首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classification of plant somatic embryos by computer vision   总被引:1,自引:0,他引:1  
This article deals with the automation of the process of somatic embryogenesis for the propagation of plants. An important problem is the monitoring of the embryo production process in order to decide the time to start harvesting embryos for further processing. The classification algorithm development for somatic embryos of birch (Betula pendula Roth) showed that automated recognition of embryos at different developmental stages is possible. No globular stage embryos were classified to be heart or torpedo stage and no heart or torpedo stage embryos were classified to be at globular stage. Heart and torpedo stage embryos were classified into three developmental classes by a new index that describes the relation of embryo breadth to the length of the root. The probability of classifying a nonembryo as an embryo was less than 1%, and 14% of the object classified as embryos by a human expert were discarded by the algorithm. A computer vision system suitable for automated monitoring of samples from the bioreactor was constructed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
Non-transformed and transformed embryogenic cultures of alfalfa (Medicago sativa L. cv. Zaječarska 83), long-term maintained on growth regulator-free medium, were histologically analyzed. In all examined cultures, somatic embryos at various stages of development were observed and secondary embryos were formed in the cotyledonary, hypocotylary and radicular region of the primary embryos. Detailed histological analysis of the torpedo shape somatic embryo revealed that secondary somatic embryos arose directly from single epidermal cells of hypocotylary axis after an unequal periclinal division. Bipolar proembryos were composed of one smaller cytoplasm rich cell and one larger more vacuolated cell. Further cell division pattern was similar for both non-transformed and transformed embryos. However, multicellular origin of secondary embryos in a direct process and even from callus can not be excluded.  相似文献   

3.
Summary A flow cytometric analysis and an in situ DNA microspectrophotometric study were made concomitantly to establish why somatic grapevine (Vitis viniferacv. Grenache noir) embryos showed a low level of conversion into plantlets. In somatic embryos at the torpedo stage and in zygotic embryos at the same stage of development, ploidy level, DNA content per 2 C nucleus, and the cell-cycle state of the shoot apical meristem were examined. The frequency distribution histograms of nuclear DNA values were similar in the two types of embryos. At the torpedo stage both types of embryos had a majority of nuclei with 2 C DNA content equal to 1.6pg. In the shoot apices of somatic and zygotic embryos, DNA microspectrophotometry showed preferential blockage of the cell cycle at the G0–1 stage; however, 20% of somatic embryo shoot apices were blocked at the G0–2 stage. Analogies between somatic embryos and their zygotic homologues were shown. The genetical and environmental causes of the low level of conversion of grapevine somatic embryos into plantlets are discussed. Our work suggests that the in vitro culture conditions which were used could be incompatible with normal morphogenesis from the torpedo stage.  相似文献   

4.
Differential protein profiles of three stages of somatic embryogenesis, including globular, torpedo, and cotyledonary somatic embryos, of Coffea arabica cv. Catuaí Vermelho were analyzed in an attempt to better understand somatic embryogenesis in coffee plants. Somatic embryos at these different stages of development were collected from in vitro-grown cultures, and then macerated in liquid nitrogen. Proteins were extracted with phenol and further quantified using the Bradford method. The bidimensional electrophoresis analysis revealed a wide range of proteins ranging between 10 and 160?kDa and of pH values ranging from 3 to 10. Several differentially expressed proteins were identified by mass spectrometry, and some were found to be specific to these different stages of somatic embryogenesis in coffee. The enolase and 11S storage globulin proteins, for example, could be used as molecular markers for somatic embryo development stages and for embryogenic and non-embryogenic genotype differentiation, respectively.  相似文献   

