首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This study aims to elucidate the mechanisms of Wnt/β-catenin signaling pathway in the development of preeclampsia (PE). The mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were determined by real-time PCR in the placentas. Moreover, the expression levels of Wnt1, β-catenin, Dickkopf-1 (DKK1) and glycogen synthase kinase 3β (GSK-3β) proteins were detected by Western blot. Immunohistochemistry was used in placental tissue microarray to localize the expression of Wnt1, β-catenin, DKK1 proteins in the placentas of two groups. Compared with the control placentas, the mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were decreased in the severe preeclamptic placentas. The Western blot results showed that the expression levels of Wnt1, β-catenin, and GSK-3β proteins were significantly elevated in the control group, while the expression level of DKK1 was significantly decreased. In addition, the staining intensity of Wnt1, β-catenin were weaker in the placentas of the severe PE group while the staining intensity of DKK1 was significantly stronger in the placentas of the severe PE group. Wnt/β-catenin signaling pathway may play a significant role in the pathogenesis of PE by regulating the invasion and proliferation of trophoblast.  相似文献   

3.
4.
5.
Normal heart formation requires reiterative phases of canonical Wnt/β-catenin (Wnt) signaling. Understanding the mechanisms by which Wnt signaling directs cardiomyocyte (CM) formation in vivo is critical to being able to precisely direct differentiated CMs from stem cells in vitro. Here, we investigate the roles of Wnt signaling in zebrafish CM formation using heat-shock inducible transgenes that increase and decrease Wnt signaling. We find that there are three phases during which CM formation is sensitive to modulation of Wnt signaling through the first 24 h of development. In addition to the previously recognized roles for Wnt signaling during mesoderm specification and in the pre-cardiac mesoderm, we find a previously unrecognized role during CM differentiation where Wnt signaling is necessary and sufficient to promote the differentiation of additional atrial cells. We also extend the previous studies of the roles of Wnt signaling during mesoderm specification and in pre-cardiac mesoderm. Importantly, in pre-cardiac mesoderm we define a new mechanism where Wnt signaling is sufficient to prevent CM differentiation, in contrast to a proposed role in inhibiting cardiac progenitor (CP) specification. The inability of the CPs to differentiate appears to lead to cell death through a p53/Caspase-3 independent mechanism. Together with a report for an even later role for Wnt signaling in restricting proliferation of differentiated ventricular CMs, our results indicate that during the first 3days of development in zebrafish there are four distinct phases during which CMs are sensitive to Wnt signaling.  相似文献   

6.
Aberrant expression of the guanine nucleotide exchange factor Tiam1 is implicated in the invasive phenotype of many cancers. However, its involvement in thyroid carcinoma and downstream molecular events remains largely undefined. Here, we examined the effects of Tiam1 on the invasiveness and metastasis of thyroid carcinoma in vitro and in vivo and explored the underlying mechanisms by investigating the regulation of Tiam1 expression and the downstream pathways affected. Our results showed that Tiam1 knockdown inhibited the migratory and invasive capacity of thyroid cancer cells, suppressed epithelial-mesenchymal transition (EMT), and inhibited Wnt/β-catenin signaling in vitro. Moreover, Tiam1 knockdown suppressed liver metastasis development in vivo. The effects of Tiam1 on metastasis and EMT mediated by the Wnt/β-catenin pathway were reversed by Rac1 silencing, suggesting that the prometastatic effect of Tiam1 is mediated by the activation of Rac1. These results indicate that Tiam1 may be a prognostic factor and potential therapeutic target for the treatment of thyroid cancers.  相似文献   

7.

Background

Stem cells are mainly characterized by two properties: self-renewal and the potency to differentiate into diverse cell types. These processes are regulated by different growth factors including members of the Wnt protein family. Wnt proteins are secreted glycoproteins that can activate different intracellular signaling pathways.

Scope of review

Here we summarize our current knowledge on the role of Wnt/β-catenin signaling with respect to these two main features of stem cells.

Major conclusions

A particular focus is given on the function of Wnt signaling in embryonic stem cells. Wnt signaling can also improve reprogramming of somatic cells towards iPS cells highlighting the importance of this pathway for self-renewal and pluripotency. As an example for the role of Wnt signaling in adult stem cell behavior, we furthermore focus on intestinal stem cells located in the crypts of the small intestine.

