首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.  Most studies examining interactions between insectivorous bats and tympanate prey use the echolocation calls of aerially-feeding bats in their analyses. We examined the auditory responses of noctuid (Eurois astricta) and notodontid (Pheosia rimosa) moth to the echolocation call characteristics of a gleaning insectivorous bat, Myotis evotis.
2.  While gleaning, M. Evotis used short duration (mean ± SD = 0.66 ± 0.28 ms, Table 2), high frequency, FM calls (FM sweep = 80 – 37 kHz) of relatively low intensity (77.3 + 2.9, –4.2 dB SPL). Call peak frequency was 52.2 kHz with most of the energy above 50 kHz (Fig. 1).
3.  Echolocation was not required for prey detection or capture as calls were emitted during only 50% of hovers and 59% of attacks. When echolocation was used, bats ceased calling 324.7 (±200.4) ms before attacking (Fig. 2), probably using prey-generated sounds to locate fluttering moths. Mean call repetition rate during gleaning attacks was 21.7 (±15.5) calls/s and feeding buzzes were never recorded.
4.  Eurois astricta and P. rimosa are typical of most tympanate moths having ears with BFs between 20 and 40 kHz (Fig. 3); apparently tuned to the echolocation calls of aerially-feeding bats. The ears of both species respond poorly to the high frequency, short duration, faint stimuli representing the echolocation calls of gleaning M. evotis (Figs. 4–6).
5.  Our results demonstrate that tympanate moths, and potentially other nocturnal insects, are unable to detect the echolocation calls typical of gleaning bats and thus are particularly susceptible to predation.
  相似文献   

2.
1.  The European hawk moth Macroglossum stellatarum, while collecting nectar in hovering flight in front of flowers, follows moving stripe patterns in the lateral visual field. This response counteracts a second one, that is the animals' effort to stabilize their distance from dummy flowers. We investigated the response to motion stimuli in the lateral visual field using sinusoidally oscillating stripe patterns (Fig. 1), as well as its interaction with the distance stabilizing response.
2.  In both responses moths attempt to compensate for image speed. The balance between the two depends on the number of elementary motion detectors stimulated by the dummy flower and the stripe pattern, respectively. Increasing the diameter of the dummy flower (Figs. 2 to 4) or the spatial frequency of the stripe pattern (Fig. 7) shifts the balance in favour of distance stabilization. The reverse is true when the length of the stripes in the pattern (Fig. 5) or their number is increased (Fig. 6). It does not matter whether the stripe pattern is presented in the lateral (Fig. 4A) or in the dorsal and ventral visual field (Fig. 4B).
3.  The gain-frequency relations of the response to the lateral stripe pattern obtained with dummies in two different positions within the drum have their maxima around 3 Hz and decline rapidly towards lower and higher frequencies like the response of a bandpass filter. The distance stabilizing response also has bandpass properties, but with a broad plateau between 0.15 and 5 Hz (Fig. 8). The most likely explanation for this difference is that there is a regional or direction-dependent variation of motion detector properties.
4.  The responses to ramp-like stimuli are phasic in accordance with the amplitude frequency characteristics, but the responses to progressive (front to back) and regressive motion of the pattern differ (Figs 9, 10).
5.  The response appears to depend on the azimuthal position of the stripe pattern within the visual field (Fig. 11). It is strongest when the pattern covers equally large parts of the frontal and caudal visual fields. The optomotor sensitivity to translational pattern motion is higher in the frontal than in the caudal visual field (Fig. 12, Table 1).
6.  When the stripe pattern on one side is removed, the response amplitude is halved. There is no detectable turning response around the vertical axis to the oscillation of the stripe pattern (Fig. 13, Table 2).
7.  The possible role of the response to pattern movements parallel to the longitudinal body axis under natural conditions is discussed.
  相似文献   