5.
Accumulation of proline, activities of peroxidase (POX), catalase (CAT), phenylalanine ammonia lyase (PAL) and malate dehydrogenase (MDH) were studied during different developmental stages of somatic embryos in chickpea. Callus cultures that did not form somatic embryos served as control. While increased levels of proline and POX activity were noticed in globular stages of embryos, CAT activity increased during early and late heart-shaped embryo formation indicating tissue-specific activation of these enzymes. The activity of PAL reached a peak during torpedo and cotyledonary stages of embryo development. On the other hand, MDH activity enhanced during the germination of somatic embryos inferring more requirement of energy during this stage. Electrophoretic (sodium dodecyl sulfate polyacrylamide gel electrophoresis) pattern of proteins revealed that ten bands are associated with non-embryogenic tissues, whereas 11 bands with globular, heart, torpedo and cotyledonary stages of embryo development and nine bands during the germination stage of embryos. Two extra stage-specific protein bands with molecular masses of 16 and 18 kDa appeared during globular, heart, torpedo, and cotyledonary stages. But, these bands disappeared during germination of embryos and are absent in non-embryogenic cultures. This study thus may help in the identification of proteins and the role of above enzymes during different developmental stages of somatic embryo induction and their maturation in a recalcitrant leguminous crop plant chickpea.  相似文献   

6.
Summary Plants were suecessfully régenerated via somatic embryos from 3-yr-old cell suspension cultures of Medicago truncatula Gaertin. cv. Jemalong line M9-10a. The cultures were originally initiated from callus induced in well-expanded leaflets of 30 d in vitro-grown plants, Suspension cultures were established in stirred-liquid Murashige and Skoog (MS) basal salts and vitamins supplemented with 2.3 μM 2.4-dichlorophenoxyacetic acid (2,4-D) and 2.3 μM kinetin (Kin) and subeultured weekly. Somatic embryogenesis induction step was conducted in liquid MS medium containing 0.45 μM 2,4-D and 0.91 μM zeatin (Zea), during 1,2, and 3wk after subculture. Induced and non-induced cultures were transferred to solid embryo proliferation medium [EPM-MS basal salts and vitamins solidified with 0.2% (w/v) gelrite]. Somatic embryos developed until the late torpedo/dicotyledonary stages. We found that the best condition for the development of somatic embryos was achieved when suspension cultures were not subjected to the induction step. Induction of 1 and 2 wk led to a decrease in the recovery of somatic embryos and the 3-wk treatment resulted in no differentiation of somatic embryos. Plant regeneration was obtained in all conditions (except for 3wk induction) when embryos were transferred to an embryo conversion medium [ECM, similar to EPM but solidified with 0.7% (w/v) agar]. Embryo conversion rates were 54.5±1.6, 52.5±18.5, and 41.6±8.4% for 0, 1, and 2 wk induction treatments, respectively. These plants were successfully transferred to the greenhouse where they matured and produced seeds.  相似文献   

7.
Summary Arrested embryos from lethal (emb) mutants of Arabidopsis thaliana were rescued on a nutrient medium designed to promote plant regeneration from immature wild-type cotyledons. The best response was observed with mutant embryos arrested at the heart to cotyledon stages of development. Embryos arrested at a globular stage produced callus but failed to turn green or form normal shoots in culture. Many of the mutant plants produced in culture were unusually pale with abnormal leaves, rosettes, and patterns of reproductive development. Other plants were phenotypically normal except for the presence of siliques containing 100% aborted seeds following self-pollination. These results demonstrate that genes with essential functions during plant embryo development differ in their pattern of expression at later stages of the life cycle. Most of the 15 genes examined in this study were essential for embryogenesis but were required again for subsequent stages of development. Only EMB24 appeared to be limited in function to embryo development. These differences in the response of mutant embryos in culture may facilitate the classification of embryonic lethals and the identification of genes with developmental rather than housekeeping functions.  相似文献   

