首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytohemagglutinin, the glycoprotein lectin of the common bean, Phaseolus vulgaris, has both high-mannose (Man8-9GlcNAc2) and modified oligosaccharide side chains. The modified side chains have glucosamine, mannose, fucose, and xylose in the molar ratios 2:3.8:0.6:0.5, and are resistant to hydrolysis by endoglycosidase H. Synthesis and processing of side chains in the presence of 1-deoxynojirimycin, an inhibitor of α-glucosidase, results in the formation of chains which are all alike. They are sensitive to endoglycosidase H, do not contain fucose, and are largely resistant to α-mannosidase. This indicates that they are probably high-mannose chains blocked by terminal glucose residues. Synthesis and processing of side chains in the presence of swainsonine, an inhibitor of α-mannosidase II, results in the formation of normal high-mannose chains, and of modified chains which contain fucose residues, are resistant to endoglycosidase H, and can be distinguished from normal modified chains only by the presence of extra mannose residues.

Processing of the phytohemagglutinin modified chains of PHA under normal conditions involves the attachment of peripheral N-acetylglucosamine residues in the Golgi complex and their subsequent removal in the protein bodies. The attachment of the N-acetylglucosamine residues is largely inhibited by deoxynojirimycin but still occurs in the presence of swainsonine. The results presented in this work show that processing of the asparagine-linked oligosaccharides is under the control of several glycosidases and glycosyltransferases and involves the formation of intermediate products.

  相似文献   

2.
As part of their posttranslational maturation process, newly synthesized glycoproteins that contain N-linked oligosaccharide side chains pass through the Golgi apparatus, where some of their oligosaccharides become modified by carbohydrate processing reactions. In this paper, we report the presence of Golgi-localized enzymes in plant cells (Phaseolus vulgaris cotyledons) that transfer GlcNAc, fucosyl, and xylosyl residues to the oligosaccharide side chains of glycoproteins. All three enzyme activities are involved in the transformation of high mannose side chains into complex glycans. As judged by acceptor specificity studies, at least two GlcNAc residues can be added to the nonreducing side of high mannose oligosaccharides, which have been trimmed by α-mannosidase(s). A Man5(GlcNAc)2-peptide serves as the acceptor for the first GlcNAc added. The second GlcNAc can be added only after the prior removal of two additional mannose residues, ultimately yielding (GlcNAc)2Man3(GlcNAc)2-peptide. Fucosyltransferase can transfer fucose to GlcNAcMan5(GlcNAc)2Asn, GlcNAcMan3(GlcNAc)2Asn, and (GlcNAc)2Man3(GlcNAc)2Asn; xylosyltransferase exhibits significant activity toward the latter two substrates only. These results suggest an overlapping sequence of oligosaccharide modification in the Golgi apparatus that, in regard to GlcNAc and fucose additions, is analogous to pathways of oligosaccharide processing reported for animal cells. To our knowledge, this is the first report characterizing a xylosyltransferase involved in N-linked oligosaccharide modification, an activity that is apparently absent in most animal cells.  相似文献   

3.
Mannosidases are a diverse group of glycoside hydrolases that play crucial roles in mannose trimming of oligomannose glycans, glycoconjugates, and glycoproteins involved in numerous cellular processes, such as glycan biosynthesis and metabolism, structure regulation, cellular recognition, and cell–pathogen interactions. Exomannosidases and endomannosidases cleave specific glycosidic bonds of mannoside linkages in glycans and can be used in enzyme-based methods for sequencing of isomeric glycan structures. α1-6-mannosidase from Xanthomonas manihotis is known as a highly specific exoglycosidase that removes unbranched α1-6 linked mannose residues from oligosaccharides. However, we discovered that this α1-6-mannosidase also possesses an unexpected β1-4-galactosidase activity in the processing of branched hybrid and complex glycans through our use of enzymatic reactions, high performance anion-exchange chromatography, and liquid chromatography mass spectrometric sequencing. Our docking simulation of the α1-6-mannosidase with glycan substrates reveals potential interacting residues in a relatively shallow pocket slightly differing from its homologous enzymes in the glycoside hydrolase 125 family, which may be responsible for the observed higher promiscuity in substrate binding and subsequent terminal glycan hydrolysis. This observation of novel β1-4-galactosidase activity of the α1-6-mannosidase provides unique insights into its bifunctional activity on the substrate structure-dependent processing of terminal α1-6-mannose of unbranched glycans and terminal β1-4-galactose of hybrid and complex glycans. The finding thus suggests the dual glycosidase specificity of this α1-6-mannosidase and the need for careful consideration when used for the structural elucidation of glycan isomers.  相似文献   

