共查询到20条相似文献,搜索用时 5 毫秒
1.
D Jahn 《FEBS letters》1992,314(1):77-80
The formation of a stable complex between glutamyl-tRNA synthetase and the first enzyme of chlorophyll biosynthesis glutamyl-tRNA reductase was investigated in the green alga Chlamydomonas reinhardtii. Apparently homogenous enzymes, purified after previously established purification protocols were incubated in various combinations with ATP, glutamate, tRNA(Glu) and NADPH and formed complexes were isolated via glycerol gradient centrifugation. Stable complexes were detected only after the preincubation of glutamyl-tRNA synthetase, glutamyl-tRNA reductase with either glutamyl-tRNA or free tRNA(Glu), ATP and glutamate, indicating the obligatory requirement of aminoacylated tRNA(Glu) for complex formation. The further addition of NADPH resulting in the reduction of the tRNA-bound glutamate to glutamate 1-semialdehyde led to the dissociation of the complex. Once complexed to the two enzymes tRNA(Glu) was found to be partially protected from ribonuclease digestion. Escherichia coli, Bacillus subtilis and Synechocystis 6803 tRNA(Glu) were efficiently incorporated into the protein-RNA complex. The detected complexes provide the chloroplast with a potential channeling mechanism for Glu-tRNA(Glu) into chlorophyll synthesis in order to compete with the chloroplastic protein synthesis machinery. 相似文献
2.
Purification and characterization of a gamma-like DNA polymerase from Chlamydomonas reinhardtii 总被引:2,自引:0,他引:2
A crude in vitro system which initiates chloroplast DNA synthesis near the D-loop site mapped by electron microscopy [Wu, M., Lou, J. K., Chang, D. Y., Chang, C. H., & Nie, Z. Q. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 6761-6765] consists of soluble proteins and proteins extracted from purified thylakoid membrane. In this paper, a DNA polymerase activity was purified to near homogeneity from the soluble protein fraction of this in vitro system by sequential chromatographic separations on heparin-agarose, DEAE-cellulose, and single-stranded DNA-agarose columns and sedimentation in a glycerol gradient. In the glycerol gradient, the enzyme activity sedimented at a position corresponding to a 110-kDa protein. Electrophoretic analysis of the highly purified fraction on SDS-polyacrylamide gel revealed a major polypeptide band with an apparent molecular mass of approximately 116 kDa. In situ DNA polymerase activity assay shows that the DNA polymerization function is associated with the 116-kDa band and an 80-kDa band which could be a subunit of the enzyme. Polymerization activity is inhibited by N-ethylmaleimide, ethidium bromide, and dideoxycytosine triphosphate and is relatively resistant to aphidicolin. Poly(dA).(dT)10 and gapped double-stranded DNA are preferred templates. The purified enzyme contains no exonuclease activity and can initiate DNA replication in a supercoiled plasmid DNA template containing the chloroplast DNA replication origin. 相似文献
3.
Chloroplastic NADP-isocitrate dehydrogenase isoenzyme (NADP-IDH2 ; EC 1.1.1.42) from the eukaryotic microalga Chlamydomonas reinhardtii was purified to electrophoretic homogeneity by a procedure which included affinity chromatography on Red-Sepharose as the key step. The 70-kDa isoenzyme was found to be a dimer formed by 40-kDa subunits. Antibodies raised against a recombinant tobacco cytosolic NADP-IDH cross-reacted strongly with the cytosolic NADP-IDH1 and weakly with the NADP-IDH2 isoenzyme from this alga. NADPH and GTP were found to inhibit both isoenzymes, whereas intermediates of the tricarboxylic acid cycle, glycolysis or reductive pentose phosphate cycle had no significant effect. The simultaneous presence of isocitrate and Mn2+ protected NADP-IDH2 against thermal inactivation or inhibition by reagents specific for arginine or lysine. 相似文献
4.
5.
The formation of delta-aminolevulinic acid, the first committed precursor in porphyrin biosynthesis, occurs in certain bacteria and in the chloroplasts of plants and algae in a three-step, tRNA-dependent transformation of glutamate. Glutamyl-tRNA reductase, the second enzyme of this pathway, reduces the activated carboxyl group of glutamyl-tRNA (Glu-tRNA) in the presence of NADPH and releases glutamate 1-semialdehyde (GSA). We have purified Glu-tRNA reductase from Chlamydomonas reinhardtii by employing six different chromatographic separations. The apparent molecular mass of the protein when analyzed under both denaturing (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and nondenaturing conditions (rate zonal sedimentation on glycerol gradients) was 130,000 Da; this indicates that the active enzyme is a monomer. In the presence of NADPH Glu-tRNA reductase catalyzed the reduction to GSA of glutamate acylated to the homologous tRNA. Thus, the reductase alone is sufficient for conversion of Glu-tRNA to GSA. In the absence of NADPH, a stable complex of Glu-tRNA reductase with Glu-tRNA can be isolated. 相似文献
6.