8.
Cell-free translational and northern blot analyses were used to examine the distribution of storage protein messages in the cytoplasmic polysomal and mRNA-protein complex (mRNP) fractions during development of somatic and zygotic embryos of alfalfa (Medicago sativa cv Rangelander RL-34). No special array of messages was identified in the mRNP fraction; however, some messages were selectively enriched in either the polysome or mRNP fractions, and their distribution pattern varied quantitatively during development of the embryos. During the earliest stages of somatic embryo development, storage protein messages already were present, but there was no detectable accumulation of the proteins. Selective enrichment of messages for the 11S, 7S, and 2S storage proteins occurred in the mRNP fraction during the globular, heart, and torpedo stages of somatic embryogenesis, but the distribution pattern was shifted toward the polysomal fraction at the beginning of cotyledon development. Thus, there was translational repression of storage protein synthesis at the early stage of somatic embryo development that was relieved later. During the cotyledonary development stages in the somatic and zygotic embryos, storage protein synthesis and distribution of the messages were similar in that these specific messages were predominantly in the polysomal fraction.  相似文献   

9.
Cyclamen persicum Mill. is a widely grown ornamental species that is clonally propagated by somatic embryogenesis. To better understand the biology of somatic embryo development in C. persicum, detailed proteomic (two-dimensional gel electrophoresis) and mass spectrometric analyses of somatic embryos at globular, torpedo, and germinating stages of development, along with nonembryogenic callus and zygotic embryos, were conducted. Of ~460 proteins resolved in two-dimensional gels, 35 proteins were differentially expressed and could be reproducibly displayed across an isoelectric focusing range of 5 to 8. Among those proteins, five were constitutively expressed, 13 were upregulated, nine were downregulated, and eight were deemed as novel proteins during the torpedo stage. A total of 35 protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and only four proteins were identified and these were available in public protein databases. The remaining protein spots were subsequently analyzed by MALDI-TOF-TOF-MS, and six proteins were then identified. These findings suggested that specific proteins are involved in the regulation of somatic embryogenesis.  相似文献   

10.
Stage-specific nitrogen metabolism in developing carrot somatic embryos   总被引:3,自引:0,他引:3  
The physiology of individual somatic embryo developmental stages otDaucus carota L. was examined by in vivo nuclear magnetic resonance (NMR) spectroscopy, amino acid analysis and 14C-labeling. 15N NMR spectroscopy was used to examine the uptake and incorporation of 15N isotopically labeled inorganic nitrogen sources. NMR spectra of proembryogenic masses (PEMs) contained resonances for histidine, amino sugars, glutamine, arginine, urea, alanine. α-amino nitrogen, serine, aliphatic amines and several unknowns. Similar resonances were found in various embryo developmental stages. However, resonances for arginine and aliphatic amines peaked during globular and torpedo stages and substantially decreased in germinating stage embryos. The dominant resonances observed in non-embryogenic cells and germinating embryos were glutamine and α-amino nitrogen. Amino acid analysis of the various embryo stages showed that glutamate, glutamine and arginine were the major contributors to the soluble amino acid profiles. During development, glutamate and glutamine continued to increase in concentration whereas arginine and its related metabolites (i.e. ornithine and y-aminobutyric acid [GABA]) were biphasic; increasing in globular and torpedo stage embryos and decreasing in germinating embryos. Carbon-14 labeling indicated that labeled glutamine pools in non-embryogenic and germinating embryos were greatest compared to other embryo stages, whereas labeled GABA pools were greatest in globular and torpedo stage embryos. Taken together, these data indicate that the physiology of each embryo developmental stage is distinct. They also suggest that during somatic embryo development, a switch takes place in metabolism whereby the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway is predominant in non-embryogenic cells and germinating stage embryos. Furthermore, during early to mid-embryo development (PEMs, globular and torpedo stage embryos), metabolism utilizing the omithine cycle is enhanced and predominant.  相似文献   