4.
The transport and accumulation of phytohemagglutinin in developing bean (Phaseolus vulgaris L.) cotyledons is accompanied by the transient presence of N-acetylglucosamine (GlcNAc) residues on the oligosaccharide sidechains of this glycoprotein. These peripheral GlcNAc residues can be distinguished from those in the chitobiose portion of the oligosaccharide sidechains by their sensitivity to removal by the exoglycosidase β-N-acetylglucosaminidase. GlcNAc residues sensitive to removal by β-N-acetylglucosaminidase are present not only on phytohemagglutinin, but also on other newly synthesized proteins. The enzyme UDPGlcNAc:glycoprotein GlcNAc-transferase which transfers GlcNAc residues to glycoproteins was first described by Davies and Delmer (Plant Physiol 1981 68: 284-291). The data presented here show that this enzyme is associated with the Golgi complex of developing cotyledons.  相似文献   

5.
In an attempt to engineer a Yarrowia lipolytica strain to produce glycoproteins lacking the outer-chain mannose residues of N-linked oligosaccharides, we investigated the functions of the OCH1 gene encoding a putative α-1,6-mannosyltransferase in Y. lipolytica. The complementation of the Saccharomyces cerevisiae och1 mutation by the expression of YlOCH1 and the lack of in vitro α-1,6-mannosyltransferase activity in the Yloch1 null mutant indicated that YlOCH1 is a functional ortholog of S. cerevisiae OCH1. The oligosaccharides assembled on two secretory glycoproteins, the Trichoderma reesei endoglucanase I and the endogenous Y. lipolytica lipase, from the Yloch1 null mutant contained a single predominant species, the core oligosaccharide Man8GlcNAc2, whereas those from the wild-type strain consisted of oligosaccharides with heterogeneous sizes, Man8GlcNAc2 to Man12GlcNAc2. Digestion with α-1,2- and α-1,6-mannosidase of the oligosaccharides from the wild-type and Yloch1 mutant strains strongly supported the possibility that the Yloch1 mutant strain has a defect in adding the first α-1,6-linked mannose to the core oligosaccharide. Taken together, these results indicate that YlOCH1 plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in Y. lipolytica. Therefore, the Yloch1 mutant strain can be used as a host to produce glycoproteins lacking the outer-chain mannoses and further developed for the production of therapeutic glycoproteins containing human-compatible oligosaccharides.  相似文献   

