首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relationships between changes in levels of catechols and directly recorded sympathetic nerve activity were examined using simultaneous measurements of renal sympathetic nerve activity and arterial and renal venous concentrations of norepinephrine (NE), dihydroxyphenylalanine (dopa), and dihydroxyphenylglycol (DHPG) during reflexive alterations in renal sympathetic nerve activity in anesthetized, adrenal-demedullated rats. Nitroprusside infusion increased renal sympathetic nerve activity by 90%, arterial levels of dopa by 96%, NE by 326%, and DHPG by 141%. Phenylephrine infusion increased arterial DHPG levels by 81% and decreased renal sympathetic nerve activity by 37% and NE levels by 26%; arterial dopa levels were unchanged. Ganglionic blockade by chlorisondamine (with concomitant phenylephrine infusion to maintain MAP) decreased renal sympathetic nerve activity by 65% and NE concentrations by 37%; arterial dopa concentrations were unchanged, and DHPG concentrations increased by 60%. Proportionate responses of arterial levels of NE were strongly related to proportionate changes in renal sympathetic nerve activity. Clearance of DHPG from arterial plasma was prolonged by phenylephrine-induced hypertension and by nitroprusside-induced hypotension. The results suggest that changes in arterial NE levels reflect changes in sympathetic activity; changes in dopa levels reflect changes in catecholamine biosynthesis; and changes in DHPG levels depend on reuptake of released NE and on hemodynamic factors affecting DHPG clearance.  相似文献   

2.
The sympathetic nervous system (SNS) plays an important role in the regulation of energy expenditure. However, whether tonic SNS activity contributes to resting metabolic rate (RMR) in healthy adult humans is controversial, with the majority of studies showing no effect. We hypothesized that an intravenous propranolol infusion designed to achieve complete beta-adrenergic blockade would result in a significant acute decrease in RMR in healthy adults. RMR (ventilated hood, indirect calorimetry) was measured in 29 healthy adults (15 males, 14 females) before and during complete beta-adrenergic blockade documented by plasma propranolol concentrations > or =100 ng/ml, lack of heart rate response to isoproterenol, and a plateau in RMR with increased doses of propranolol. Propranolol infusion evoked an acute decrease in RMR (-71 +/- 11 kcal/day; -5 +/- 0.7%, P < 0.0001), whereas RMR was unchanged from baseline levels during a saline control infusion (P > 0.05). The response to propranolol differed from the response to saline control (P < 0.01). The absolute and percent decreases in RMR with propranolol were modestly related to baseline plasma concentration of norepinephrine (r = 0.38, P = 0.05; r = 0.44, P = 0.02, respectively). These findings provide direct evidence for the concept of tonic sympathetic beta-adrenergic support of RMR in healthy nonobese adults.  相似文献   

3.
Cardiovascular and hormonal responses to swimming and running in the rat   总被引:1,自引:0,他引:1  
Hemodynamic and hormonal responses were studied during swimming (SW) and running (R) and in cage-confined (C) female Wistar rats at base line and 4 and 8 wk of training. Myocardial tissue levels of norepinephrine (NE) and epinephrine (EPI) were also measured at the end of 8 wk of training. Mean arterial blood pressure (BP), heart rate (HR), and blood samples for arterial lactate, plasma NE and EPI, and blood gases were obtained at rest and at 20, 40, and 60 min of exercise. After 4 wk of SW, a resting bradycardia was observed, and HR response for the remaining 4 wk was attenuated with SW compared with HR during R. BP and blood gases remained unchanged between the two groups. R resulted in increased arterial lactate concentrations compared with C and SW at base line but was not different from SW at 4 wk. SW elicited higher plasma levels of NE and EPI compared with C at base line and C and R at 4 wk. Myocardial tissue NE and EPI concentrations were markedly increased in both the left and right ventricle of the SW group compared with both R and C. These results indicate that BP and blood gases are not different between chronic R and SW and suggest a possible sympathoadrenal role in the differences observed in cardiac adaptations between R and SW.  相似文献   