11.
Somatic embryogenesis is an important biotechnological technique for large-scale propagation of elite genotypes. Identifying stage-specific compounds associated with somatic embryo development can help elucidate the ontogenesis of Carica papaya L. somatic embryos and improve tissue culture protocols. To identify the stage-specific proteins that are present during the differentiation of C. papaya somatic embryos, proteomic analyses of embryos at the globular, heart, torpedo and cotyledonary developmental stages were performed. Mass spectrometry data have been deposited in the ProteomeXchange with the dataset identifier PXD021107. Comparative proteomic analyses revealed a total of 801 proteins, with 392 classified as differentially accumulated proteins in at least one of the developmental stages. The globular-staged presented a higher number of unique proteins (16), and 7 were isoforms of 60S ribosomal proteins, suggesting high translational activity at the beginning of somatic embryogenesis. Proteins related to mitochondrial metabolism accumulated to a high degree at the early developmental stages and then decreased with increasing development, and they contributed to cell homeostasis in early somatic embryos. A progressive increase in the accumulation of vicilin, late embryogenesis abundant proteins and chloroplastic proteins that lead to somatic embryo maturation was also observed. The differential accumulation of acetylornithine deacetylase and S-adenosylmethionine synthase 2 proteins was correlated with increases in putrescine and spermidine contents, which suggests that both polyamines should be tested to determine whether they increase the conversion rates of globular- to cotyledonary-staged somatic embryos. Taken together, the results showed that somatic embryo development in C. papaya is regulated by the differential accumulation of proteins, with ribosomal and mitochondrial proteins more abundant during the early somatic embryo stages and seed maturation proteins more abundant during the late stages.  相似文献   

12.
Summary The use of somatic embryos from cell culture systems in the clonal propagation of plants would be greatly facilitated if the somatic embryos could be dried and stored in a dormant state similar to true seeds. A cell culture system was developed for alfalfa (Medicago sativa L.) line RL34 which gave high yields of somatic embryos in an approximately synchronized pattern. These somatic embryos were treated with abscisic acid (ABA) at the cotyledonary stage of development to induce desiccation tolerance. With no visual preselection, approximately 60% of the dried embryos converted into plants upon reimbibition. When high quality embryos were selected prior to drying, 90 to 100% conversion rates were observed. The timing of the application of ABA in terms of embryo development was critical with an optimum being at cotyledonary stage spanning approximately 4 days; thus, synchronized embryo development is required for optimal expression in bulk samples. The vigor of the seedlings from dried somatic embryos was greater than those from embryos which had not been dried, but remained substantially lower than those from true seeds.  相似文献   

13.
植物激素对棉花体细胞胚胎发生的诱导及调节作用   总被引:19,自引:0,他引:19  
选用11种激素研究了外源激素对棉花胚性愈伤组织增殖、胚胎发生和发育的调控作用。结果表明不同激素对棉花胚性愈伤组织增殖、胚胎发生与发育的影响不同。除2,4-D和BA对棉花胚性愈伤组织的增殖影响不大外,其他激素对棉花胚性愈伤组织的增殖均具有抑制作用,且具有一定的时间效应,同时还受基因型的影响。激素对棉花体细胞胚的形成和发育的影响极大,2,4-D既抑制了体细胞胚的形成,又抑制了体细胞胚的发育;TDZ的作用与2,4-D相似,显抑制了体细胞胚的形成,且诱导获得的体细胞胚均停留在球形胚阶段;GA也抑制了体细胞胚的形成,且不利于体细胞的成熟与萌发;BU-30对棉花体细胞胚形成与发育的影响不大。其他7类生长素类物质和细胞分裂素类物质对棉花体细胞胚的形成均具有促进作用,且依IBA、ABA、IAA、BA、KT、ZT、2iP序增强,其总胚数为对照的1.193—3.852倍;其中2iP的促进作用最大,可使产生的体细胞胚数提高2.852倍。  相似文献   

14.
A procedure for the development of alfalfa (Medicago falcata L.) somatic embryos to the torpedo stage in air-lift vessels is described. Embryos were initiated from chopped leaf explants and were formed by direct somatic embryogensis. The system produced a high number of torpedo stage embryos. The effect of various inoculation densities on embryo development was studied. A procedure for the development and maturation of embryos in aerated liquid media was established. The rate of conversion of the torpedo stage embryos formed in the vessels was 83%.Abbreviations ABA abscisic acid - B5 Gamborgs B5 medium (Gamborg et al. 1968) - COT cotyledon embryo state - 2,4-d 2,4-dichlorophenoxyacetic acid - FW fresh weight - ID internal diameter - MS Murashige and Skoog medium (Murashige & Skoog 1962) - PEG polyethylene glycol - POLY polyembryos - VVM volume of gas/volume of bioreactor  相似文献   