6.
Antibodies were raised against carrot (Daucus carota) cell wall β-fructosidase that was either in a native configuration (this serum is called anti-βF1) or chemically deglycosylated (anti-βF2). The two antisera had completely different specificities when tested by immunoblotting. The anti-βF1 serum reacted with β-fructosidase and many other carrot cell wall proteins as well as with many proteins in extracts of bean (Phaseolus vulgaris) cotyledons and tobacco (Nicotiana tabacum) seeds. It did not react with chemically deglycosylated β-fructosidase. The anti-βF1 serum also reacted with the bean vacuolar protein, phytohemagglutinin, but not with deglycosylated phytohemagglutinin. The anti-βF2 serum reacted with both normal and deglycosylated β-fructosidase but not with other proteins. These results indicate that the βF2 antibodies recognize the β-fructosidase polypeptide, while the βF1 antibodies recognize glycan sidechains common to many glycoproteins. We used immunoadsorption on glycoprotein-Sepharose columns and hapten inhibition of immunoblot reactions to characterize the nature of the antigenic site. Antibody binding activity was found to be associated with Man3(Xyl)(GIcNAc)2Fuc, Man3(Xyl)(GIcNAc)2, and Man(Xyl) (GIcNAc)2 glycans, but not with Man3(GIcNAc)2. Treatment of phytohemagglutinin, a glycoprotein with a Man3(Xyl)(GIcNAc)2Fuc glycan, with Charonia lampas β-xylosidase (after treatment with jack-bean α-mannosidase) greatly diminished the binding between the antibodies and phytohemagglutinin. We conclude, therefore, that the antibodies bind primarily to the xyloseβ, 1→ 2mannose structure commonly found in the complex glycans of plant glycoproteins.  相似文献   

7.
The Pichia pastoris N-glycosylation pathway is only partially homologous to the pathway in human cells. In the Golgi apparatus, human cells synthesize complex oligosaccharides, whereas Pichia cells form mannose structures that can contain up to 40 mannose residues. This hypermannosylation of secreted glycoproteins hampers the downstream processing of heterologously expressed glycoproteins and leads to the production of protein-based therapeutic agents that are rapidly cleared from the blood because of the presence of terminal mannose residues. Here, we describe engineering of the P. pastoris N-glycosylation pathway to produce nonhyperglycosylated hybrid glycans. This was accomplished by inactivation of OCH1 and overexpression of an α-1,2-mannosidase retained in the endoplasmic reticulum and N-acetylglucosaminyltransferase I and β-1,4-galactosyltransferase retained in the Golgi apparatus. The engineered strain synthesized a nonsialylated hybrid-type N-linked oligosaccharide structure on its glycoproteins. The procedures which we developed allow glycan engineering of any P. pastoris expression strain and can yield up to 90% homogeneous protein-linked oligosaccharides.  相似文献   

8.
Sindbis and vesicular stomatitis viruses were grown in a line (termed 15B) of Chinese hamster ovary (CHO) cells that is deficient in a specific UDP-N-acetylglucosamine:glycoprotein N-acetylglucosaminyltransferase. Both viruses replicated normally in the cell line, but the glycoproteins of the released virus migrated faster on sodium dodecyl sulfate-polyacrylamide gels than did glycoproteins of virus grown in parent CHO cells. Digestion of the viral glycoproteins with Pronase followed by gel filtration demonstrated that the glycopeptides of Sindbis-15B virus were much smaller than the glycopeptides of Sindbis-CHO virus. In addition, Sindbis-15B viral glycopeptides but not Sindbis-CHO viral glycopeptides contained terminal α-mannose residues as shown by their susceptibility to α-mannosidase digestion. These findings demonstrate that the oligosaccharide units of the glycoproteins of vesicular stomatitis and Sindbis viruses are altered when the viruses are grown in 15B cells. We conclude that the N-acetylglucosaminyltransferase that is missing in 15B cells normally participates in the biosynthesis of the oligosaccharide units of the viral glycoproteins, and in the absence of this enzyme incomplete oligosaccharide chains are produced. Viruses released from 15B cells appear to retain full infectivity; Sindbis-15B virus, however, showed a significant decrease in hemagglutination titer compared with that of Sindbis-CHO virus.  相似文献   