Over half of the chloroplast ribosomes isolated from growing cultures of Chlamydomonas reinhardtii are bound to chloroplast thylakoid membranes if completion of nascent polypeptide chains is prevented by chloramphenicol. The free chloroplast ribosomes are recovered in homogenate supernatants, and presumably originate from the chloroplast stroma. Only about 10% of these free chloroplast ribosomes are polyribosomes, even under conditions when 70% of free cytoplasm ribosomes are recovered as polyribosomes. The nonionic detergent Nonidet P-40 liberates atypical polyribosomes (Type I), from membranes, which require both ribonuclease and proteases for complete conversion to monomeric ribosomes. Thus Type I particles are held together by mRNA but are also held together by peptide bonds. These Type I polyribosomes probably are not bound to intact membrane, but might be bound to some protein-containing sub-membrane particle. The Type I polyribosomes are dissociated to ribosomal subunits by puromycin and high salt, and contained 0.2 to 1 nascent chain per ribosome. If membranes are treated with Nonidet and proteases at the same time, polyribosomes which are digested to monomeric ribosomes by ribonuclease alone (Type II) are obtained. Type II polyribosomes are smaller than Type I, and probably represent the true size distribution of polyribosomes on the membranes. At least 50% of the membrane-bound ribosomes are polyribosomes, since that much membrane bound chloroplast RNA is recovered as Type I or Type II polyribosomes. 相似文献
7.
Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast 总被引:3,自引:0,他引:3
Luciferase reporter genes have been successfully used in a variety of organisms to examine gene expression in living cells, but are yet to be successfully developed for use in chloroplast. Green fluorescent protein (gfp) has been used as a reporter of chloroplast gene expression, but because of high auto-fluorescence, very high levels of GFP accumulation are required for visualization in vivo. We have developed a luciferase reporter for chloroplast by synthesizing the two-subunit bacterial luciferase (lux)AB, as a single fusion protein in Chlamydomonas reinhardtii chloroplast codon bias. We expressed a chloroplast luciferase gene, luxCt, in C. reinhardtii chloroplasts under the control of the ATPase alpha subunit (atpA) or psbA promoter and 5' untranslated regions (UTRs) and the rubisco large subunit (rbcL) 3' UTR. We show that luxCt is a sensitive reporter of chloroplast gene expression, and that luciferase activity can be measured in vivo using a charge coupled device (CCD) camera or in vitro using a luminometer. We further demonstrate that luxCt protein accumulation, as measured by Western blot analysis, is proportional to luminescence, as determined both in vivo and in vitro, and that luxCt is capable of reporting changes in chloroplast gene expression during a dark to light shift. These data demonstrate the utility of the luxCt gene as a versatile and sensitive reporter of chloroplast gene expression in living cells. 相似文献
8.
Purification, characterization, and complete amino acid sequence of a thioredoxin from a green alga, Chlamydomonas reinhardtii 总被引:1,自引:0,他引:1
P Decottignies J M Schmitter J P Jacquot S Dutka A Picaud P Gadal 《Archives of biochemistry and biophysics》1990,280(1):112-121
Two thioredoxins (named Ch1 and Ch2 in reference to their elution pattern on an anion-exchange column) have been purified to homogeneity from the green alga, Chlamydomonas reinhardtii. In this paper, we described the properties and the sequence of the most abundant form, Ch2. Its activity in various enzymatic assays has been compared with those of Escherichia coli and spinach thioredoxins. C. reinhardtii thioredoxin Ch2 can serve as a substrate for E. coli thioredoxin reductase with a lower efficiency when compared to the homologous system. In the presence of dithiothreitol (DTT), the protein is able to catalyze the reduction of porcine insulin. Thioredoxin Ch2 is as efficient as its spinach counterpart in the DTT or light activation of corn NADP-malate dehydrogenase, but it only activates spinach fructose-1, 6-bisphosphatase at very high concentrations. The complete primary structure of the C. reinhardtii thioredoxin Ch2 was determined by automated Edman degradation of the intact protein and of peptides derived from trypsin, chymotrypsin, clostripain, and SV8 protease digestions. It consists of a polypeptide of 106 amino acids (MW 11,808) and contains the well-conserved active site sequence Trp-Cys-Gly-Pro-Cys. The sequence of the algal thioredoxin Ch2 has been compared to that of thioredoxins from other sources and has the greatest similarity (67%) with the thioredoxin from Anabaena 7119. 相似文献
9.