15.
Compared to non-embryogenic callus, proembryonic mass, globular, and heart-shaped embryos of Eleutherococcus senticosus had higher levels of endogenous reduced glutathione (GSH). GSH content declined during the course of the embryo development (torpedo and cotyledon). Similarly, glutathione reductase that is involved in the recycling of GSH providing a constant intracellular level of GSH was also higher in globular and heart-shaped embryos. The transient increase in GSH contents also correlated with the changes in measured γ-glutamylcysteine synthetase activity over the same period. The endogenous levels of oxidized glutathione showed similar trend during development of the somatic embryos, whereas it declined in maturing somatic embryos. A pronounced increase in glutathione-S-transferase, glutathione peroxidase, catalase, and guaiacol peroxidase activity was observed during somatic embryo maturation. Ascorbate-glutathione cycle enzymes (ascorbate peroxidase; dehydroascorbate reductase and monodehydroascorbate reductase) activities also induced indicated that antioxidant enzymes played an important role during embryo development. These results suggested that the coordinated up-regulations of the antioxidant enzymes and glutathione redox system provide protection during somatic embryo development in E. senticosus. Antioxidant responses through alterations of the glutathione redox systems, have been described in the present studies have a significant role in somatic embryo development.  相似文献   

16.
Comparative analysis of zygotic and somatic embryogenesis of Acca sellowiana showed higher amounts of sucrose, fructose, raffinose, and myo-inositol in zygotic embryos at different developmental stages than in corresponding somatic ones. These differences were mostly constant. In general, glucose levels were significantly lower than the other soluble carbohydrates analyzed, showing minor variation in each embryo stage. Despite the presence of sucrose in the culture medium, its levels conspicuously diminished in somatic embryos compared with the zygotic ones. Raffinose enhanced parallel to embryo development, regardless of its zygotic or somatic origin. Analysis of the soluble carbohydrate composition of mature zygotic cotyledon used as explant pointed out fructose, glucose, myo-inositol, sucrose, and raffinose as the most important. Similar composition was also found in the corresponding somatic cotyledon. Total soluble carbohydrates varied inversely, decreasing in zygotic embryos and increasing in somatic embryos until the 24th d, at which time they increased rapidly about sixfold in zygotic embryos until the 27th d, a period coinciding with the zygotic proembryos formation. Such condition seems to reflect directly the variation of endogenous sucrose level, mainly because glucose and fructose diminished continuously during this time period. This means that, in terms of soluble sugars, zygotic embryo formation occurred under a situation represented by high sucrose amounts, simultaneously with low fructose and glucose levels, while in contrast, somatic embryo formation took place under an endogenous sugar status characterized by a substantial fructose enhancement. Starch levels increased continuously in zygotic embryos and decreased in somatic ones, the reverse to what was found in fructose variation. Starch accumulation was significantly higher in somatic torpedo and cotyledonary embryos than in the corresponding zygotic ones.  相似文献   

17.
ABSTRACT

Somatic embryogenesis from juvenile explants as an efficient way for oak clonal propagation is drastically limited by the low rate of embryo germination. A comparison of the development of immature somatic and zygotic embryos, and a study of the changes in sugar content and lignin accumulation during somatic versus zygotic embryo development were conducted in view of understanding the effect of reserve substance deficiency upon somatic embryo maturation. A morphological comparison of somatic and zygotic embryos led to the identification of 4 to 7 similar developmental stages in both types of embryos, thus indicating that the accumulation phase in both zygotic and somatic embryos occurs at the same stage, when the cotyledons became thicker and opaque. Carbohydrate analysis showed the presence of glycerol, inositol, mannitol, galactose, trehalose, xylose, arabinose, glucose, fructose and sucrose in all stages of zygotic and somatic embryo development, but in different amounts. The amount of glycerol, inositol, glucose and sucrose during the early stages is larger in zygotic embryos than in somatic ones, but the time course of their accumulation is similar in both types of embryos. Lignin content, which increased continuously during development, showed a similar behaviour in zygotic and somatic embryos. In somatic embryos which were able to germinate, lignin content was higher than in nongerminating embryos at the same stage.  相似文献   