9.
The clearance of total rat liver secretory glycoproteins and of alpha 1-acid glycoprotein carrying no or different types of oligosaccharide side chains was studied in vivo and in the isolated perfused rat liver. In order to obtain unglycosylated or differently glycosylated forms of secreted glycoproteins, rat hepatocyte primary cultures were incubated with various inhibitors of N-glycosylation. Tunicamycin was used for the synthesis of unglycosylated (glyco)proteins, the mannosidase I inhibitor 1-deoxymannojirimycin for the synthesis of high-mannose type and the mannosidase II inhibitor swainsonine for the synthesis of hybrid-type glycoproteins. Glycoproteins carrying carbohydrate side chains of the complex type were synthesized by control hepatocytes. In vivo and in the perfused rat liver, high-mannose-type glycoproteins were cleared at the highest rate, followed by unglycosylated and hybrid-type glycoproteins. The lowest clearance rate was found for the glycoproteins with carbohydrate side chains of the complex type. For the highly glycosylated alpha 1-acid glycoprotein the differences in clearance rates were more pronounced. The following plasma half-lives were determined in vivo: complex type, 100 min; hybrid type, 15 min; unglycosylated form, 5 min; and high-mannose type less than 1 min. In the recirculating perfused liver 28% of complex-type alpha 1-acid glycoprotein, 40% of hybrid type, 47% of unglycosylated and 93% of high-mannose-type alpha 1-acid glycoprotein were removed from the perfusate within 2 h. It is concluded that N-glycosylation and processing to complex-type oligosaccharides seems to be of great importance for the circulatory life time of plasma glycoproteins.  相似文献   

10.
Dissecting glycoprotein biosynthesis by the use of specific inhibitors   总被引:7,自引:0,他引:7  
W McDowell  R T Schwarz 《Biochimie》1988,70(11):1535-1549
It is possible to interfere with different steps in the dolichol pathway of protein glycosylation and in the processing of asparagine-linked oligosaccharides. Thus some clues about the role of protein-bound carbohydrate can be obtained by comparing the biochemical fates and functions of glycosylated proteins with their non-glycosylated counterparts, or with proteins exhibiting differences in the type of oligosaccharide side chains. Cells infected with enveloped viruses are good systems for studying both aspects of protein glycosylation, since they contain a limited number of different glycoproteins, often with well-defined functions. Tunicamycin, an antibiotic, as well as several sugar analogues have been found to act as inhibitors of protein glycosylation by virtue of their anti-viral properties. They interfere with various steps in the dolichol pathway resulting in a lack of functional lipid-linked oligosaccharide precursors. Compounds that interfere with oligosaccharide trimming represent a second generation of inhibitors of glycosylation. They are glycosidase inhibitors that interfere with the processing glucosidases and mannosidases and, as a result, the conversion of high-mannose into complex-type oligosaccharides is blocked. Depending upon the compound used, glycoproteins contain glucosylated-high-mannose, high-mannose or hybrid oligosaccharide structures instead of complex ones. The biological consequences of the alterations caused by the inhibitors are manifold: increased susceptibility to proteases, improper protein processing and misfolding of polypeptide chains, loss of biological activity and alteration of the site of virus-budding, to name but a few.  相似文献   

11.
Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-3H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-β-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man9GlcNAc and Man8GlcNAc and small amounts of Man7GlcNAc and Man6GlcNAc. The pulse-chase sample had predominantly Man8GlcNAc and much less Man9GlcNAc, indicating that processing of the Man9GlcNAc to Man8GlcNAc had occurred during the chase period. Thus, Man8GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with α-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man9GlcNAc were identical to those of the lipid-linked Glc3Man9GlcNAc2 donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell-coded glycoprotein.  相似文献   

12.
Endo-M, endo-beta-N-acetylglucosaminidase from Mucor hiemalis, transferred the complex type oligosaccharide of sialoglycopeptide to partially deglycosylated proteins (N-acetylglucosamine-attached proteins), which were prepared by excluding high-mannose type oligosaccharides from glycoproteins with Endo-H, endo-beta-N-acetylglucosaminidase from Streptomyces plicatus. This finding indicated that the high-mannose type oligosaccharides on glycoproteins can be changed to complex type ones by the transglycosylation activity of Endo-M. This is the first report of the establishment of a remodeling system for the different types of oligosaccharides on glycoproteins with microbial endo-beta-N-acetylglucosaminidases having different substrate specificities. Endo-M is a powerful tool for the in vitro synthesis of glycoproteins containing complex type oligosaccharides from glycoproteins produced by yeast.  相似文献   