A method is described which results in a 2750-fold purification of hydrogenase from Chlamydomonas reinhardtii, yielding a preparation which is approximately 40% pure. With a saturating amount of ferredoxin as the electron mediator, the specific activity of pure enzyme was calculated to be 1800 micromoles H2 produced per milligram protein per minute. The molecular weight was determined to be 4.5 × 104 by gel filtration and 4.75 × 104 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has an abundance of acidic side groups, contains iron, and has an activation energy of 55.1 kilojoules per mole for H2 production; these properties are similar to those of bacterial hydrogenases. The enzyme is less thermally stable than most bacterial hydrogenases, however, losing 50% of its activity in 1 hour at 55°C. The Km of purified hydrogenase for ferredoxin is 10 micromolar, and the binding of these proteins to each other is enhanced under slightly acidic conditions. Purified hydrogenase also accepts electrons from a variety of artificial electron mediators, including sodium metatungstate, sodium silicotungstate, and several viologen dyes. A lag period is frequently observed before maximal activity is expressed with these artificial electron mediators, although the addition of sodium thiosulfate at least partially overcomes this lag. 相似文献
10.
Franklin S Ngo B Efuet E Mayfield SP 《The Plant journal : for cell and molecular biology》2002,30(6):733-744
Reporter genes have been successfully used in chloroplasts of higher plants, and high levels of recombinant protein expression have been reported. Reporter genes have also been used in the chloroplast of Chlamydomonas reinhardtii, but in most cases the amounts of protein produced appeared to be very low. We hypothesized that the inability to achieve high levels of recombinant protein expression in the C. reinhardtii chloroplast was due to the codon bias seen in the C. reinhardtii chloroplast genome. To test this hypothesis, we synthesized a gene encoding green fluorescent protein (GFP) de novo, optimizing its codon usage to reflect that of major C. reinhardtii chloroplast-encoded proteins. We monitored the accumulation of GFP in C. reinhardtii chloroplasts transformed with the codon-optimized GFP cassette (GFPct), under the control of the C. reinhardtii rbcL 5'- and 3'-UTRs. We compared this expression with the accumulation of GFP in C. reinhardtii transformed with a non-optimized GFP cassette (GFPncb), also under the control of the rbcL 5'- and 3'-UTRs. We demonstrate that C. reinhardtii chloroplasts transformed with the GFPct cassette accumulate approximately 80-fold more GFP than GFPncb-transformed strains. We further demonstrate that expression from the GFPct cassette, under control of the rbcL 5'- and 3'-UTRs, is sufficiently robust to report differences in protein synthesis based on subtle changes in environmental conditions, showing the utility of the GFPct gene as a reporter of C. reinhardtii chloroplast gene expression. 相似文献
11.
Purification and functional characterization of glutamate-1-semialdehyde aminotransferase from Chlamydomonas reinhardtii 总被引:4,自引:0,他引:4
The formation of delta-aminolevulinic acid, the first committed precursor of chlorophyll biosynthesis, occurs in the chloroplast of plants and algae by the C5-pathway, a three-step, tRNA-dependent transformation of glutamate. Previously, we reported the purification and characterization of the first two enzymes of this pathway, glutamyl-tRNA synthetase and Glu-tRNA reductase from the green alga Chlamydomonas reinhardtii (Chen, M.-W., Jahn, D., Sch?n, A., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4054-4057 and Chen, M.-W., Jahn, D., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4058-4063). Here we present the purification of the third enzyme of the pathway, the glutamate-1-semialdehyde aminotransferase from C. reinhardtii. The enzyme was purified from the membrane fraction of a whole cell extract employing four different chromatographic separations. The apparent molecular mass of the protein was approximately 43,000 Da as analyzed by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, by nondenaturing rate zonal sedimentation on glycerol gradients, and by gel filtration. By these criteria, the enzyme in its active form is a monomer of 43,000 Da. In the presence of pyridoxal 5'-phosphate, purified glutamate-1-semialdehyde aminotransferase converts synthetic glutamate 1-semialdehyde to delta-aminolevulinic acid. The enzyme is inhibited by gabaculine and aminooxyacetate, both typical inhibitors of aminotransferases. The purified glutamate-1-semialdehyde aminotransferase successfully reconstitutes the whole C5-pathway in vitro from glutamate in the presence of purified glutamyl-tRNA synthetase, glutamyl-tRNA reductase, Mg2+, ATP, NADPH, tRNA, and pyridoxal 5'-phosphate. 相似文献
12.
Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii 总被引:1,自引:0,他引:1 下载免费PDF全文
Carbonic anhydrases (CA) are zinc-containing metalloenzymes that catalyze the reversible hydration of CO2. The three evolutionarily unrelated families of CAs are designated alpha-, beta-, and gamma-CA. Aquatic photosynthetic organisms have evolved different forms of CO2 concentrating mechanisms (CCMs) to aid Rubisco in capturing CO2 from the surrounding environment. One aspect of all CCMs is the critical roles played by various specially localized extracellular and intracellular CAs. Five CAs have previously been identified in Chlamydomonas reinhardtii, a green alga with a well-studied CCM. Here we identify a sixth gene encoding a beta-type CA. This new beta-CA, designated Cah6, is distinct from the two mitochondrial beta-CAs in C. reinhardtii. Nucleotide sequence data show that the Cah6 cDNA contains an open reading frame encoding a polypeptide of 264 amino acids with a leader sequence likely targeting the protein to the chloroplast stroma. We have fused the Cah6 open reading frame to the coding sequence of maltose-binding protein in a pMal expression vector. The purified recombinant fusion protein is active and was used to partially characterize the Cah6 protein. The purified recombinant fusion protein was cleaved with protease Factor Xa to separate Cah6 from the maltose-binding protein and the purified Cah6 protein was used to raise an antibody. Western blots, immunolocalization studies, and northern blots collectively indicated that Cah6 is constitutively expressed in the stroma of chloroplasts. A possible role for Cah6 in the CCM of C. reinhardtii is proposed. 相似文献
13.
14.
Chlamydomonas reinhardtii Phosphoribulokinase : Sequence, Purification, and Kinetics 总被引:1,自引:2,他引:1 下载免费PDF全文
The sequence and kinetic properties of phosphoribulokinase purified from Chlamydomonas reinhardtii were determined and compared with the spinach (Spinacea oleracea) enzyme. Chlamydomonas phosphoribulokinase was purified to apparent homogeneity, with a specific activity of 410 micromoles per minute per milligram. Polyclonal antibodies to the purified protein were used to isolate a Chlamydomonas cDNA clone, which, upon sequencing, was found to contain the entire coding region. The transit peptide cleavage site was determined by Edman analysis of the mature protein. The precursor protein consists of a 31 amino acid transit peptide and a 344 amino acid mature polypeptide. The mature polypeptide has a calculated molecular weight of 38.5 kilodaltons and a pl of 5.75. The Vmax of the purified enzyme was 465 micromoles per minute per milligram, with apparent Km values of 62 micromolar ATP and 56 micromolar ribulose 5-phosphate. Immunoblot analysis indicated antigenic similarity and a similar subunit size for the enzyme from five higher plant species and Chlamydomonas. Southern blot analysis of Chlamydomonas genomic DNA indicated the presence of a single phosphoribulokinase gene. Comparison of the mature proteins from Chlamydomonas and spinach revealed 86 amino acid differences in primary structure (25% of the total) without a major difference in kinetic properties. The transit peptides of the spinach and Chlamydomonas proteins possessed little sequence homology. 相似文献
15.
Purification and Characterization of a Membrane-Bound Protease from Chlamydomonas reinhardtii 下载免费PDF全文
In Chlamydomonas reinhardtii y-1, newly synthesized chlorophyll a/b-binding apoproteins are degraded when chlorophylls are not present for assembly of stable light-harvesting complexes. A protease was purified from the membrane fraction of degreened y-1 cells, which digested chlorophyll a/b-binding proteins in membranes from C. reinhardtii pg-113, a protease-deficient strain. This protease was active with p-nitroanilides of nonpolar amino acids (Leu and Phe), but not of basic amino acids (Lys and Arg). The apparent molecular weight of the enzyme is 38,000 ± 2,000 as determined by electrophoresis in the presence of sodium dodecyl sulfate. Typical inhibitors of the major classes of proteases were ineffective with this enzyme. Protease activity was constant from pH 7.5 to 9; a plot of log V versus pH suggested that deprotonation of an ionizable group with a pK value of 6.0 to 6.5 is required for activity. The protease was inactivated by diethylpyrocarbonate and by photooxidation sensitized by rose bengal. These results suggested that a histidyl residue is required for catalysis. Although very sensitive to photodynamic conditions in vitro, the enzyme was not inactivated in vivo when cells were exposed to light. 相似文献
16.
