peripheral antenna complexes. Sun-adapted species and plants growing under far-red-depleted illumination showed grana stacks composed of few (3–5) thylakoids connected with long intergrana (stroma) thylakoids. They had a PSII/PSI reaction center ratio in the range 1.3–1.9. Shade-adapted species and plants growing under far-red-enrichcd illumination showed large grana stacks composed of several thylakoids, often extending across the entire chloroplast body, and short intergrana stroma thylakoids. They had a higher PSII/PSI reaction center ratio, in the range of 2.2–4.0. Thus, the relative extent of grana and stroma thylakoid formation corresponds with the relative amounts of PSII and PSI in the chloroplast, respectively. The structural and functional adaptation of the photosynthetic membrane system in response to the quality of illumination involves mainly a control on the rate of PSII and PSI complex biosynthesis.  相似文献   

13.
《BBA》2020,1861(7):148191
Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms – absorbing at around 650 nm and 658 nm – and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting.  相似文献   

14.
John Biggins  Jan Svejkovsky 《BBA》1980,592(3):565-576
A variety of unicellular algae, thylakoids from higher plants in different stages of maturity and isolated pigment-protein complexes were oriented in stretched polyvinyl alcohol films. Low temperature linear dichroism (LD) spectra of Chlorella pyrenoidosa and higher plant thylakoids in the films were very similar to those obtained after orientation of similar samples using magnetic or electric fields.Positive LD bands corresponding to Chl a (670) and (682) and negative bands due to Chl a (658) and Chl b (648) were resolved in spectra of the light harvesting Chl a/b protein. Chl b (648) and Chl a (658) and (670) were not seen in the LD spectrum of thylakoids from plants grown in intermittent light, the Chl b-less mutant of barley, Euglena gracilis or the cyanobacteria, Phormidium luridum and Anacystis nidulans, but did appear upon chloroplast maturation in Romaine lettuce and during the greening of etiolated and intermittent light plants. The highly oriented long wavelength Chl a (682) in the light-harvesting complex may represent residual PS II whose peak dichroism is centered at 681 nm. The PS I preparation had a Chl ab ratio of approx. 6 and the LD spectrum was positive with a maximum at 690–694 nm and a band of lower amplitude at 652 nm. The minor LD band was not observed in PS I preparations from organisms that lack Chl b such as the cyanobacteria, intermittent light plants and the Chl b-less mutant of barley. We suggest that the 652 nm band is due to Chl b molecules associated with the antenna of PS I and are distinct from those on the light harvesting complex whose orientation is different. We also conclude that all the Chl a forms are oriented and that the long geometric axes of the pigment-protein complexes, as deduced from the configuration they assume in the stretched films, are axes that normally lie parallel to the plane of the native thylakoid.  相似文献   

15.
The STAY‐GREEN (SGR) gene encodes Mg‐dechelatase which catalyzes the conversion of chlorophyll (Chl) a to pheophytin (Pheo) a. This reaction is the first and most important regulatory step in the Chl degradation pathway. Conversely, Pheo a is an indispensable molecule in photosystem (PS) II, suggesting the involvement of SGR in the formation of PSII. To investigate the physiological functions of SGR, we isolated Chlamydomonas sgr mutants by screening an insertion‐mutant library. The sgr mutants had reduced maximum quantum efficiency of PSII (Fv/Fm) and reduced Pheo a levels. These phenotypes were complemented by the introduction of the Chlamydomonas SGR gene. Blue Native polyacrylamide gel electrophoresis and immunoblotting analysis showed that although PSII levels were reduced in the sgr mutants, PSI and light‐harvesting Chl a/b complex levels were unaffected. Under nitrogen starvation conditions, Chl degradation proceeded in the sgr mutants as in the wild type, indicating that ChlamydomonasSGR is not required for Chl degradation and primarily contributes to the formation of PSII. In contrast, in the Arabidopsis sgr triple mutant (sgr1 sgr2 sgrL), which completely lacks SGR activity, PSII was synthesized normally. These results suggest that the Arabidopsis SGR participates in Chl degradation while the ChlamydomonasSGR participates in PSII formation despite having the same catalytic property.  相似文献   

16.
Thylakoids isolated from winter rye (Secale cereale L. cv Puma) grown at 20°C (nonhardened rye, RNH) or 5°C (cold-hardened rye, RH) were characterized using chlorophyll (Chl) fluorescence. Low temperature fluorescence emission spectra of RH thylakoids contained emission bands at 680 and 695 nanometers not present in RNH thylakoids which were interpreted as changes in the association of light-harvesting Chl a/b proteins and photosystem II (PSII) reaction centers. RH thylakoids also exhibited a decrease in the emission ratio of 742/685 nanometers relative to RNH thylakoids.

Room temperature fluorescence induction revealed that a larger proportion of Chl in RH thylakoids was inactive in transferring energy to PSII reaction centers when compared with RNH thylakoids. Fluorescence induction kinetics at 20°C indicated that RNH and RH thylakoids contained the same proportions of fast (α) and slow (β) components of the biphasic induction curve. In RH thylakoids, however, the rate constant for α components increased and the rate constant for β components decreased relative to RNH thylakoids. Thus, energy was transferred more quickly within a PSII reaction center complex in RH thylakoids. In addition, PSII reaction centers in RH thylakoids were less connected, thus reducing energy transfers between reaction center complexes. We concluded that both PSII reaction centers and light-harvesting Chl a/b proteins had been modified during development of rye chloroplasts at 5°C.