4.
Measurement of plasma norepinephrine concentration (plasma NE) has not resolved the role of the adrenergic system in the pathogenesis or maintenance of hypertension. A better picture is gained if plasma NE measurement is combined with the assessment of sympathetic drive and reactivity by the use of specific sympathetic antagonists and agonists. In mild hypertension, the decrease in heart rate and cardiac output after beta-adrenoceptor blockade correlates with the level of plasma NE. In established hypertension, the fall in blood pressure or peripheral vascular resistance after alpha-adrenoceptor blockade is related to plasma NE levels. Similarly, changes in forearm vascular resistance induced by local alpha-adrenoceptor blockage correlates with plasma NE in hypertension. Cardiovascular responsiveness to adrenergic agonists is altered in hypertension. The response to cardiac beta-receptor stimulation decreases during the course of the disease. To the contrary, vascular responses to exogenous NE increase with the progression of the hypertensive disease. Results with total autonomic blockade indicate that in some patients with early or borderline hypertension, increased sympathetic tone is involved in the maintenance of blood pressure. In established hypertension, there is no definite indication of increased sympathetic tone, but the sympathetic nervous system may nevertheless play a prominent role in the maintenance of the blood pressure. A vascular hyperreactivity to adrenergic stimulation is characteristically associated with established hypertension. The nature of this hyperreactivity has not been fully elucidated, but it is very likely that it reflects structural vascular changes in hypertension.  相似文献   

5.
Neuropeptide Y (NPY) is a vasoconstrictor present in the sympatho-adrenomedullary system and may be co-released with norepinephrine (NE) and epinephrine (EPI) during sympathetic activation. We studied plasma NPY-immunoreactivity (-ir, radioimmunoassay) and catecholamine (radioenzymatic) responses during two acute stress paradigms that differ in character, intensity, and duration. The intermittent stress of footshock (0.75 and 1.5 mA, 0.5 sec duration, at 5-sec intervals, for 5 min) evoked intensity-dependent immediate increments in plasma NE and EPI, and a delayed NPY-ir response (+0.6 +/- 0.1 pmol/ml). Prolonged (60 min) immobilization caused greater increases in plasma NE and EPI levels and no changes in plasma NPY-ir until the end of the stress session (+0.3 +/- 0.1 pmol/ml). Plasma NPY-ir responses correlated with those of NE but not with EPI suggesting a sympathetic origin for the release of the peptide. Relatively greater NPY-ir responses to footshock than to immobilization may be consistent with a preferential release of the peptide by a bursting but not continuous mode of sympathetic activation. However, it may also be due to a differential activation of the sympathetic nerves and adrenal medulla by these two stress situations.  相似文献   

6.
Plasma levels of norepinephrine (NE) and epinephrine (EPI) were measured in male Sprague-Dawley rats before and at several times after training injections of agents known to enhance or to impair later retention performance for a one-trial inhibitory (passive) avoidance task. Two days before testing, each animal was surgically prepared with a chronic tail artery catheter that allows for repeated blood sampling in unhandled rats. Exposure to a single, intense training footshock (3.0 mA, 2.0 sec duration) resulted in an immediate but transient increase in plasma levels of EPI and to a lesser extent NE. Plasma levels of both catecholamines did not differ between unshocked controls and animals that received a weak training footshock (0.6 mA, 0.5 sec duration). An injection of EPI at a dose that enhances retention performance (0.1 mg/kg, sc) resulted in increments in plasma EPI levels of 0.8-1.9 ng/ml from 5 to 40 min after injection. An injection of EPI (0.5 mg/kg, sc) at a dose that produces retrograde amnesia resulted in increments in plasma EPI ranging from 3.7 to 4.5 ng/ml during the 40 min after injection. Plasma NE levels were not significantly altered following an EPI injection. A single injection of adrenocorticotropin (ACTH, 0.3 or 3.0 IU per rat) did not alter the plasma catecholamine responses to training with a weak footshock. Similarly, the synthetic ACTH analog, Organon 2766 (125 or 250 mg/Kg) did not affect plasma catecholamines in untrained (unshocked) rats.These results demonstrate that significant increments in plasma levels of NE and EPI occur shortly after inhibitory avoidance training. Furthermore, an injection of EPI that enhances retention of an inhibitory avoidance task mimics the magnitude, though not the temporal characteristics, of the endogenous adrenal medullary response to a training footshock. Other hormonal treatments (ACTH and Organon 2766) which enhance memory storage do not affect plasma levels of NE and EPI.  相似文献   