Isolation,Purification, and Characterization of Mitochondria from Chlamydomonas reinhardtii 下载免费PDF全文
Mitochondria were isolated from autotrophically grown Chlamydomonas reinhardtii cell-wall-less mutant CW 92. The cells were broken by vortexing with glass beads, and the mitochondria were collected by differential centrifugation and purified on a Percoll gradient. The isolated mitochondria oxidized malate, pyruvate, succinate, NADH, and [alpha]-ketoglutarate. Respiratory control was obtained with malate (2.0) and pyruvate (2.2) but not with the other substrates. From experiments with KCN and salicylhydroxamic acid, it was estimated that the capacity of the cytochrome pathway was at least 100 nmol O2 mg-1 protein min-1 and the capacity of the alternative oxidase was at least 50 nmol O2 mg-1 protein min-1. A low sensitivity to oligomycin indicates some difference in the properties of the mitochondrial ATPase from Chlamydomonas as compared to higher plants. 相似文献
17.
18.
Scott M. Newman Nicholas W. Gillham Elizabeth H. Harris Anita M. Johnson John E. Boynton 《Molecular & general genetics : MGG》1991,230(1-2):65-74
Summary We have developed an efficient procedure for the disruption of Chlamydomonas chloroplast genes. Wild-type C. reinhardtii cells were bombarded with microprojectiles coated with a mixture of two plasmids, one encoding selectable, antibiotic-resistance mutations in the 16S ribosomal RNA gene and the other containing either the atpB or rbcL photosynthetic gene inactivated by an insertion of 0.48 kb of yeast DNA in the coding sequence. Antibiotic-resistant transformants were selected under conditions permissive for growth of nonphotosynthetic mutants. Approximately half of these transformants were initially heteroplasmic for copies of the disrupted atpB or rbcL genes integrated into the recipient chloroplast genome but still retained photosynthetic competence. A small fraction of the transformants (1.1% for atpB; 4.3% for rbcL) were nonphotosynthetic and homoplasmic for the disrupted gene at the time they were isolated. Single cell cloning of the initially heteroplasmic transformants also yielded nonphotosynthetic segregants that were homoplasmic for the disrupted gene. Polypeptide products of the disrupted atpB and rbcL genes could not be detected using immunoblotting techniques. We believe that any nonessential Chlamydomonas chloroplast gene, such as those involved in photosynthesis, should be amenable to gene disruption by cotransformation. The method should prove useful for the introduction of site-specific mutations into chloroplast genes and flanking regulatory sequences with a view to elucidating their function. 相似文献
19.
The identity of peaks generated by chloroplast ribosomes of Chlamydomonas reinhardtii were determined by zone velocity sedimentation on sucrose density gradients, and analysis of distribution of ribosomal RNAs in the gradients. The sedimentagion coefficient of the principal peak was 66-70 S (usually 69 S), in good agreement with previously reported values for chloroplast ribosomes of C. reinhardtii, and other organisms. The fast sedimenting side of the 69 S peak contained an excess of chloroplast large subunit. When ribosome dissociation was prevented by sedimentation at low velocity, by aldehyde fixation, or by the presence of nascent polypeptide chains, the principal peak had a sedimentation coefficient of about 75 S. Thus the 69 S peak was an artifact caused by dissociation during centrifugation. Peaks that contained chloroplast ribosomal RNAs were also observed at '60 S' and '45 S' when chloroplast ribosomes were centrifuged unfixed at high velocity. The amounts of '60 S' and '45 S' components were decreased by centrifugation at low speed, or fixation, but sedimentation coefficients remained unchanged. The '60 S', and '45 S' components were identified as large, and small subunits of chloroplast ribosomes, respectively. The artifacts produced by centrifugation of chloroplast ribosomes, are similar to the artifacts produced by centrifuging ribosomes of Escherichia coli. Similar explanations appear to apply to both. We concluded that the 69 S chloroplast ribosome peak occurs because of dissociation of 'tight' couples, and incomplete separation of subunits. Subunit peaks (60 S and 45 S) arise from free subunits, and/or from dissociation of 'loose' couples. 相似文献