首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Plant science》1988,54(3):185-192
Synthesis of 5-aminolevulinic acid (ALA) in organello was re-examined with developing chloroplasts isolated from greening cucumber (Cucumis sativus L. var. Beit Alpha) cotyledons. In the dark, ALA accumulated in the presence of ATP, reducing power (NADPH and glucose-6-phosphate), glutamate and levulinic acid (or 4,6-dioxoheptanoic acid).Under continuous illumination there was no requirement for added ATP and reducing power, unless DCMU was added or O2 was removed, indicating that ATP and reducing power could be supplied endogenously by photosynthesis in the presence of O2. No mitochondrial involvement could be demonstrated in this system. Under anaerobic conditions in the light oxaloacetic acid (OAA) could replace O2 and permit a high accumulation of ALA. The fact that OAA could replace O2 suggests that an acceptor of non-cyclic electron flow may be required to provide ATP or some other cofactor of ALA synthesis. The phosphorylation uncoupler, 2,4-dinitrophenol, inhibited ALA synthesis. Light-dependent ALA in air was strongly inhibited by methylene blue (MB) and NaN3, but only very slightly by KCN.  相似文献   

2.
Photosynthetic control by isolated pea chloroplasts   总被引:3,自引:3,他引:3  
Isolated pea chloroplasts undergo both cyclic and non-cyclic electron flow. Both processes are coupled to photophosphorylation. During non-cyclic flow the rate of oxygen production showed ADP-governed ;photosynthetic control' analogous to respiratory control of isolated mitochondria. Measurements of ADP/O and photosynthetic control ratios yielded values of 1-1.3 and 2-5.7 respectively. ;Photosynthetic control' was shown to be dependent on the intactness of the chloroplasts.  相似文献   

3.
Conditions for the optimization of silicomolybdate reduction by isolated pea chloroplasts are described. Maximum rates of reduction are related to time of addition to the chloroplasts and the presence of an oxidizing cofactor, such as ferricyanide. Silicomolybdate or silicomolybdate plus ferricyanide reduction is only partially inhibited by a concentration of CMU which totally abolishes ferricyanide reduction. Evidence for a differing response of the two reduction sites to silicomolbydate is described.  相似文献   

4.
The following parameters were found to prolong the time-course of translation by isolated pea (Pisum sativum, cv Progress No. 9) chloroplasts: addition of other amino acids (an effect synergistic with sufficient free Mg2+), use of lower light intensities, and additions of inorganic phosphate and ATP. In a chloroplast system which includes these parameters, active translation usually extends to almost an hour. The total amount of leucine incorporated is routinely 60 to 100 nanomoles/milligram chlorophyll and often 200 nanomoles/milligram chlorophyll. Accurate estimation of the amount of amino acid incorporated depends on supplying the labeled amino acid at a concentration sufficient to overcome isotope dilution effects from endogenous pools. Approximately 39 thylakoid and 60 stroma polypeptides were visible on autoradiographs after labeling with [35S]methionine. Label in a few of the polypeptide bands was increased or decreased by specific changes in the reaction conditions. Due to the long period of activity and the large number of labeled products, this chloroplast system should be useful for future studies of chloroplast translation.  相似文献   

5.
Suspensions of pea chloroplasts, prepared by differential centrifugation, catalyzed oxaloacetate-dependent O(2) evolution (mean rate of 29 determinations 10.9 micromoles per milligram of chlorophyll per hour, sd 3.2) with the concomitant production of malate. At optimum concentrations of oxaloacetate, both reactions were light-dependent, inhibited by 3-(3,4- dichlorophenyl)-1, 1-dimethylurea and oxalate, and enhanced 2.5- to 4-fold by 10 millimolar NH(4)Cl. At concentrations of oxaloacetate (<50 micromolar), 10 millimolar NH(4)Cl was inhibitory. The ratio of O(2) evolved to malate produced was 0.39 to 0.58. The ratio of O(2) evolved to oxaloacetate supplied was commensurate with the theoretical value of 0.5.Chloroplast suspensions contained both NAD- and NADP-malate dehydrogenase activities. It was concluded from oxalate inhibition studies and the promotion of oxaloacetate-dependent O(2) evolution by shocked chloroplasts by NADPH (but not NADH) that the reaction was mediated via the NADP enzyme.  相似文献   