3.
1.  The actions of GABA on three classes of visual interneurons in crayfish, Procambarus clarkii, medulla externa are examined. The effect of GABA on the visual response is compared to GABA's action on agonist-elicited responses purported to mediate the visual response.
2.  GABA produces a shunting type of inhibition in medullary amacrine cells which is associated with a small depolarization (Figs. 2, 3), a large increase in input conductance (Gn) and a reversal potential close to rest (Fig. 4). GABA is a potent antagonist to the depolarizing action of acetylcholine (ACh) (Fig. 5).
3.  GABA depolarizes dimming fibers (Fig. 2), and the response is mediated by an increase in Gn (Fig. 6). GABA antagonizes the light-elicited IPSP and the hyperpolarizing action of ACh (Fig. 7).
4.  Sustaining fibers (SF) do not appear to have GABA receptors but GABA inhibits the excitatory visual input pathway to the SFs (Fig. 8). Conversely, the GABA antagonist, bicuculline, potentiates the SF light response (Fig. 9).
5.  GABA has at least three different modes of antagonist action in the medulla: i) Increased conductance and depolarization in dimming fibers and medullary amacrine neurons; ii) Decreased chloride conductance in tangential cells; and iii) An inhibitory action on the visual pathway which drives SFs.
  相似文献   

4.
1.  Auditory stimuli consisting of tape-recorded natural sounds were used in a study of 129 neurons in Field L of the caudal neostriatum in the forebrain of curarized starlings (Sturnus vulgaris).
2.  An extensive program of stimuli comprising many different signals (109 sound elements) was devised in order to permit identification of even very highly specialized neurons.
3.  As a rule, the time courses of the neuronal responses parallel those of certain parameters or parameter combinations of the sound stimuli. The responses of a few very specialized neurons, however, did not reflect any distinguishable temporal substructure within the effective sounds.
4.  64 neuons were examined with respect to the number of stimuli, out of a sample of 80 sound elements, eliciting a response. 24 of these neurons responded to less than 10 of the 80 natural sounds. These include neurons responding only to a single sound or to sounds of a single type.
5.  30 of the 64 neurons responded most strongly, or exclusively, to sounds of a single type.
6.  The criterion determining whether a neuron responds to a given sound may be a single parameter, a combination of parameters, or the entire complex of parameters describing the sound.
  相似文献   

5.
In response female pheromone the male gypsy moth flies a zigzagging path upwind to locate the source of odor. He determines wind direction visually. To learn more about the mechanism underlying this behavior, we studied descending interneurons with dye-filled micro-electrodes. We studied the interneuronal responses to combinations of pheromone and visual stimuli.
1.  We recorded 5 neurons whose directionally selective visual responses to wide field pattern movement were amplified by pheromone (Figs. 2–6).
2.  The activity of the above neurons was more closely correlated with the position of the moving pattern than with its velocity (Fig. 4).
3.  One neuron showed no clearly directional visual response and no response to pheromone. Yet in the presence of pheromone it showed directionally selective visual responses (Fig. 6).
4.  We recorded 4 neurons whose directionally selective visual responses were not modulated by pheromone (Fig. 7), ruling out the possibility that the effect of the pheromone was simply to raise the activity of all visual neurons.
5.  Our results suggest that female pheromone amplifies some neural pathways mediating male optomotor responses, especially the directionally selective responses to the transverse movement of the image, both below and above the animal.
  相似文献   

6.
1.  Interactions of cockroaches with 4 different predator species were recorded by videography. Some predators, especially spiders, struck from relatively short distances and usually contacted a cockroach prior to initiation of escape (Table 1, Fig. 3). This touch frequently occurred on an antenna. Cockroaches turned away from the side on which an antenna was touched.
2.  We then measured the success of escape from predators for cockroaches with either cerci or antennae ablated. Only antennal removal caused a significant decrease in the success of escape from spiders (Fig. 5).
3.  With controlled stimuli, cockroaches responded reliably to abrupt touch of antennae, legs or body (Fig. 6). Responses resembled wind-elicited escape: they consisted of a short latency turn (away from the stimulus) followed by running (Figs. 7, 8). However, lesions show that touchevoked escape does not depend on the giant interneuron system (Table 2).
4.  Following section of one cervical connective, cockroaches continued to respond to touching either antenna, but often turned inappropriately toward, rather than away from, stimuli applied to the antenna contralateral to the severed connective (Table 3, Fig. 10).
5.  For certain types of predators touch may be a primary cue by which cockroaches detect predatory attack. Descending somatosensory pathways for escape are distinct from the GI system.
  相似文献   