13.
α-Mannosidosis is caused by the genetic defect of the lysosomal α-d-mannosidase (LAMAN), which is involved in the breakdown of free α-linked mannose-containing oligosaccharides originating from glycoproteins with N-linked glycans, and thus manifests itself in an extensive storage of mannose-containing oligosaccharides. Here we demonstrate in a model of mice with α-mannosidosis that native lysosomal proteins exhibit elongated N-linked oligosaccharides as shown by two-dimensional difference gel electrophoresis, deglycosylation assays, and mass spectrometry. The analysis of cathepsin B-derived oligosaccharides revealed a hypermannosylation of glycoproteins in mice with α-mannosidosis as indicated by the predominance of extended Man3GlcNAc2 oligosaccharides. Treatment with recombinant human α-mannosidase partially corrected the hyperglycosylation of lysosomal proteins in vivo and in vitro. These data clearly demonstrate that LAMAN is involved not only in the lysosomal catabolism of free oligosaccharides but also in the trimming of asparagine-linked oligosaccharides on native lysosomal proteins.The lysosomal α-d-mannosidase (LAMAN; EC 3.2.1.24) belongs to the group of at least seven lysosomal exoglycosidases which sequentially degrade oligosaccharides derived from glycoproteins (2, 31). These glycoproteins enter the lysosomal compartment by either endocytic pathways (extracellular and plasma membrane proteins) or autophagic processes (intracellular proteins). In addition, free oligosaccharides originating from lipid-linked oligosaccharides in the endoplasmic reticulum and from glycoproteins by the endoplasmic reticulum-associated protein degradation (ERAD) pathway are transported into the lysosome, where these oligosaccharides are subsequently degraded (9, 45). Inside the lysosome, the degradation of the glycoproteins is described as a bidirectional process in which on the one hand the polypeptide is hydrolyzed by a cohort of lysosomal endo- and exoproteases with partially overlapping specificities like cathepsins and other peptidases (like DPP II and TPP-I [19, 40, 52). On the other hand, the sugar moiety is stepwise hydrolyzed into its monosaccharides by exoglycosidases. The precise order of the bidirectional breakdown of glycoproteins is unclear, although assumptions can be made based on the analysis of the storage products of the different glycoproteinoses (31). Therefore, it is assumed that an efficient degradation of the oligosaccharide chain is highly dependent on the cleavage of the protein-oligosaccharide linkage by the glycosylasparaginase (2, 31). In contrast, the proteolysis of the polypeptide backbone is mainly unaffected by intact oligosaccharide structures on the glycoproteins (1).LAMAN has a broad substrate specificity, cleaving nonreducing terminal α1,2-, α1,3-, and α1,6-mannosyl linkages found in complex-type, hybrid-type, and high-mannose-type asparagine-linked glycans (30, 60). Additionally, a second lysosomal mannosidase (MAN2B2) specific for the core α1,6 branch was characterized and found to be dependent on the prior enzymatic activity of lysosomal glycosylasparaginase or chitobiase, releasing Man3GlcNAc2 and Man3GlcNAc oligosaccharides, respectively (21, 36). The cooperation of this novel core-specific α1,6-mannosidase with chitobiase is also reflected by their similar tissue-specific expression patterns in humans and rodents and their simultaneous absence in cattle and cats (2, 14).LAMAN deficiency results in the rare lysosomal storage disorder (LSD) α-mannosidosis, which is clinically characterized by progressive mental retardation, dysostosis multiplex, impaired hearing, immune defects, and mild hepatosplenomegaly. However, the onset of symptoms varies greatly and the clinical severity of α-mannosidosis patients ranges from mildly affected to severely affected, lacking a genotype-phenotype correlation (29). Patients also show elevated serum and urine oligosaccharide levels and an enlargement of the lysosomal compartment which is considered to be caused by the accumulation of undegraded oligosaccharides. The major lysosomal storage product is the trisaccharide Man2GlcNAc, although oligosaccharides with up to eight mannosyl residues were detected in the urine and serum of patients, indicating their lysosomal accumulation as well (4, 33). From these findings, one can draw the conclusion that beside metabolic intermediates of the glycoprotein degradation, a considerable number of oligosaccharides originate from dolichol-linked oligosaccharides or from glycoproteins that failed quality control in the endoplasmic reticulum and thus are degraded by the proteasome, leaving behind highly mannosylated glycans (23, 32, 41). It is assumed that 70% of the stored oligosaccharides derive from complex- and hybrid-type glycans, 10% derive from high-mannose-type glycans, and 20% derive from biosynthetic intermediates, e.g., lipid-linked oligosaccharides (61).Naturally occurring animal models for α-mannosidosis have been described for cats (8, 55), cattle (6, 24), and guinea pigs (12). The animal models have been the subjects of various studies dealing with neuropathological, behavioral, and therapeutic aspects of α-mannosidosis (3, 13, 38). It was shown with guinea pigs and cats that enzyme replacement therapy (ERT) and bone marrow transplantation, respectively, provided a benefit concerning clinical manifestations and remarkable success in the central nervous system of cats after bone marrow transplantation (13, 56).Aside from the naturally occurring models, a mouse model for α-mannosidosis was generated in which the LAMAN gene was disrupted by gene targeting. This mouse model phenotypically resembled a mild variant of the human disease (46). We exploited this mouse model to develop an ERT approach as already clinically established for other LSDs like Gaucher disease, Hunter disease, or Pompe disease. For this purpose, LAMAN preparations from different species were proven to be efficacious for visceral organs, and most remarkably, we demonstrated that high-dose administration of recombinant human LAMAN (rhLAMAN) affected the central neural storage (39). Very recently, Blanz et al. confirmed the influence of high-dosage ERT on the peripheral as well as the central nervous system in the same mouse model and showed clearance of storage material in hippocampal neurons in particular (5). Here, we report on structural alterations of lysosomal proteins in mice with α-mannosidosis due to hyperglycosylation and the reversibility by ERT.  相似文献   