6.
Porphobilinogen (PBG) deaminase catalyzes the polymerization of four PBG monopyrrole units into the linear tetrapyrrole hydroxymethylbilane necessary for the formation of chlorophyll and heme in plant cells. Degenerate oligonucleotide primers were designed based on amino acid sequence data (generated by mass spectrometry) for purified PBG deaminase from pea (Pisum sativum L.) chloroplasts. These primers were used in TaqI polymerase-catalyzed polymerase chain reaction (PCR) amplification to produce partial cDNA and nuclear genomic fragments encoding the enzyme. Subsequently, a 1.6-kb cDNA was isolated by screening a cDNA library constructed in lambda gt11 from leaf poly(A)+ RNA with the PCR products. The cDNA encodes an approximately 40-kD polypeptide containing a 46-amino acid NH2-terminal transit peptide and a mature protein of 323 amino acids. The deduced amino acid sequence of the mature pea enzyme is similar to PBG deaminases from other species and contains the conserved arginine and cysteine residues previously implicated in catalysis. Northern blot analysis indicates that the pea gene encoding PBG deaminase is expressed to varying levels in chlorophyll-containing tissues and is subject to light induction.  相似文献   

7.
Transport of glutamine into isolated pea chloroplasts   总被引:2,自引:2,他引:2  
Abstract. Uptake of [14C] glutamine into isolated pea chloroplasts has been examined by using a centrifugal filtration technique. Competition experiments showed that glutamine uptake is mediated by a dicarboxylate carrier with Km 1.10 mM and V max. 118 nmol of glutamine min−1 per mg of chlorophyll. Isolated pea chloroplasts accumulated glutamine in the sucrose-impermeable space to concentrations higher than that present in the external solution when the latter was below 0.5 mM. It is suggested that glutamine accumulation is driven by exchange (utilizing the dicarboxylate carrier) with the endogenous pool of dicarboxylates in the chloroplasts. Increasing pH stimulated glutamine uptake but inhibited that of glutamate and 2-oxoglu-tarate. The hypothesis is advanced that when molecules of different charge are exchanged across the chloroplast envelope via the dicarboxylate carrier, electroneutrality is maintained by transport of protons, and that this explains the observed effects of increasing pH. The low rates of glutamine transport coupled with the strong competition of other dicarboxylates for the carrier suggest that export in vivo from the chloroplast of nitrogen in the form of glutamine is not of major importance.  相似文献   

8.
Abstract Transmission electron microscopy of chloroplasts isolated by osmotic lysis of pea leaf protoplasts has revealed crystalline arrays of ribosomal particles associated with the thylakoid membranes. Optical diffraction techniques have established the crystallinity of the arrays and an image-enhancement technique has given an indication of ribosomal macrostructure. A model of crystal-packing is presented. This apparently artefactual induction of ribosome crystals should provide a valuable approach towards the elucidation of the details of the structure of chloroplast ribosomes.  相似文献   

9.
1. Chloroplasts isolated from pea seedlings were incubated in sucrose–tris medium reinforced with salts of calcium, magnesium, manganese or iron, at concentrations up to 10mm. 2. Measurements of chloroplast-pellet volume and water content showed that the bivalent cations brought about a contraction in chloroplast volume and a loss of chloroplast water. This was further substantiated by density-gradient centrifugations. 3. Measurements of the light-scattering and apparent fluorescence of chloroplast suspensions confirmed this conclusion and eliminated the possibility of contraction being caused by centrifugal forces. 4. The uptake of 45Ca2+ was measured and shown to be competitive with diluent Ca2+, Mg2+ or Mn2+ ions, indicating a mechanism of low specificity. 5. The chloroplast contraction was insensitive to light but could be made sensitive by the addition of ferric EDTA. This light-sensitivity was inhibited by added 3-(p-chlorophenyl)-1,1-dimethylurea and so probably involves the Hill reaction. 6. On the basis of these observations it is suggested that the process of contraction does not consume much energy, but that in light-activated contraction a previous step occurs that is conducive to contraction and that is energy-transducing. It is postulated that this step results in a local increase in concentration of bivalent ions, which promotes contraction.  相似文献   