7.
1.  The activity of tympanal high- and low-frequency receptors in the migratory locustLocusta migratoria was recorded with glass capillary microelectrodes, and Lucifer Yellow was then injected through the microelectrode to reveal the cells' metathoracic projections.
2.  A photodetector device was used to monitor the abdominal respiratory movements, which caused clearly visible deflections of the tympanal membrane.
3.  The auditory receptors respond not only to sound stimuli but also to the respiratory movements; these phasic (Figs. 1–3) or tonic (Fig. 4) responses are especially pronounced during the inspiration and expiration movements, and less so during the constriction phases.
4.  The magnitude of the response to sound depends on the phase of the stimulus with respect to the respiratory movements. At certain phases sound elicits no response at all (Fig. 5).
  相似文献   

8.
1.  We tested the long-standing hypothesis that female frogs are attracted to the sound of a chorus of conspecific males from a distance. We studied the barking treefrog (Hyla gratiosa) because the location of choruses is unpredictable; thus, chorus sound indicates the presence of conspecific males as well as the location of a suitable breeding site.
2.  We measured the sound pressure level (SPL in dB re 20 Pa) in the 500 Hz octave band at various distances from choruses. The primary spectral peak in the advertisement call of this species is 400–500 Hz.
3.  The pattern of chorus sound attenuation in the 500 Hz band at two different sites was very similar and generally followed the pattern expected from geometrical spreading from a point source (Fig. 3). At one of the sites the SPL measured near ground level was always higher than that at a point 1 m above the ground (Fig. 3).
4.  Spectral analyses of the chorus sound at different distances showed that the low-frequency spectral peak in the range of 400–500 Hz was a prominent component, especially at 80–160 m (Figs. 1, 4). Amplitude peaks that corresponded to individual calls ofH. gratiosa and other species were also evident in oscillograms of recordings made at 160 m (Fig. 1).
5.  Gravid females oriented and moved toward a source of conspecific chorus sounds (originally recorded at 160 m from the pond) played back at 38–40 dB SPL in the 500 Hz octave band (Fig. 1, Table 1). Background noise levels were 43–47 dB SPL (C-weighted) and 24–25 dB SPL in the 500 Hz octave band.
6.  In a two-stimulus, choice experiment, females ofH. gratiosa always chose the source of a mixed chorus (H. gratiosa andH. cinerea) sound with conspecific males to a source of a pure chorus sound ofH. cinerea (Fig. 2, Table 2).
  相似文献   