14.
When 36-hour-old dark grown radish seedlings are transferred to far-red light, there is a decrease in cytoplasmic β-fructosidase (βF) and an increase in cell wall βF compared to the dark controls. Cytoplasmic and cell wall-bound β-fructosidase are both glycoproteins and exhibit high antigenic similarities, but differ according to charge heterogeneity and carbohydrate microheterogeneity. Growth of radish seedlings in the presence of tunicamycin results in a partial inhibition of βF glycosylation but nonglycosylated βF still accumulates in the cell wall under far-red light. Thus, glycosylation is not necessary for intracellular transport, for correct targetting, or for wall association of an active βF. The nonglycosylated cytoplasmic and cell wall βF forms have the same relative molecular mass but glycosylated forms have different oligosaccharide side-chains, with respect to size and susceptibility to α-mannosidase and endoglycosidase D digestion. The oligosaccharides of both forms are partly removed by endoglycosidase H when βF is denatured. Isoelectric focusing analysis of βF shows that the cell wall-associated isozymes are more basic than the cytoplasmic isozymes, and that the charge heterogeneity also exists within a single plant. A time course of changes in βF zymograms shows a far red light stimulation of the appearance of the basic forms of the enzyme. However, the more basic cell wall specific βF forms are not present when N-glycosylation is prevented with tunicamycin. These results indicate that cytoplasmic and cell wall βF probably have common precursor polypeptides and basic cell wall forms arise via processing events which are tunicamycin sensitive.  相似文献   