  相似文献   

17.
With the use of low temperature spectrofluorometry and matrix calculations it was demonstrated that the chlorophyll a pool of higher plants is made up of four different chlorophyll a chromophores. The latter were segregated by high pressure liquid chromatography on a silica column. They were designated Chl a (E432 F664), Chl a (E436 F670), Chl a (E443 F672) and Chl a (E446 F674), where E refers to the Soret excitation maximum and F to the fluorescence emission maximum at 77 K in ether. Likewise the Chl b pool was shown to consist of at least four different Chl b chromophores which were designated: Chl b (E465), Chl b (E470), Chl b (E475) and Chl b (E485). It was proposed that the various chlorophyll chromophores differed by the degree of oxidation of their side chains at the 2 and 4 positions of the macrocycle. It was also suggested that the chemical modifications at the 2 and 4 positions of the macrocycle may play an important role in positioning the different chlorophyll chromophores in the thylakoid membranes.  相似文献   

18.
The non-bilayer lipid monogalactosyldiacylglycerol (MGDG) is the most abundant type of lipid in the thylakoid membrane and plays an important role in regulating the structure and function of photosynthetic membrane proteins. In this study, we have reconstituted the isolated major light-harvesting complexes of photosystem II (PSII) (LHCIIb) and a preparation consisting of PSII core complexes and minor LHCII of PSII (PSIICC) into liposomes that consisted of digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG), with or without MGDG. Transmission electron microscopy and freeze-fracture studies showed unilamellar proteoliposomes, and demonstrated that most of the MGDG is incorporated into bilayer structures. The impact of MGDG on the functional interaction between LHCIIb and PSIICC was investigated by low temperature (77 K) fluorescence emission spectra and the photochemical activity of PSII. The additional incorporation of LHCIIb into liposomes containing PSIICC markedly increased oxygen evolution of PSIICC. Excitation at 480 nm of chlorophyll (Chl) b in LHCIIb stimulated a characteristic fluorescence emission of the Chl a in PSII (684.2 nm), rather than that of the Chl a in LHCIIb (680 nm) in the LHCIIb–PSIICC proteoliposomes, which indicated that the energy was transferred from LHCIIb to PSIICC in liposome membranes. Increasing the percentage of MGDG in the PSIICC–LHCIIb proteoliposomes enhanced the photochemical activity of PSII, due to a more efficient energy transfer from LHCIIb to PSIICC and, thus, an enlarged antenna cross section of PSII.  相似文献   

19.
We use femtosecond transient absorption spectroscopy to study chlorophyll (Chl)-Chl energy transfer in the peridinin-chlorophyll protein (PCP) reconstituted with mixtures of either chlorophyll b (Chlb) and Chld or Chla and bacteriochlorophyll a (BChla). Analysis of absorption and transient absorption spectra demonstrated that reconstitution with chlorophyll mixtures produces a significant fraction of PCP complexes that contains a different Chl in each domain of the PCP monomer. The data also suggest that binding affinity of Chla is less than that of the other three Chl species. By exciting the Chl species lying at higher energy, we obtained energy transfer times of 40 ± 5 ps (Chlb-Chld) and 59 ± 3 ps (Chla-BChla). The experimental values match those obtained from the Förster equation, 36 and 50 ps, respectively, showing that energy transfer proceeds via the Förster mechanism. Excitation of peridinin in the PCP complex reconstituted with Chla/BChla mixture provided time constants of 2.6 and 0.4 ps for the peridinin-Chla and peridinin-BChla energy transfer, matching those obtained from studies of PCP complexes reconstituted with single chlorophyll species.  相似文献   

20.
Action spectra for photosystem II (PSII)-driven oxygen evolution and of photosystem I (PSI)-mediated H2 photoproduction and photoinhibition of respiration were used to determine the participation of chlorophyll (Chl) a/b-binding Pcb proteins in the functions of pigment apparatus of Prochlorothrix hollandica. Comparison of the in situ action spectra with absorption spectra of PSII and PSI complexes isolated from the cyanobacterium Synechocystis 6803 revealed a shoulder at 650 nm that indicated presence of Chl b in the both photosystems of P. hollandica. Fitting of two action spectra to absorption spectrum of the cells showed a chlorophyll ratio of 4:1 in favor of PSI. Effective antenna sizes estimated from photochemical cross-sections of the relevant photoreactions were found to be 192 ± 28 and 139 ± 15 chlorophyll molecules for the competent PSI and PSII reaction centers, respectively. The value for PSI is in a quite good agreement with previous electron microscopy data for isolated Pcb-PSI supercomplexes from P. hollandica that show a trimeric PSI core surrounded by a ring of 18 Pcb subunits. The antenna size of PSII implies that the PSII core dimers are associated with ∼ 14 Pcb light-harvesting proteins, and form the largest known Pcb-PSII supercomplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号