9.
1.  The terminal ganglion ofLocusta migratoria contains a number of non-giant, wind-sensitive, ascending and local interneurones. Six ascending (Figs. 1, 2) and 6 local (Figs. 6, 7) interneurones have been identified morphologically on the basis of intracellular stains with Lucifer Yellow.
2.  The physiological responses of the various cell types were recorded as the cerci were exposed to sound, wind, or electrical stimulation (Figs. 3, 8). Some cells summate the input from both cerci (Fig. 3), while others are excited by input from one side and inhibited by input from the other (Fig. 8). Conduction velocities for several non-giant ascending interneurones range from 1.5 m/s (cell 1) –2.1 m/s (cell 25).
3.  The morphologies and physiological responses of giant (GIN 1) and non-giant ascending interneurones (cells la, b) with somata in cluster 1 of neuromere 9 were compared using simultaneous intracellular recordings (Figs. 2A, 4). These neurones have very similar dendritic arborizations (Fig. 4A, B), and respond almost identically to cercal stimulation (Fig. 4Ci), but there do not appear to be any connections with GIN 1 (Fig. 4Cii, iii).
4.  The morphology (Fig. 5A, C), and response to cercal stimulation by wind (Fig. 5B) of a nongiant interneurone (cell 7) with its soma in cluster 1 of segment 8 (Fig. 5), are very similar to those of cluster 1 cells such as GIN 1 in segment 9.
5.  Of the 6 local interneurones (Figs. 6, 7) all except one (cell 9) have bilateral arborizations which may extend over several neuromeres within the ganglion (cells 10, 22). Several of the interneurones (cells 5, 9, 24) do not produce action potentials in response to cercal stimulation (Figs. 8, 10) or injection of depolarizing current (Fig. 11).
6.  Simultaneous recordings from pairs of interneurones demonstrate that giants and locals (GIN 2/cell 5; GIN 1/cell 9), as well as different local interneurones (cell 24/cell 5), receive input from the same wind-sensitive filiform afferent (Fig. 9).
7.  Local interneurones 5 and 22 are in different neuromeres of the terminal ganglion but have a similar gross morphology (Figs. 6, 7, 10). Cell 5, however, has arborizations projecting into both posterior cercal glomeruli (Fig. 7 A, inset), whereas only the ipsilateral branches of cell 22 extend posteriorly to the cercal glomerulus (Fig. 10C). Physiologically, cell 5 is depolarized by wind directed at both cerci (Fig. 10 A), cell 22 mainly by wind directed at the ipsilateral cercus (Fig. 10C). Cell 5 does not produce action potentials in response to wind whereas cell 22 does.
8.  Cell 5 occurs as a bilateral pair in the terminal ganglion (Figs. 7B, inset; 11). Simultaneous recordings of the bilateral homologues show that they share the input of at least one wind-sensitive filiform afferent (Fig. 11D), and that there are no connections between them (Fig. 11E). Simultaneous penetrations of local interneurone 5 and giant interneurones demonstrate a short-latency excitatory connection from GIN 3 to cell 5 (Fig. 12 A), and a long-latency excitatory connection from GIN 2 to cell 5.
9.  The roles of giant and non-giant interneurones in transmitting information to thoracic motor centres are discussed.
  相似文献   

10.
Intracellular recordings were carried out on locust flight motoneurons after hemisection of individual thoracic ganglia. With the exception of minimal surgical manipulations, the animals were intact and able to perform tethered flight. Analysis of the synaptic drive recorded in the motoneurons during flight motor activity revealed the extent to which ganglion hemisection influenced the premotor rhythm generating network.
1.  Hemisection of the mesothoracic ganglion (Fig. 2) as well as hemisection of both the mesothoracic and the prothoracic ganglia (Fig. 3) had no significant effects on the pattern of synaptic input to the flight motoneurons. Thus the rhythm generating premotor network does not depend on commissural information transfer in the mesothoracic and the prothoracic ganglia. This conclusion was supported by experiments in which more extensive surgical isolations of thoracic ganglia were carried out (Fig. 5).
2.  Removal of input from wing receptors (deafferentation) in addition to hemisection of the mesothoracic ganglion (Fig. 4) resulted in rhythmic and coordinated oscillations of the motoneuron membrane potential which were indistinguishable from those observed in deafferented animals with all ganglia intact.
3.  Hemisection of the metathoracic ganglion had more pronounced effects on the patterns of synaptic drive to the flight motoneurons and their spike discharge. Rhythmic activity which was often subthreshold could, however, still be recorded following a metathoracic split (Fig. 6).
4.  No rhythmic synaptic input was observed after hemisection of both mesothoracic and metathoracic ganglia (Fig. 7).
  相似文献   