15.
Variable lymphocyte receptors (VLRs) are leucine-rich repeat proteins that mediate adaptive immunity in jawless vertebrates. VLRs were recently shown to recognize glycans, such as the tumor-associated Thomsen-Friedenreich antigen (TFα; Galβ1–3GalNAcα), with a selectivity rivaling or exceeding that of lectins and antibodies. To understand the basis for TFα recognition by one such VLR (VLRB.aGPA.23), we measured thermodynamic parameters for the binding interaction and determined the structure of the VLRB.aGPA.23-TFα complex to 2.2 Å resolution. In the structure, four tryptophan residues form a tight hydrophobic cage encasing the TFα disaccharide that completely excludes buried water molecules. This cage together with hydrogen bonding of sugar hydroxyls to polar side chains explains the exquisite selectivity of VLRB.aGPA.23. The topology of the glycan-binding site of VLRB.aGPA.23 differs markedly from those of lectins or antibodies, which typically consist of long, convex grooves for accommodating the oligosaccharide. Instead, the TFα disaccharide is sandwiched between a variable loop and the concave surface of the VLR formed by the β-strands of the leucine-rich repeat modules. Longer oligosaccharides are predicted to extend perpendicularly across the β-strands, requiring them to bend to match the concavity of the VLR solenoid.  相似文献   

16.
Endo-M, endo-β-N-acetylglucosaminidase from Mucor hiemalis, transferred the complex type oligosaccharide of sialoglycopeptide to partially deglycosylated proteins (N-acetylglucosamine-attached proteins), which were prepared by excluding high-mannose type oligosaccharides from glycoproteins with Endo-H, endo-β-N-acetylglucosaminidase from Streptomyces plicatus. This finding indicated that the high-mannose type oligosaccharides on glycoproteins can be changed to complex type ones by the transglycosylation activity of Endo-M. This is the first report of the establishment of a remodeling system for the different types of oligosaccharides on glycoproteins with microbial endo-β-N-acetylglucosaminidases having different substrate specificities. Endo-M is a powerful tool for the in vitro synthesis of glycoproteins containing complex type oligosaccharides from glycoproteins produced by yeast.  相似文献   

17.
The autodigestive proteolytic activity of extracts of cotyledons of mung beans (Phaseolus aureus Roxb.) increased 4- to 5-fold during germination. A similar increase was found in the ability of these extracts to digest added casein or mung bean globulins. The increase occurred after a 2-day lag during the next 2 to 3 days of germination and coincided with the period of rapid storage protein breakdown. To understand which enzyme(s) may be responsible for this increase in proteolytic activity, the hydrolytic activity of cotyledon extracts toward a number of synthetic substrates and proteins was measured. Germination was accompanied by a marked decline in leucine aminopeptidase, while carboxypeptidase increased about 50%. There were no dramatic changes in either α-mannosidase or N-acetyl-β-glucosaminidase, enzymes which may be involved in the metabolism of the carbohydrate moieties of the reserve glycoproteins. The increase in general proteolytic activity was closely paralleled by a 10-fold increase in endopeptidase activity. This activity was inhibited by sulfhydryl reagents such as N-ethylmaleimide. Studies with inhibitors of proteolytic enzymes showed that reagents which blocked sulfhydryl groups also inhibited the rise in general proteolytic activity. Our results suggest that the appearance of a sulfhydryl-type endopeptidase activity is a necessary prerequisite for the rapid metabolism of the reserve proteins which accompanies germination.  相似文献   