7.
Decreased maximal O2 uptake (VO2max) and stimulation of the sympathetic nervous system have been previously shown to occur at high altitude. We hypothesized that tachycardia mediated by beta-adrenergic stimulation acted to defend VO2max at high altitude. Propranolol treatment beginning before high-altitude (4,300 m) ascent reduced heart rate during maximal and submaximal exercise in six healthy men treated with propranolol (80 mg three times daily) compared with five healthy subjects receiving placebo (lactose). Compared with sea-level values, the VO2max fell on day 2 at high altitude, but the magnitude of fall was similar in the placebo and propranolol treatment groups (26 +/- 6 vs. 32 +/- 5%, P = NS) and VO2max remained similar at high altitude in both groups once treatment was discontinued. During 30 min of submaximal (80% of VO2max) exercise, propranolol-treated subjects maintained O2 uptake levels that were as large as those in placebo subjects. The maintenance of maximal or submaximal levels of O2 uptake in propranolol-treated subjects at 4,300 m could not be attributed to increased minute ventilation, arterial O2 saturation, or hemoglobin concentration. Rather, it appeared that propranolol-treated subjects maintained O2 uptake by transporting a greater proportion of the O2 uptake with each heartbeat. Thus, contrary to our hypothesis, beta-adrenergic blockade did not impair maximal or submaximal O2 uptake at high altitude due perhaps to compensatory mechanisms acting to maintain stroke volume and cardiac output.  相似文献   

8.
The effects of beta-blockade on tidal volume (VT), breath cycle timing, and respiratory drive were evaluated in 14 endurance-trained [maximum O2 uptake (VO2max) approximately 65 ml X kg-1 X min-1] and 14 untrained (VO2max approximately 50 ml X kg-1 X min-1) male subjects at 45, 60, and 75% of unblocked VO2max and at VO2max. Propranolol (PROP, 80 mg twice daily), atenolol (ATEN, 100 mg once a day) and placebo (PLAC) were administered in a randomized double-blind design. In both subject groups both drugs attenuated the increases in VT associated with increasing work rate. CO2 production (VCO2) was not changed by either drug during submaximal exercise but was reduced in both subject groups by both drugs during maximal exercise. The relationship between minute ventilation (VE) and VCO2 was unaltered by either drug in both subject groups due to increases in breathing frequency. In trained subjects VT was reduced during maximal exercise from 2.58 l/breath on PLAC to 2.21 l/breath on PROP and to 2.44 l/breath on ATEN. In untrained subjects VT at maximal exercise was reduced from 2.30 l/breath on PLAC to 1.99 on PROP and 2.12 on ATEN. These observations indicate that 1) since VE vs. VCO2 was not altered by beta-adrenergic blockade, the changes in VT and f did not result from a general blunting of the ventilatory response to exercise during beta-adrenergic blockade; and 2) blockade of beta 1- and beta 2-receptors with PROP caused larger reductions in VT compared with blockade of beta 1-receptors only (ATEN), suggesting that beta 2-mediated bronchodilation plays a role in the VT response to heavy exercise.  相似文献   

9.
Seven men and four women (age 63 +/- 2 yr, mean +/- SD, range 61-67 yr) participated in a 12-mo endurance training program to determine the effects of low-intensity (LI) and high-intensity (HI) training on the blood lactate response to submaximal exercise in older individuals. Maximal oxygen uptake (VO2max), blood lactate, O2 uptake (VO2), heart rate (HR), ventilation (VE), and respiratory exchange ratio (R) during three submaximal exercise bouts (65-90% VO2max) were determined before training, after 6 mo of LI training, and after an additional 6 mo of HI training. VO2max (ml X kg-1 X min-1) was increased 12% after LI training (P less than 0.05), while HI training induced a further increase of 18% (P less than 0.01). Lactate, HR, VE, and R were significantly lower (P less than 0.05) at the same absolute work rates after LI training, while HI training induced further but smaller reductions in these parameters (P greater than 0.05). In general, at the same relative work rates (ie., % of VO2max) after training, lactate was lower or unchanged, HR and R were unchanged, and VO2 and VE were higher. These findings indicate that LI training in older individuals results in adaptations in the response to submaximal exercise that are similar to those observed in younger populations and that additional higher intensity training results in further but less-marked changes.  相似文献   