11.
In the grasshopperChorthippus biguttulus the stridulatory movements of males with surgically manipulated ventral nerve cords were investigated.
1.  The stridulation pattern of animals with a hemisected mesothoracic ganglion was indistinguishable from that of intact animals.
2.  After hemisection of the metathoracic ganglion several animals were still able to stridulate in the species-specific pattern (Figs. 3, 5). Different structural elements of the song, however, were affected to different degrees by this operation. Although the stereotyped up-and-down movements were normal, the rhythm of pauses, which in intact animals are inserted after every third to fourth up- and-down cycle, was disturbed. As a result, the variation of syllable lengths was much higher (Fig. 4).
3.  A prominent feature after hemisection of the metathoracic ganglion was an almost complete loss of coordination between left and right hind legs (Figs. 5–7). Only in the coarse structure of the song (e.g. the beginning and termination of song sequences) was a correlation of the leg movements still discernible. This was especially obvious in songs of the rivalry type and in precopulatory kicking movements (Fig. 8).
4.  If in addition to hemisection of the metathoracic ganglion one of the neck connectives was transected the animals stridulated only with the hind leg ipsilateral to the intact connective (Fig. 11).
5.  Even after hemisection of both the meso- and metathoracic ganglia, animals were able to produce the species-specific stridulation pattern (Fig. 9).
6.  In animals with hemisected metathoracic ganglia and both connectives between pro- and mesothoracic ganglia transected, components of the species-specific pattern could be induced by current injection into the mesothoracic ganglion (Fig. 10).
7.  These results suggest that the stridulation rhythm-producing neuronal network is composed of hemisegmental subunits. A hemiganglionic structure of rhythm generators might reflect the ancestral organization of locomotion-controlling networks.
  相似文献   

12.
1.  Bees were trained to enter the central hole in a disc containing 89 holes and collect sugar-water from a box placed behind it (Fig. 1). Visual marks were offered on the inner surface of a cylinder placed in front of the disc (Fig. 2), thus projecting onto peripheral (nonfrontal) regions of the bees' eye. The trained bees were tested by recording their choices among the holes.
2.  Bees use the memorized position of peripheral marks to localize the frontally positioned goal (Figs. 6–9). The effectiveness of a mark depends on its retinal position, the most effective marks being lateral ones (Figs. 8, 9).
3.  Altering the dimensions of the mark does not influence the distribution of the bees' choice (Figs. 11–13). Thus, image motion rather than image size is used for distance estimation in the present task.
4.  Cinematographic recordings (Fig. 14) revealed that the searching bees' whereabouts are correlated with the choice distribution (Fig. 6a). The hypothesis that the bees stabilize the mark in the trained retinal position by correcting for retinal image slip is proposed.
5.  Experiments using coloured patterns revealed that the bees' performance is mediated by the green-sensitive channel (Figs. 17–22), as predicted by the above hypothesis.
Dedicated to Prof. Dr. Rüdiger Wehner on the occasion of his 50th birthday, in great appreciation for both his scientific work and his personality.  相似文献   

13.
1.  The activities of glycolytic enzymes and of related enzymes of anaerobic carbohydrate metabolism were determined inTubifex. The complete line of glycolytic enzymes was detected (Table 1). Only very little lactate dehydrogenase activity could be detected, while high activities of enzymes essential for the production of alanine and succinate are present.
2.  Under anaerobic conditions, lactate, alanine, succinate and volatile fatty acids are formed from14C-labeled glucose (Tables 2 and 3).
3.  Glycogen degradation was measured under anaerobic conditions (Fig. 1).
4.  During anaerobiosis a significant increase of alanine, succinate, propionate and acetate was found. However, the concentration of lactate increased only slightly. After an initial increase within the first 24 h of anaerobiosis, the concentration of alanine remained constant. Succinate, on the other hand, accumulated continuously during 48 h of anaerobiosis, reaching concentrations of 150 mol/g dry weight (Table 4, Fig. 2).
5.  The major end products of fermentation were identified as propionate and acetate. Both are excreted in substantial amounts (Table 5).
6.  The amount of anaerobic end products equals the amount of glycogen metabolized (Table 6).
  相似文献   