10.
Amino acid incorporation by isolated chloroplasts   总被引:4,自引:0,他引:4  
  相似文献   

11.
Ozone increases the permeability of isolated pea chloroplasts   总被引:2,自引:0,他引:2  
The effect of short-term exposure of chloroplasts isolated from the leaves of Pisum sativum to high concentrations of ozone was examined. The inhibitory effect of O3 on endogenous photophosphorylation was apparently related to an increased permeability of the chloroplast limiting membranes induced by ozone exposure. A 5 min treatment with 50 ppm O3 reduced the reflection coefficient of meso-erythritol from 0.84 to 0.58 and that of glycerol from 0.26 to 0.03. Such decreases in reflection coefficients indicate that ozone caused a marked increase in the permeability of the limiting membranes of the chloroplasts, which may result from an oxidation of membrane lipids. The decrease in the reflection coefficient of meso-erythritol was proportional both to ozone concentration (up to 30 ppm for 5 min of bubbling) and to time (up to 5 min at 30 ppm). Extrapolating these results to lower concentrations and longer times, ozone injury should be possible for a 2 hr exposure of plants to 0.3 ppm ozone, as is indeed the case.  相似文献   

12.
13.
14.
15.
Porphobilinogen deaminase catalyzes the condensation of four porphobilinogen monopyrrole units into hydroxymethylbilane, a linear tetrapyrrole necessary for the formation of chlorophyll and heme in higher plant cells. We report the purification to homogeneity of a chloroplast-localized form of the enzyme from pea (Pisum sativum L.) by a novel purification scheme involving dye-ligand affinity chromatography. The purified chloroplast porphobilinogen deaminase consists of a single polypeptide with a relative molecular mass of 36-45 kDa as determined by size-exclusion chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The isoelectric point of the protein is acidic. The activity of the enzyme shows different levels of sensitivity to divalent cations and is most sensitive to FE2+. The amino terminus of pea enzyme has been obtained by microsequencing and determined to bear little similarity to the amino acid sequences of porphobilinogen deaminases purified from other organisms. Polyclonal antisera elicited against the purified protein has been used to examine the abundance and cellular distribution of the enzyme.  相似文献   

16.
Xantha-702 mutant of cotton (Gossypium hirsutum L.) proved to have blocked synthesis of 5-aminolevulinic acid in the light. Accordingly, mutant leaves accumulated 2–5% chlorophyll of baseline. Mutant plants demonstrated disturbed production of pigment-protein complexes of photosystems I (PSI) and II (PSII) and generation of the chloroplast membrane system blocked at the early stages, largely, at the stages of vesicles and single short thylakoid. The functional activity of the PSI and PSII reaction centers was close to zero. Only the chlorophyll a/b light-harvesting complexes of PSI and PSII with the chlorophyll fluorescence peaks at 728 and 681 nm, respectively, were produced in the xantha-702 mutant. We propose that the genetic block of 5-aminolevunilic acid biosynthesis in the light in the xantha-702 mutant disturbs the formation and activity of the complexes of the reaction centers of PS-I and PS-II and inhibits the development of the whole membrane system of chloroplasts.  相似文献   