General significance

A broad knowledge about stem cell properties and the influence of intrinsic and extrinsic factors on these processes is a requirement for the use of these cells in regenerative medicine in the future or to understand cancer development in the adult. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

8.
Colorectal neoplasia differentially expressed (CRNDE) is a significantly upregulated long noncoding RNA in hepatocellular carcinoma (HCC). CRNDE could promote cell proliferation, migration, and invasion, while its molecular mechanisms were still largely unclear. In this study, we investigated the expression and function of CRNDE. CRNDE was significantly upregulated in tumor tissues compared with adjacent normal tissues. In vitro, we revealed that knockdown of CRNDE inhibited cell proliferation, migration, and cell invasion capacities in HCC. Animal studies indicated that CRNDE knockdown represses both growth and metastasis of HCC tumors in vivo. Moreover, knockdown of CRNDE suppressed the cell epithelial-mesenchymal transition (EMT) process by increasing the expression of E-cadherin and ZO-1, whereas, decreasing the expression of N-cadherin, slug, twist, and vimentin in HCC cells. We also revealed that knockdown of CRNDE suppressed the Wnt/β-catenin signaling in HCC. Thus, CRNDE could modulate EMT of HCC cells and knockdown of CRNDE impaired the mesenchymal properties. CRNDE increased invasion of HCC cells might be through activating the Wnt/β-catenin signaling pathway.  相似文献   

9.
10.
MicroRNA-218 (miR-218) is a short, noncoding RNA, with multiple biological functions. In this study, we aimed to investigate the potential effects of miR-218 on the apoptosis of human ovarian carcinoma cells and the underlying mechanisms by which miR-218 exerted its actions. After over-expressing miR-218 in human ovarian carcinoma (OVCAR3) cells, cell viability was determined by MTT method, cell apoptosis was observed by flow cytometry (FCM), mRNA expression of miR-218, Bcl2, Bax was measured by RT-PCR and protein expression levels of Wnt, tankyrase and β-catenin were quantified by Western blots. Over-expression of miR-218 potently suppressed cell viability and promoted the apoptosis of human ovarian carcinoma cells in a time-dependent manner. In addition, the down-regulation of tankyrase expression level was detected in miR-218-over-expressed cells. Following the block of the Wnt/β-catenin signaling pathway using the inhibitor XAV-939, the effects of miR-218 on the proliferation and apoptosis of human ovarian carcinoma cells were significantly suppressed. Augmenting expression of miR-218 and/or miRNA-218 mimicking therapeutics may provide viable avenue for the treatment of ovarian cancer.  相似文献   

11.
Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/β-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/β-catenin signaling were determined, suggested down-regulation of Wnt/β-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3α can inhibit the epithelial differentiation of MSCs. A loss of β-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated β-catenin expression and subsequently decreased β-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/β-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.  相似文献   

12.
Hidekazu Iioka 《FEBS letters》2009,583(4):627-632
The Wnt family of secreted ligands plays critical roles during embryonic development and tumorigenesis. Here we show that Kaiso, a dual specific DNA-binding protein, functions as a bimodal regulator of canonical Wnt signaling. Loss-of-function analysis of Kaiso abrogated Wnt-mediated reporter activity and axis duplication, whereas gain-of-function analysis of Kaiso dose-dependently resulted in synergistic and suppressive effects. Our analyses further suggest Kaiso can regulate TCF/LEF1-activity for these effects via modulating HDAC1 and β-catenin-complex formation. Our studies together provide insights into why Kaiso null mice display resistance to intestinal tumors when crossed onto an ApcMin/+ background.

Stuctured summary

MINT-6823807: HDAC1 (uniprotkb:Q13547) physically interacts (MI:0218) with beta catenin (uniprotkb:P35222) by anti tag coimmunoprecipitation (MI:0007)MINT-6823820: axin (uniprotkb:O15169) physically interacts (MI:0218) with beta catenin (uniprotkb:P35222) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