10.
Changes of plasma hormone levels were investigated in human subjects after exposure to physical exercise (WL) and insulin induced hypoglycemia (ITT) during apace flight or after head down bed rest (HDBR). Exaggerated responses of plasma epinephrine (EPI), norepinephrine (NE) and aldosterone (ALD) were observed after WL during space flight as compared to preflight response. Hypoglycemia during space flight induced attenuated responses of EPI, NE and augmented response of ALD. Exposure to WL during HDBR was followed by significantly exaggerated responses of plasma EPI, NE, ALD, PRA and cortisol. In HDBR the responses of plasma EPI, NE and cortisol were reduced and PRA response was exaggerated during ITT. These data indicate that hormonal responses to ITT and WL are similar at real and simulated microgravity.  相似文献   

11.
The effects of different physical training regimes on the plasma catecholamine values at rest and the density and responsiveness of adrenergic receptors at rest were investigated. The changes during well-defined training periods of swimmers, long-distance runners, weight lifters and wrestlers were compared with untrained male volunteers. The training of swimmers and long-distance runners, building up endurance, resulted in a significantly lower basal plasma norepinephrine (NE) concentration and a significantly or possibly lower ratio NE:EPI (epinephrine). Both values indicated reduced sympathetic activity and resulted also in a significantly lower beta-receptor density and a higher alpha 2-receptor sensitivity compared with the other groups investigated. However, swimming-specific characteristics provoked labile hypertensive blood pressure regulation with an unchanged heart rate in swimmers. Static training of weight lifters, building up power, also led to a lower NE concentration compared with untrained subjects, whereas beta-receptor density was unchanged and alpha 2-receptor density and sensitivity were decreased. Elevated blood pressure values were observed in weight lifters and swimmers due to a reduced baroreceptor sensitivity. The dynamic training of wrestlers affected only basal heart rate and alpha 2-receptor sensitivity, both of which were decreased. Different kinds of physical training caused various adaptations of the basal activity of the autonomic nervous system in which adrenergic receptors also became adapted. In this context, the stronger adrenergic circulatory component of overall sympathetic activity at rest in swimmers and long-distance runners resulted in lower beta-receptor density, and the reduced noradrenergic component sensitized alpha 2-receptors.  相似文献   

12.
The magnitude and duration of effects of a single intravenous injection of 4'-amino MPTP, an analogue of the dopamine neurotoxin, MPTP, on plasma levels of catechols and normetanephrine were examined in conscious dogs. Plasma samples were collected prior to treatment with intravenous saline or 4'-amino MPTP.2HCl (22.5 mg/kg) and at weekly intervals for six weeks following treatment. Saline treatment had no effect on plasma levels of any of the measured compounds. Following 4'-amino MPTP, plasma DHPG fell to 14% of the pre-injection value and remained decreased for the full 6-week test period, with partial recovery by week 6 to 42% of the pre-injection value. Plasma DOPAC levels fell to 28% of pre-injection values 1 week after treatment with 4'-amino MPTP and showed no evidence of recovery during the 6-week test period. Plasma DOPA fell to 58% of the pre-injection level, while concentrations of the catecholamines NE, EPI, and DA were generally unaffected. The plasma concentration of the O-methylated NE metabolite, normetanephrine, was also unchanged by 4'-amino MPTP treatment. There were no differences in the concentrations of DA, NE or EPI within the adrenal medulla between saline and 4'-amino MPTP treated groups. This pattern of changes in plasma levels of catechols, which is consistent with presynaptic inhibition of MAO within sympathetic terminals, may be a useful indicator of exposure to MPTP-like neurotoxins.  相似文献   

13.
The purpose of this study was to reexamine the effect of training on plasma adrenocorticotropin (ACTH) levels during exercise. Ten adult volunteers were split into a control and an experimental group. The experimental group participated in a 12-wk training program that resulted in a significant 11% increase in their mean maximal O2 uptake. The plasma ACTH response to a 150-W work rate was measured in both groups before and after the training program. The experimental group demonstrated a significant reduction in the ACTH response (11 vs. 4 pg/ml) to the work rate, whereas the control group demonstrated an unchanged response (16 vs. 13 pg/ml) over the course of the study. These data suggest that the ACTH response to an absolute submaximal work rate is blunted after training.  相似文献   