14.
The wind-orientated walk of carrion beetles Necrophorus humator F. was analysed under closed-loop conditions with a walking compensator and under openloop conditions with a paired tread wheel (Fig. 1).
1.  On the walking compensator an animal runs stable courses with a preferred direction relative to an air current (velocity =; 100 cm/s, Fig. 2B-D). A change in the air-current direction causes a corresponding adjustment of the mean walking direction (Fig. 3). Such course adjustment works best for changes in the air-current direction by an absolute value of 90° (Table 2).
2.  Under closed-loop conditions the animal shows deviations of less than ± 45° around its preferred direction relative to the wind (Fig. 2B-D). The characteristic curve which describes the animal's angular velocity as a function of the animal's walking direction relative to the air-current stimulus is therefore revealed only in this angular range (Fig. 3, top).
3.  Under open-loop conditions, however, complete characteristic curves can be obtained because the animal's walking reaction in response to any given angle of air-current stimulus is measurable on the paired tread wheel (Fig. 4). The characteristic curves are approximately sinusoidal functions. They can either show a shift parallel to the ordinale by a superimposed direction-independent constant angular velocity alone or, at the same time, they can independently exhibit an angular shift along the abscissa (Fig. 5).
4.  The walking tracks straighten with increasing air-current velocity (Fig. 6A, insets), i.e. the animal more rapidly compensates deviations from a preferred course. This corresponds to higher amplitudes of the characterisic curve and steeper slopes at the negative zero-crossing point under open- as well as under closed-loop conditions (Fig. 6).
5.  Walking in an air-current field can be explained by a model of the course control system using a feedback loop (Fig. 7). This model operates according to a sinusoidal characteristic function on which is superimposed a Gaussian white noise process of angular velocity which is independent of walking direction. The model produces realistic walking tracks in an air-current field (Fig. 8).
  相似文献   

15.
1.  L3 is a prothoracic auditory interneuron which has an ascending axon projecting to the brain. It is rather broadly tuned and most sensitive to carrier frequencies around 16 kHz (mean threshold=60 dB) and at 4–5 kHz (mean threshold=70 dB, Fig. 1).
2.  During open field stimulation L3's excitatory response increases rather linearly as sound intensity is increased and is 10–15 dB more sensitive to ipsilateral stimulation (Fig. 2). With closed field stimulation L3 is 45 dB more sensitive to ipsilateral sound at 16 kHz, and at least 20 dB more sensitive at 5 kHz (Fig. 3). With closed field sound, contralateral stimulation at subthreshold intensities (5 and 16 kHz) usually results in hyperpolarization (Fig. 3).
3.  L3's excitatory response to 16 kHz on the ipsilateral side is suppressed by low frequencies on the same side and by low and high frequency sounds from the contralateral side (Fig. 4).
4.  In open and closed field conditions, the number of spikes/syllable decrements in response to successive syllables of each chirp (Fig. 5). This response is dependent on the syllable period (SP) of the song, with the greatest decrement occurring in response to SPs of 50–70 ms; longer and shorter SPs cause less decrement (Figs. 6–7). At both 5 kHz and 16 kHz the ability of L3 to encode syllables (standard SD = 23 ms) within a chirp is dependent on the SP. At short SPs L3 fires throughout the chirp, while at longer SPs (50–200 ms) L3 responds with a distinct burst of firing for each pulse. At SPs of 200 ms or more, no decrement occurs (Fig. 8).
  相似文献   