13.
Zhang C  Chen P  Fei Y  Liu B  Ma K  Fu X  Zhao Z  Sun T  Sheng Z 《Aging cell》2012,11(1):14-23
Aged epidermal cells have the capacity to dedifferentiate into stem cell-like cells. However, the signals that regulate the dedifferentiation of aged epidermal cells remain unclear. Here, we provide evidence that Wnt/β-catenin is critical for aged epidermal cell dedifferentiation in vivo and in vitro. Some aged epidermal cells in human ultrathin epidermal sheets lacking basal stem cells transplanted onto wounds dedifferentiated into stem cell-like cells that were positive for CK19 and β1 integrin but negative for CK10. In addition, Wnt/β-catenin pathway was activated during this process. There was increased expression of Wnt-1, Wnt-4, Wnt-7a, β-catenin, cyclin D1, and c-myc. Secreted frizzled-related protein 1, a Wnt/β-catenin pathway inhibitor, blocked dedifferentiation in vivo. Then, the activator, a highly specific glycogen synthase kinase (GSK)-3β inhibitor, of Wnt/β-catenin pathway was added to the culture medium of aged epidermal cells. Surprisingly, we found that the activator induced higher expression of CK19, β1 integrin, Oct4, and Nanog proteins. The induced aged epidermal cells exhibited high colony-forming efficiency, long-term proliferative potential and could regenerate a skin equivalent (as do epidermal stem cells). These results suggested that activation of Wnt/β-catenin pathway induced the dedifferentiation of aged epidermal cells, which suggest a new approach to generate epidermal stem cell-like cells.  相似文献   

14.
15.
TRIM29 plays an important role in many neoplasms.In this study,we aimed to elucidate its role in hepatocellular carcinoma (HCC) and explore the corresponding potential mechanism.The expression level of TRIM29 in HCC samples and hepatoma cell lines was detected.We found that TRIM29 was down-regulated in clinical HCC samples and cultured hepatoma cell lines by western blot analysis and quantitative polymerase chain reaction.In addition,we demonstrated that higher TRIM29 expression was associated with higher differentiation grade of HCC.To explore the effect of TRIM29 on hepatoma cells and its possible mechanisms,TRIM29-knockdown and overexpression cell models were constructed.The results showed that the depletion of TRIM29 promoted liver cancer cell proliferation,clone formation,migration and invasion in vitro probably through the Wnt/β-catenin signaling pathway.This study revealed the inhibitory roles of TRIM29 in HCC and the possible mechanisms.  相似文献   

16.
17.
Glioblastoma is the most aggressive cerebral gliomas. Despite advances in therapies, the prognosis is still very poor. Therefore, novel therapeutic strategies are required. As a proteasome inhibitor, bortezomib has shown its efficacy as an active antitumor agent against a variety of tumors. However, inhibition of proteasome activity leads to cell death and also induces cell autophagy, and due to the dual roles of autophagy in the survival and death of tumor cells, the effect of inhibition of autophagy on glioblastoma cells remains to be explored. We therefore assessed whether bortezomib is capable of inducing autophagy, and investigated the antitumor effect of bortezomib combined with autophagy inhibitors on human glioblastoma U251 and U87 cells. Cell viability was measured by MTT assay. The expressions of autophagy and apoptosis-related proteins were determined by Western blot analysis. U251 and U87 cells proliferation was inhibited in a dose-dependent manner. Both apoptosis and autophagy induced by bortezomib were observed in human glioblastoma U87 and U251 cells. However, when U251 and U87 cells were co-treated with bortezomib and autophagy inhibitors 3-MA or Atg7 siRNA, the autophagy inhibitors blocked the autophagy in the cells and resulted in a further inhibition of cell proliferation and a further increase in cell apoptosis as compared with that treated with bortezomib alone. These findings indicated that combination of bortezomib and autophagy inhibitors may shed new light on glioblastoma treatment.  相似文献   

18.
Wnt/β-catenin signaling pathway and cell cycle play the key roles during the genesis and development of hepatocellular carcinoma (HCC). The cytoplasmic protein β-catenin is a multifunctional protein and a central molecule in the Wnt signaling pathway. Cell cycle is regulated by a a series of regulatory factors. Current researches indicated that expression of cyclin D1 and c-myc decreased after silencing β-catenin gene in HCC, but it is unclear if other cyclins are affected. To determine the relation, small interference RNA(siRNA) against β-catenin was transfected into HCC cell line HepG2, and cell cycle and cyclin A and cyclin E protein expression were detected. We demonstrated that cell cycle was arrested in G0/G1 at 72 h after the transfection and with the time passing, the cell cycle began to transfer from G0/G1 to G2/M through S and had a trend to revert at 96 h. In addition, β-catenin protein expression was decreased at both 72 and 96 h, although the level was slightly higher at 96 h than that at 72 h. However, cyclin A and cyclin E protein expression increased at 72 h and decreased at 96 h. These findings suggest that silencing β-catenin gene may induce the changes of cell cycle and cyclin A and cyclin E expression. Wnt/β-catenin signaling pathway probably takes part in the genesis and development of HCC through regulating cell cycle and the expression of cyclin A and cyclin E.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号