17.
5-Aminolevulinic acid (ALA), a heme precursor overproduced in various porphyric disorders, has been implicated in iron-mediated oxidative damage to biomolecules and cell structures. From previous observations of ferritin iron release by ALA, we investigated the ability of ALA to cause oxidative damage to ferritin apoprotein. Incubation of horse spleen ferritin (HoSF) with ALA caused alterations in the ferritin circular dichroism spectrum (loss of a alpha-helix content) and altered electrophoretic behavior. Incubation of human liver, spleen, and heart ferritins with ALA substantially decreased antibody recognition (51, 60, and 28% for liver, spleen, and heart, respectively). Incubation of apoferritin with 1-10mM ALA produced dose-dependent decreases in tryptophan fluorescence (11-35% after 5h), and a partial depletion of protein thiols (18% after 24h) despite substantial removal of catalytic iron. The loss of tryptophan fluorescence was inhibited 35% by 50mM mannitol, suggesting participation of hydroxyl radicals. The damage to apoferritin had no effect on ferroxidase activity, but produced a 61% decrease in iron uptake ability. The results suggest a local autocatalytic interaction among ALA, ferritin, and oxygen, catalyzed by endogenous iron and phosphate, that causes site-specific damage to the ferritin protein and impaired iron sequestration. These data together with previous findings that ALA overload causes iron mobilization in brain and liver of rats may help explain organ-specific toxicities and carcinogenicity of ALA in experimental animals and patients with porphyria.  相似文献   

18.
The exchange of oxygen during NADP+ photoreduction by isolated pea chloroplasts was studied. It was found that NADP+ oxidation is accompanied by oxygen photoreduction preceeding at a high rate. A possibility for calculation of the ration between the pseudocyclic electron transport and the total electron transport based on oxygen exchange in the presence of NaN3 and catalase, was established. It was found that the pseudocyclic transport can make up to 30% or more of total electron transport.  相似文献   

19.
Intact spinach chloroplasts, capable of high rates of photochemical oxygen evolution with CO2 as electron acceptor (120-350 mumol O2 mg chlorophyll-1 h-1) were examined for cytochrome redox changes. The response of the cytochromes in intact chloroplasts to oxidants and reductants appears to be governed by the permeability of the chloroplast envelope. The low potential cytochromes (b-559LP and b-563) were more slowly reduced at 25 degrees C by dithionite than is the case with broken chloroplasts. At 0 degrees C, the reduction of the low potential cytochromes in intactchloroplasts was extremely slow. The chloroplast envelope is impermeable to ferricyanide, slowly permeable to ascorbate and rapidly permeable to reduced dichlorophenolindophenol. Light-induced redox changes of cytochrome b-563 in intact chloroplasts were examined both at 0 degrees and 25 degrees C. A red/far-red antagonism on the redox changes of cytochrome b-563 was observed at 0 degrees C under anaerobic conditions. 3-(3,4-dichlorophenyl)-1, 1-dimethlyurea (DCMU) inhibited the photoreduction of cytochrome b-563 in red light following far-red illumination. The photooxidation of cytochrome b-563 under anaerobic conditions was not influenced by DCMU or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). The photoreduction of cytochrome b-563 under aerobic conditions was much less efficient than its photooxidation under anaerobic conditions. Developing pea chloroplasts showed much greater light-induced redox changes of cytochrome b-563 than did intact spinach chloroplasts. Our data are consistent with the view that cytochrome b-563 functions on a cyclic pathway around Photosystem I, but it appears that cyclic flow is sensitive to the relative poising of the redox levels of cytochrome b-563 and the components of the non-cylic pathway.  相似文献   

20.
When added singly to chloroplasts isolated from young pea (Pisum sativum) leaves, both inorganic pyrophosphate (PPi) and small quantities (0.2 mm) of ADP inhibit photosynthesis, but when added together they cause a marked stimulation. ATP (at 0.2 mm) is less inhibitory (or not inhibitory) when added alone, but like ADP, stimulates when added in the presence of PPi. This behavior is in marked contrast to that of spinach (Spinacia oleracea) chloroplasts which are normally stimulated rather than inhibited by PPi and which are largely unresponsive to exogenous adenylates. The inhibitory behavior of PPi with pea chloroplasts was observed under conditions where external hydrolysis to Pi is negligible. It is proposed that the exchange of organic and PPi across the chloroplast envelope may be more rapid in chloroplasts from young pea leaves than in chloroplasts from spinach and that interaction between these two processes could account for the principal observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号