14.
Eighteen patients with ischaemic heart disease were trained for 3 months, three times a week. The effectiveness of the training programme was demonstrated by increases of 27% in peak oxygen uptake and 29% in exercise duration, and by a decrease in resting and submaximal heart rates. Blood pressure, however, was not significantly affected during the training period. At rest and at submaximal exercise plasma renin activity (PRA) was lower after training. Plasma angiotensin I concentration (PA I) and angiotensin II concentration (PA II) were not significantly affected. Plasma aldosterone concentration (PAC), only measured at rest, was not significantly changed after the training period, while plasma norepinephrine (PNE) and epinephrine (PE) concentrations were significantly decreased, but only at high levels of exercise. A reduced sympathetic tone after training, suggested by the lower heart rates and the tendency to a decrease in PNE, is a likely explanation for the decrease in PRA. However, despite this decrease, PA I, PA II, and PAC were not significantly changed after training; the reason for this disrepancy is unknown.  相似文献   

15.
The amplitude of low-frequency (LF) oscillations of heart rate (HR) usually reflects the magnitude of sympathetic activity, but during some conditions, e.g., physical exercise, high sympathetic activity results in a paradoxical decrease of LF oscillations of HR. We tested the hypothesis that this phenomenon may result from a feedback inhibition of sympathetic outflow caused by circulating norepinephrine (NE). A physiological dose of NE (100 ng.kg(-1).min(-1)) was infused into eight healthy subjects, and infusion was continued after alpha-adrenergic blockade [with phentolamine (Phe)]. Muscle sympathetic nervous activity (MSNA) from the peroneal nerve, LF (0.04-0.15 Hz) and high frequency (HF; 0.15-0.40 Hz) spectral components of HR variability, and systolic blood pressure variability were analyzed at baseline, during NE infusion, and during NE infusion after Phe administration. The NE infusion increased the mean blood pressure and decreased the average HR (P < 0.01 for both). MSNA (10 +/- 2 vs. 2 +/- 1 bursts/min, P < 0.01), LF oscillations of HR (43 +/- 13 vs. 35 +/- 13 normalized units, P < 0.05), and systolic blood pressure (3.1 +/- 2.3 vs. 2.0 +/- 1.1 mmHg2, P < 0.05) decreased significantly during the NE infusion. During the NE infusion after PHE, average HR and mean blood pressure returned to baseline levels. However, MSNA (4 +/- 2 bursts/min), LF power of HR (33 +/- 9 normalized units), and systolic blood pressure variability (1.7 +/- 1.1 mmHg2) remained significantly (P < 0.05 for all) below baseline values. Baroreflex gain did not change significantly during the interventions. Elevated levels of circulating NE cause a feedback inhibition on sympathetic outflow in healthy subjects. These inhibitory effects do not seem to be mediated by pressor effects on the baroreflex loop but perhaps by a presynaptic autoregulatory feedback mechanism or some other mechanism that is not prevented by a nonselective alpha-adrenergic blockade.  相似文献   

16.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

17.
We studied the homeostatic secretory response of catecholamine secretion elicited by progressive bronchoconstriction in 18 swine in vivo. The potential reserve of the sympathetic nervous system (SNS) was first assessed by exogenous nicotinic stimulation with 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP). A dose of 250 micrograms/kg iv DMPP caused an increase in plasma norepinephrine (NE) concentration from 207 +/- 86 (basal) to 2,625 +/- 448 pg/ml (P less than 0.02) and in plasma epinephrine (EPI) from 10 +/- 5.0 to 1,410 +/- 432 pg/ml (P less than 0.05) in four swine. In four other swine, bronchoconstriction induced by aerosolized prostaglandin F2 alpha caused approximately a fivefold increase in airway resistance without hemodynamic changes. No increase in plasma EPI was observed. However, plasma NE increased from 330 +/- 131 to 1,540 +/- 182 pg/ml (P less than 0.02). In five swine receiving aerosolized acetylcholine (ACh), similar changes in airways resistance were not associated with significant changes in catecholamine concentration when mean arterial blood pressure (MAP) was unchanged. However, inhalation of sufficient ACh to cause a greater than 10% decrease in MAP caused progressive increase in catecholamine secretion. Plasma EPI increased from 32 +/- 16 (MAP = 124 +/- 7 Torr) to 1,165 +/- 522 pg/ml (MAP = 94 +/- Torr). Hypoxemia that occurred with bronchoconstriction (greater than or equal to 50 Torr) did not cause catecholamine secretion. However, severe hypoxemia (PO2 less than 30 Torr) caused large increases in plasma EPI concentrations from 84 +/- 27 to 1,463 +/- 945 pg/ml (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
It was demonstrated that acute hypoxia increased muscle sympathetic nerve activity (MSNA) by using a microneurographic method at rest, but its effects on dynamic leg exercise are unclear. The purpose of this study was to clarify changes in MSNA during dynamic leg exercise in hypoxia. To estimate peak oxygen uptake (Vo(2 peak)), two maximal exercise tests were conducted using a cycle ergometer in a semirecumbent position in normoxia [inspired oxygen fraction (Fi(O(2)) = 0.209] and hypoxia (Fi(O(2)) = 0.127). The subjects performed four submaximal exercise tests; two were MSNA trials in normoxia and hypoxia, and two were hematological trials under each condition. In the submaximal exercise test, the subjects completed two 15-min exercises at 40% and 60% of their individual Vo(2 peak) in normoxia and hypoxia. During the MSNA trials, MSNA was recorded via microneurography of the right median nerve at the elbow. During the hematological trials, the subjects performed the same exercise protocol as during the MSNA trials, but venous blood samples were obtained from the antecubital vein to assess plasma norepinephrine (NE) concentrations. MSNA increased at 40% Vo(2 peak) exercise in hypoxia, but not in normoxia. Plasma NE concentrations did not increase at 40% Vo(2 peak) exercise in hypoxia. MSNA at 40% and 60% Vo(2 peak) exercise were higher in hypoxia than in normoxia. These results suggest that acute hypoxia augments muscle sympathetic neural activation during dynamic leg exercise at mild and moderate intensities. They also suggest that the MSNA response during dynamic exercise in hypoxia could be different from the change in plasma NE concentrations.  相似文献   