16.
Locusts (Locusta migratoria) were flown in a flight simulator which converts yaw torque into angular motion of the visual environment (Fig. 1). The modalities and the time-course of steering behavior under these closed-loop conditions have been investigated.
1.  Locusts flying under visual closed-loop conditions stabilize their visual environment by performing correctional steering manoeuvres. Besides torque production, due to differential wing movements and ruddering, correctional steering also involves head movements (Fig. 6).
2.  During open-loop steering, ruddering and yaw torque begin some 60 ms after the onset of the visually simulated deviation from course. Head movements occur some 90 ms after stimulus onset, i.e. some 30 ms later than yaw torque (Figs. 3, 5) and therefore do not initiate thoracic steering outputs.
3.  Open- and closed-loop correctional steering do not differ in their behavioral components or temporal organization (Figs. 2, 6, Table 1).
4.  In the absence of major disturbances, correctional steering under closed-loop conditions is performed with minimal ruddering (only a few degrees in amplitude), that probably produces little or no aerodynamic drag (Fig. 6).
5.  Locusts prevented from moving their heads still stabilize their visual environment in the closed-loop situation. However, the precision of steering is affected by this constraint (Figs. 8, 9, 10, 12). Head immobilization also alters the temporal coordination of correctional steering (Figs. 7, 11).
6.  These results show that head movements, in addition to their generally accepted role in vision improvement, also contribute to the precision and temporal coordination of correctional flight manoeuvres. The mechanism is partly via proprioceptive feedback.
  相似文献   

17.
The wind-orientation of carrion beetles (Necrophorus humator F.) was studied by use of a locomotion-compensator.
1.  Beetles walking on a horizontal surface for periods of several minutes in a dark environment without an air current and other orientational stimuli seldom keep straight paths. They walk along individually different circular paths (Fig. 1). The mean walking speed is 5.6±1.0 cm/s. The mean of the angular velocity reaches maximally 25 °/s for individual beetles (mean angular velocity of the analysed population of 152 beetles: 1.9±9.3 °/s). The distribution of the mean walking directions of the population shows that the beetles display no preference for one direction (Fig. 3 A). The instantaneous value of the individual angular velocity is independent of the instantaneous walking direction.
2.  During exposure to an air current the individual beetles keep straight and stable courses with any orientation relative to the direction of air flow (Fig. 4). The mean walking directions of 76 individuals point in all directions but there is a weak preference of windward tracks (Fig. 3B).
3.  Wind orientated walking starts at a threshold wind velocity of about 5 cm/s (Fig. 6). The walking tracks straighten with increasing air current velocity. This leads to a narrowing of the distribution of the instantaneous walking directions around the preferred walking direction (Fig. 7C). This narrowing is due to an increase in the slope of the characteristic curve (angular velocity as a function of walking direction) of the wind-orientation system.
4.  Twenty percent of the beetles show a spontaneous change of their anemotactic course during walks of 5 min duration. Neither the time of the change, its position on the track or the direction of the new course are predictable. There is, however, a slight preference for 90±20° changes in the walking direction (Fig. 8).
5.  The antennae (Fig. 9) act as the only sense organs responsible for the wind orientation. The capability for wind orientated walks is lost after ablation of both flagella (Fig. 10).
  相似文献   

18.
Intracellular recordings have been made of responses to step, ramp and sinusoidal changes of light by second-order L-neurones and a third-order neurone, DNI, of locust (Locusta migratoria) ocelli.
1.  The membrane potential at the peak response by an L-neurone to a change in light is proportional to the light increment or decrement, independent of background, over a range of at least 4 log units. As background increases, response latency and time-course decrease, and responses become more phasic (Fig. 1).
2.  Adaptation to a changed mean light level involves a change in sensitivity and a slow change in resting membrane potential, which never adapts completely to dark resting potential in the presence of light (Fig. 3).
3.  L-neurones can follow changes in light which last several seconds, but responses to fast changes are enhanced in amplitude (Figs. 4, 5). An increase in background light causes an increase in the frequency of sinusoidally modulated light at which the largest response occurs (Fig. 4).
4.  The responses of DNI to increased light saturate at lower intensities than those of L-neurones. During adaptation to different background light intensities, there is no change in the input-output relation of the synapse between an L-neurone and DNI (Figs. 6, 7).
5.  For a rapid decrease in light, DNI produces a rebound spike, followed by a period of silence (Figs. 5, 8).
  相似文献   