18.
Glycoproteins which bind concanavalin A (Con A) can be located on nitrocellulose sheets after electrophoretic transfer from slab gels, by sequential incubation of the sheets with Con A and peroxidase, and visualization of the peroxidase by an insoluble reaction product. We refer to this method as affinoblotting. Differential elution of Con A from the blots by washing the sheets with different concentrations of alpha-methylglycosides is used to demonstrate the affinity of Con A for the oligosaccharide side chains, and to differentiate between proteins with weak and those with high affinity for Con A. Concanavalin A has a high affinity for the four plant glycoproteins (phaseolin, phytohemagglutinin, jackbean alpha-mannosidase, and the glycosylated precursor of Con A) studied here. Incubation of the blots with alpha-mannosidase and endoglycosidase H (endo H) is used to demonstrate that the oligosaccharide chains can be degraded by glycosidases while the proteins are immobilized on the nitrocellulose. With this approach we show here that the four plant glycoproteins used as models in this study interact with Con A through high-mannose oligosaccharide side chains sensitive to alpha-mannosidase and endo H degradation.  相似文献   

19.
Lipid-linked oligosaccharides were synthesized with the particulate enzyme preparation from mung bean (Phaseolus aureus) seedlings in the presence of GDP-[14C] mannose. The oligosaccharides were released from the lipids by mild acid hydrolysis and purified by several passages on Biogel P-4 columns. Five different oligosaccharides were purified in this way. Based on their relative elution constants (Kd) compared to a variety of standard oligosaccharides, they were sized as (mannose-acetylglucosamine) Man7GlcNAc2, Man5GlcNAc2, Man3GlcNAc2, Man2GlcNAc2, and ManGlcNAc2. These oligosaccharides were treated with endoglucosaminidase H and α- and β-mannosidase, and the products were examined on Biogel P-4 columns. They also were subjected to a number of chemical treatments including analysis of the reducing sugar by NaB3H4 reduction, methylation analysis, and in some cases acetolysis. From these data, the likely structures of these oligosaccharides are as follows: E, Manβ-GlcNAc-GlcNAc; D, Manα1→3Manβ-GlcNAc-GlcNAc; C, Manα1→2Manα1→3Manβ-GlcNAc-GlcNAc; B, Manα1→2Manα1→2Manα1→ 3(Manα1→6)Manβ-GlcNAc-GlcNAc; and A, Manα1→2Manα1→ 2Manα1→3(Manα1→ [Manα1→6]Manα1→6) Manβ-GlcNAc-GlcNAc. The synthesis of the Man7GlcNAc2 was greatly diminished when tunicamycin (10 μg/ml) was added to the incubation mixtures.  相似文献   

20.
Basse CW  Boller T 《Plant physiology》1992,98(4):1239-1247
Induction of ethylene, an early symptom of the stress response in tomato (Lycopersicon esculentum [L.] Mill) cells, was used as a bioassay to purify elicitor activity from yeast extract. The purified elicitor preparation consisted of small glycopeptides (mean relative molecular weight of approximately 2500) and induced ethylene biosynthesis and phenylalanine ammonia-lyase activity half-maximally at 15 nanograms per milliliter. Elicitor activity was partially abolished by pronase and almost completely by endo-β-N-acetylglucosaminidase H, α-mannosidase, or periodate. The oligosaccharides released upon treatment with endo-β-N-acetylglucosaminidase H competitively inhibited the elicitor activity of the glycopeptides. This suppressor activity was abolished by periodate oxidation and α-mannosidase treatment. The suppressors were chromatographically separated into four active fractions with sizes corresponding to 7 to 10 monosaccharides. They consisted predominantly of mannose and contained also N-acetylglucosamine and glucose. The suppressors had no effect on the response of the tomato cells to a different elicitor, derived from cell walls of Phytophthora megasperma f. sp. glycinea. This strongly suggests that different recognition sites exist for different elicitors in tomato cells, and that the oligosaccharide suppressors act specifically on the perception of just one elicitor. The hypothesis is put forward that the suppressors bind to one of the elicitor recognition sites nonproductively, i.e. without producing a signal, thereby preventing induction of the stress responses by the corresponding elicitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号