19.
The ovary and adenohypophysis of the rat contain beta-adrenergic receptors and respond to beta-adrenergic stimulation with hormone release. To determine the importance of the adrenal medulla as a source of adrenergic influences regulating prepubertal ovarian and pituitary function, a technique was developed to remove most of the adrenal medulla without compromising adrenocortical function. Medullectomy (MED) of 24-day-old female rats depressed both spontaneous diurnal changes in plasma epinephrine (EPI), and the EPI and norepinephrine (NE) response to decapitation, without affecting corticosterone (B) levels. Vaginal opening and first ovulation were delayed in MED rats. Serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels were normal in MED rats, but those of growth hormone (GH) and prolactin (Prl) were depressed. MED reduced the ovarian weight response to pregnant mare's serum gonadotropin (PMSG) and the ovarian steroidal response to human chorionic gonadotropin (hCG) in vitro, but it did not affect ovarian beta-adrenergic receptors. Cultured granulosa cells, harvested from juvenile ovaries and primed in vitro with FSH, responded to nanomolar concentrations of EPI with progesterone (P) secretion. EPI also augmented hCG- and FSH-induced P secretion. The EPI effect was reproduced by Zinterol, a beta 2-adrenergic agonist and was prevented by propranolol, a beta-adrenergic antagonist. Blockade of alpha-adrenergic receptors with phentolamine was ineffective. It is suggested that EPI of adrenomedullary origin supports female prepubertal development by a) stimulating ovarian P secretion, b) favoring Prl and GH release and c) amplifying the stimulatory effect of low gonadotropin levels on ovarian steroidogenesis. The effects of EPI on ovarian function appear to be mediated by beta-adrenergic receptors of the beta 2 type.  相似文献   

20.
Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to a less-pronounced increase of skeletal muscle IL-6 mRNA in response to acute exercise. Thus, before and after 10 wk of knee extensor endurance training, skeletal muscle IL-6 mRNA expression was determined in young healthy men (n = 7) in response to 3 h of dynamic knee extensor exercise, using the same relative workload. Maximal power output, time to exhaustion during submaximal exercise, resting muscle glycogen content, and citrate synthase and 3-hydroxyacyl-CoA dehydrogenase enzyme activity were all significantly enhanced by training. IL-6 mRNA expression in resting skeletal muscle did not change in response to training. However, although absolute workload during acute exercise was 44% higher (P < 0.05) after the training period, skeletal muscle IL-6 mRNA content increased 76-fold (P < 0.05) in response to exercise before the training period, but only 8-fold (P < 0.05, relative to rest and pretraining) in response to exercise after training. Furthermore, the exercise-induced increase of plasma IL-6 (P < 0.05, pre- and posttraining) was not higher after training despite higher absolute work intensity. In conclusion, the magnitude of the exercise-induced IL-6 mRNA expression in contracting human skeletal muscle was markedly reduced by 10 wk of training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号