19.
1.  The swimmerets ofJasus lalandii, in contrast to those well known in the nephropid lobsters (e.g.Homarus) and astacurans (crayfish), do not display spontaneous antero-posterior beating, but are either apposed actively to the ventral surface of the abdomen, or rotated outward (Fig. 2). These movements are imposed by the geometrical arrangement of the bicondylar joints at the base of the swimmeret (Fig. 3), and involve contraction of either the remotor muscle, or the promotor-rotator muscles (Figs. 2, 3). Each swimmeret includes a short, thick blade-like exopodite that contains two antagonistic muscles, a large curler and a small adductor muscle (Fig. 3). Each swimmeret is innervated by 80 motor neurons (MNs) which are disposed in two clusters in the ganglion.
2.  The modulation of the tonic discharge of the muscles which maintain the swimmeret position at rest (remotor and curler) has been studied in two situations: body rolling (Fig. 4) and walking activity (Fig. 5). In the female, in which the most anterior pair of swimmerets are biramous, both endopodite and exopodite curler muscles display the same responses to body rolling (Fig. 4). In all these situations no overt swimmeret movement occurs.
3.  Nevertheless, rhythmicity exists inJasus, but it is limited to the gravid female when the swimmerets bear the eggs (Fig. 6). In contrast to other decapod Crustacea, this swimmeret beating is not metachronous (Fig. 6).
4.  Movement monitoring (Fig. 7) and EMG recordings (Figs. 9, 10) have demonstrated the involvement of the swimmerets in the three phases of the tail flick response (preparation, flexion, extension). During the preparatory phase, in response to mechanical stimulation of the legs, the swimmerets open on the stimulated side (on both sides in the case of a symmetrical stimulation) (Fig. 7). During the rapid abdominal flexion of the tail flick all swimmerets open fully regardless of the stimulus (Figs. 7, 8). Two different units in the rotator muscle EMG are responsible for swimmeret opening during the preparatory and the flexion phases of the tail flick (Figs. 9, 10).
5.  The curler muscle of the endopodite in the female displays antagonistic activities to that of the exopodite during tail flicks (Fig. 10).
6.  Selective swimmeret blockage demonstrates that they contribute to the thrust efficacy in tail flicks. In particular they are responsible for the variation of the maximal force produced at its onset. This effect could be interpreted as a consequence of force redistribution by the swimmerets acting on water flow (produced by the tail fan). This mechanism implies a functional role for the swimmerets in righting and steering responses (Fig. 11).
  相似文献   

20.
1.  While collecting nectar in hovering flight the European hawk moth Macroglossum stellatarum efficiently regulates its distance relative to flowers that are shaken by wind. This can be demonstrated in laboratory experiments by moving dummy flowers (blue cardboard disks) towards and away from the feeding animal (Fig. 1).
2.  Distance regulation is predominantly mediated by visual cues. Mechanoreceptors on the proboscis appear to contribute little to the response.
3.  Movements of dummy flowers can be simulated by expanding and contracting a pattern projected onto a screen. With this technique we investigated the dynamical properties of the servo mechanism underlying distance regulation. The system behaves as a bandpass filter with corner frequencies of 0.15 and 5 Hz (Figs.2,3).
4.  When a high-speed ramp-like movement of the flower is simulated, there is an asymmetry in the response. During simulated approach the reaction is phasic-tonic with a pronounced overshoot at the beginning, during simulated retraction it remains tonic (Fig.5B,C).
5.  During distance regulation the animals compensate for the speed of the edge of the projected pattern. Distance regulation improves substantially when the number of stimulated elementary movement detectors is increased through increasing the number of contour lines by projecting concentric rings instead of a homogeneous disk (Figs.7, 8).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号