18.
Potassium starch polyacrylamide, potassium acrylate, a copolymer of potassium acrylate and acrylamide, and hydroxyethylcellulose carrier gels were tested to find a fluid drilling material suited for synthetic seeding of sweet potato (Ipomoea batatas (L.) Lam.) somatic embryos. Somatic embryo developmental stage and size, and maturation (incubation) time were also evaluated to improve plantlet formation. All embryos suspended in the fluidized hydroxyethylcellulose gel were viable after six days and 7% developed into plantlets after two weeks. Up to 97% of the somatic embryos suspended in acrylate and/or acrylamide gels died within six days. Root development was at least 10% and plantlet development at least 30% greater when embryos were subcultured on basal medium for 16 instead of 25 days prior to placement and suspension in hydroxyethylcellulose gel. Up to 25% more plantlets were obtained from embryos at the elongated torpedo stage than those at the cotyledonary or torpedo stages of development. When suspended in hydroxyethylcellulose gel embryo length had no effect on the percentage of plantlets obtained.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog medium (1962) - PC copolymer of potassium acrylate and acrylamide - PSA potassium starch polyacrylamide - PA potassium acrylate - HEC hydroxyethylcellulose - ODR oxygen diffusion rate Florida Agr. Expt. Sta., Journal Series No. R-00253 Mention of proprietary products is for convenience of reader only, and does not constitute endorsement by the University of Florida  相似文献   

19.
The present study aimed at developing temporary immersion bioreactor techniques for multiplication of cacao somatic embryos. Temporary Immersion System (TIS), i.e. flooding of plant tissue at regular time intervals provides an efficient way to propagate plants. Somatic embryos were regenerated in twin flask bioreactors. The TIS proved to be suitable for mass regeneration of somatic embryos and for their subsequent direct sowing. The number of embryos after 3 months of culture was significantly higher in TIS cultures than in the solid medium variant. TIS also improved embryo development regarding the conversion to torpedo shaped forms. Matured embryos derived from TIS and pre-treated with 6% sucrose were converted into plants after direct sowing. Additionally to the influence of culture conditions on the development of somatic embryogenesis the content and composition of free amino acids were analysed. The content of free amino acids in somatic embryos rose as immersion frequency increased. The endogenous free GABA content in embryogenic callus was significantly higher than in non-embryogenic callus.  相似文献   

20.
Somatic embryogenesis was obtained from cotyledon and mature zygotic embryo callus cultures of Terminalia chebula Retz. Callus cultures of cotyledon and mature zygotic embryo were initiated on induction medium containing Murashige and Skoog (MS) nutrients with 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) either 0.01 or 0.1 mg/l Kinetin and 30 g/l sucrose. Induction of somatic embryogenesis, proliferation and development was obtained through different culture passages. Embryogenic cotyledon callus with globular somatic embryos was obtained on MS basal medium supplemented with 50 g/l sucrose. Globular somatic embryos were observed from mature zygotic embryo callus on induction medium. Different stages of somatic embryo development from cotyledon and mature zygotic embryo calluses were observed on MS basal medium supplemented with 50 g/l sucrose after 4 weeks of culture. Histological studies have revealed the developmental stages of somatic embryos. A maximum of 40.3±1.45 cotyledonary somatic embryos/callus was obtained from mature zygotic embryo compared to 7.70±0.37 cotyledonary somatic embryos/callus initiated from cotyledons. Germination of somatic embryos and conversion to plants were achieved. Highest frequency of germination (46.66±0.88) of somatic embryos was obtained on MS basal medium containing benzyladenine (0.5 mg/l) with 30 g/l sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号